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Clustering data by identifying a subset of representatkasrgles is important for detect-
ing patterns in data and in processing sensory signals. Sxamplars” can be found by
randomly choosing an initial subset of data points as exaragind then iteratively refining it,
but this works well only if that initial choice is close to agsolution. This thesis describes a
method called “affinity propagation” that simultaneousbynsiders all data points as potential
exemplars, exchanging real-valued messages between alata pntil a high-quality set of
exemplars and corresponding clusters gradually emerges.

Affinity propagation takes as input a set of pairwise sinililes between data points and
finds clusters on the basis of maximizing the total simijabietween data points and their ex-
emplars. Similarity can be simply defined as negative squBrelidean distance for com-
patibility with other algorithms, or it can incorporate ligr domain-specific model®.gQ,
translation-invariant distances for comparing imagesifindy propagation’s computational
and memory requirements scale linearly with the numberroflarities input; for non-sparse
problems where all possible similarities are computedséhrequirements scale quadratically
with the number of data points. Affinity propagation is derstoated on several applications
from areas such as computer vision and bioinformatics, ttypically finds better clustering

solutions than other methods in less time.
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Caravaggio’s/ocazione di san Mattg@ he Calling of St. Matthew, [20]) is an artistic depiction
of identifying exemplars based on the direction of gestugeges, and even lighting in the
painting. This interpretation was suggested in [77].



Chapter 1

Introduction

Clustering or discovering meaningful partitions of datadzhon a measure of similarity is

a critical step in scientific data analysis and a fundamerablem in computer science. A
common approach within the machine learning communitylire®unsupervised learning of
parameters that describe clusteesg( the location and scale/shape of the cluster) and par-
titioning the data by associating every point or region witie or more clusters. In many
situations, data is better and more easily characterizea fogasure of pairwise similarities
rather than defaulting to negative squared Euclideanrmistaand in this case, clusters can in-
stead be represented by an “exemplar” data point ratherdiauain-specific parameters. This
thesis introduces a novel algorithm, affinity propagattbaf uses belief propagation methods

to achieve outstanding results for exemplar-based ciagter

Identifying exemplars is advantageous because userfiguksimilarities offer a large amount
of flexibility and allow the clustering algorithm to be degbed from the details of how similar-
ities between data points are computed. Unlike many algostthat operate in vector space,
there is no need for similarity to be based on squared Ewntidéstance, or for the data space
to be metric or continuous, or even ordinal; see Figure Iretamples. Additionally, there
is potential for significant improvement on existing algloms, both in terms of solution time

and solution quality.
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Figure 1.1: Several datasets are shown for which negativared Euclidean distance would
be an inappropriate measure of similarity. In (A), facesciustered using translation-invariant
comparisons (see Sectibn 5]1.3 for details). In (B), Northefican cities are clustered with
similarity defined as flight time, which depends on airlineestules, headwinds, earth curva-
ture, etc. The dataset in (C) appears to contain two unconventionates that are shaped
like two-dimensional “plus-signs”. There are many reaigthysical situations from which
data such as this could have ariserg. where a subset of sensors (in this case, one of two)
are unreliable for each measurement. Conventional clagtatgorithms would need special
tuning or re-deriving to accommodate such a model; exenijglaed clustering algorithms that
rely on pairwise similarities could just use a slightly difént definition of similarity such as a
Gaussian likelihood with two possible variances switchrefibr each dimension. The result of
such clustering is shown in (D).
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The task of exemplar-based clustering is to identify a subisine V data points as exem-
plars and assign every other data point to one of those exesiplhe only inputs are a set
of real-valued pairwise similarities between data poiftg;, k£)}, and the number of exem-
plars to find (<) or a real-valued exemplar cost to balance against sirdariA simple and
fast algorithm for finding clustering solutions is themedoids algorithm [70], which begins
by randomly selecting a set &f data points as initial exemplars and then refines these in al-
ternating steps as shown in Figlre]1.2. The algorithm mancatly maximizes the sum of
similarities between data points and exemplars but corsady a fixed set of exemplars, and
thus is quite sensitive to the initial selection of exemgldfor this reasork-medoids cluster-
ing needs to be run with many different random initializaie-it works well only when the
number of clusters is small and chances are good that atdaastestart lies close to a good

clustering solution.

In contrast tok-medoids, affinity propagation simultaneously considdirdata points as
potential exemplars. By viewing each data point in a netwiarkecursively transmits real-
valued messages along edges of the network until a good seeafplars and corresponding
clusters emerge; see Figure]1.3 for an illustration of thiggamics. Affinity propagation
sends two types of message between data points: respdieskire sent from data points to
candidate exemplars and reflect the evidence of how wdkdtihe message-receiving point is
to serve as an exemplar for the sending point. Availabditiee sent from candidate exemplars
to data points and reflect the evidence for how appropriateutd be for the message-sending
point to be the exemplar for the message-receiving poiet Esgure 1.8). All data points can
be considered to be either cluster members or candidate@aesndepending on whether they

are sending or receiving availability or responsibilityssages.

Affinity propagation is outlined in the box below, with scatasponsibility and availability
message updates shown in equatfon|(1.1). At any time, artugstimate of cluster assign-

ments can be obtained by adding responsibility and avétiabiessages together.
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Figure 1.2: Thek-medoids clustering algorithm is a simple algorithm thati$ira greedy so-

lution. Given the initial toy dataset in (A), the algorithmndomly chooses an initial set of
exemplars (B), and assigns the remaining non-exemplaatds to the “closest” exemplar
based on similarity (C). New exemplars are found for eacktel(D) to minimize the total sum
of intra-cluster similarities, and the process is repeégdintil convergence to the solution in

(F).
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Figure 1.3: The affinity propagation clustering algorithefides messages that are exchanged
between data points indicating the ‘affinity’ each point fasanother to act as its exemplar.
The toy exemplar above (A) shows a solution gradually emergvith uncertainty in the tenth
iteration (shown as faded blue messages) being resolvegidodclustering solution shown at
the final iteration. Two messages are passed between datsa:p@) “responsibilities’ (i, k)

are sent from data pointo candidate exemplds, and (C) “availabilities’a(i, k) are sent from

candidate exemplarto data point.
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AFFINITY PROPAGATION

indicates how well-suited data poikts as an exerﬁﬁlar for data point
e.g,s(i, k) = — ||x; — xx||*, i#k (squared Euclidean distance)
For each data point, a real numbes(k, k) indicating thea priori preference
(negative cost of adding a cluster) that it be chosen as an@ze
e.g.s(k,k)=p Vke{l,...,N} (global preference)

INITIALIZATION : set availabilities to zero7i, k: a(i, k) =0.

REPEAT: responsibility and availability updates until convergen
Vi k: r(i, k) = s(i, k) — hax [s(i, k") + a(i, k)]
Vi k: alik) = > inie; max[0, (i k)], for k=i (1.1)
, : min [0, P (k, k)3 iy X[, 7 (7, /{;)]}, for k1

OuTPUT: assignmentg = (¢4, ..., ¢y ), Whereé; = argmax, [a(i, k)+7r(i, k)]
and¢; indexes the cluster’'s exemplar to which paimg assigned. Specifically, if
pointi is in a cluster with poinkt serving as the exemplar, thép=k andé, =k.
Note: one run ok-medoids may be needed to resolve contradictory solutions.

Affinity propagation achieves outstanding results by eryiplg “loopy belief propaga-
tion” techniques (see Sectibn P.6) that have previousiy lsed to approach Shannon’s limit
in error-correcting decoding [5] and solve random satidftstproblems with an order-of-
magnitude increase in size [76]. The objective functiondximizes is the net similaritys,
which is the sum of the similarities of non-exemplar dataypoio their exemplars plus the sum
of exemplar preferences (negative costs of adding exes)plar

The affinity propagation algorithm is simple to implementl @ustomize; it is also compu-
tationally efficient, scaling linearly in the number of slarities or quadratically in the number
of data points if all possible pairwise similarities aredis€omputing pairwise similarities typ-
ically takes more computation than does clustering themeample described in Section]5.2
involves clustering 75,066 data points with roughly 15,000 similarities—this requires sev-
eral minutes of computation on a typical notebook computeiof 2008).

A background to parametric approaches to clustering, tbiéitfalocation problem, and
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belief propagation algorithms is given in Chapter 2. Thaleinto a derivation and discussion
of the affinity propagation algorithm in Chaptfér 3 followeg thorough benchmarking of the
methods in Chaptdr] 4. Affinity propagation is applicable twide variety of applications
spanning most areas of science and engineering. This tqidisres several application areas
within computer vision and bioinformatics in Chapér 5. Fuerested readers, all software

and data is available at http://www.psi.toronto.edu/affpropagation




Chapter 2

Background

Clustering is the unsupervised learning task of organiningartitioning data into meaningful
groupings. For data embedded in a vector space, a commoroveegomplish this is to view
clusters as ‘clumps’ of data that are a certain [Euclide@sthdce away from a center—in two
dimensions, these ‘clumps’ would be circular or ellipticdhough not necessarily the most
appropriate way to cluster (see Figlrel 1.1 for a counter@i&), clustering such data based
on squared Euclidean distance is widespread in the madaneihg literature and provides an

easy path to introducing affinity propagation.

2.1 k-means clustering

GivenN column-vector data points;, x», . . ., xy Where eack; cR”, the clustering task is to
assign each of them to one Afclasses labelet 2, . . ., K. These assignments are denoted by
latent class variables, zs, . .., zy Wwhere each; € {1,2, ..., K'}. With thek-means clustering
algorithm [70], each class is characterized by a clustetecgm, , which can be interpreted as
the mean vector for a unit-covariance spherical Gaussiantfe covariance matrix is given

by the identity matrix]I ). Given that data point; belongs to class, its distribution is given
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by:

P(xilzi=k, py) = N(xi; ., Ip) = (;W)D €xp (—%(Xz — ) (xi — Hk))

Class labelqz;}¥ | are hidden (latent) variables so overall the data is distith according to
a mixture of spherical Gaussians distribution,
- 1

P(x;) :ZP(Xi|Zi:k)'P(Zi=k) :ZN(Xi;Hk>ID) K

k=1 k=1

as illustrated in Figure2.1(A). Note that thepriori probabilities of data point class assign-

ments are assumed to be uniform (for now8, Vk: P(z;=k)=.

An appropriate class assignment for tiffedata point involves maximizing the posterior
probability P(z; = k|x;, u,) which by Bayes’ rule is equivalent to maximizing(x;|z; =
k, ) P(z;=k)/P(x;) with respect tdk. As shown abovel(x;) does not depend on the class

assignments$z; }, so it is appropriate to write in this case:

1
argmax P(z;=k|x;, u,) = argmax —-P(x;|z;=Fk, ;)
ke{1,2,...K} ke{1,2,....K}

and thus each class label is assigned as follows:

z; — argmax N (x;; g, Ip) = argmin ||x; — p, || (2.1)
ke{l,...K} ke{l,.. K}

This assignment, however, depends on the choiceigépfi_,, and for computational rea-
sons it is typically optimized separately while holdingued of{ .1, } constant. The likelihood
of the entire dataset given all class assignment¥igz, u) = ﬁ N (x; p, Ip) so the Gaus-
sian parameters are optimized by maximizing this Iikelﬂigcl)r rather, the log-likelihood,

which is equivalent). Setting partial derivativeslog P(x|z, u) with respect to eaclu, to
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\4

(B) ©) A

Figure 2.1: Datasets fit tb-means (A) and EM for mixture of Gaussians (C) are shown in
two dimensions. A mixture of three spherical Gaussianslaoe/s in (A) with meange,, p.,

and u,; these could have been fit lymeans §2.1). A different mixture of three Gaussians
distribution more suited to the EM algorithriX3) is shown in (B); the contour plot is for the
distribution: P(x) = 37 _, N'(x; u;,, Zx). The plot displays the orientation of the Gaussians
in (C), where the first Gaussian is shown in red and paramnzeteby{u,, ¥;}. The second
Gaussian is shown in blue and parameterized iy, 3, }—this covariance is diagonal as the
Gaussian is axis-aligned. The third Gaussian is shown ergaed parameterized Ky, 03},
where the Gaussian is isotropic/spherical (same varianak dimensions) and the covariance
matrix is thus a scalar multiple of the identity matrix.
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zero leads to the following update equation:

0= 5o o0 log N (x5 p., In) o 3000 [0 = K] (s — pay)

(2.2)
sop = X2, =i [, [si =

where[ -] denotes Iverson notation witlirue] = 1 and [false] = 0. Essentially, the update
equation sets eagh, to be the vector mean of all data points in #iclass, hence the name

k-means.

K-MEANS CLUSTERING ALGORITHM
INPUT: {x;}¥, (data),K (number of clusters)
INITIALIZE : set eachu, to a random data point
REPEAT UNTIL CONVERGENCE

Vi: z; « argmin ||x; — p.|| = argmax N (x;; ., Ip)
ke{l,..,K} ke{l,.. K} (2_3)

Wk mean {xi},, = Y0 [=klxi/ YL (=]

OuTPUT: {z}¥, (cluster assignments)u,, | (cluster centers)

2.2 k-medians clustering

A variant of k-means in occasional use fismedians clustering, wherein the median is used

instead of the mean when updating the cluster center pagasndthis algorithm is summarized

in equation[(2.4).

K-MEDIANS CLUSTERING ALGORITHM
INPUT: {x;}Y, (data),K (number of clusters)
INITIALIZE : set eachm,, to a random data point
REPEAT UNTIL CONVERGENCE

z; «— argmin ||x; — my||
k{1, K} (2.4)

my < median {x;}; _,

OuTPUT: {z}¥, (cluster assignments)m,, } X, (cluster centers)
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2.3 EM algorithm for Mixtures of Gaussians

The k-means algorithm makes all-or-nothing assignments of plaitats to clusters, and these
hard decisions can often lead to poor solutions correspgntdi local minima inP(x|z, w).

A common refinement involves learning the covariances dar$tof fixing themi.e. Vk :
Y, = Ip; see Figuré 2]1(B—C)), learning mixing weights on classmgr{instead of assuming
Vk: m = %), and to account for cluster assignment uncertainty bygugie Expectation-
Maximization (EM) algorithm [23] and representing it withsemple distribution@(z) =

Y, 11, ql[zl‘k] Cluster assignments can be determined by minimizing tHk&ck-Leibler

divergence [18] betweeq(z) and P(z[x), D (Q(z) || P(z[x)) = [, Q(z)-log £7s. Finding a
workable expression for the denominatB(z|x) = P(x|z)P(z)/P(x), is not usually possible

so the following is minimized instead:

constant w.r.t. Q(z)

. Q) ——= |_ Q(z)
ar%gun /Q(z)-log P(Z|X)—logP(x) ar%gnn /Q x.2) (2.5)

The joint distribution become®(x,z) = P(x|z)P(z) = Hi]ilN(Xi;Mzi, 3.,) m.,, and the

expression to minimize—referred to as the free enefgysbecomes:

N
JQ(z) logp = [ H H g (Z E[ v=k']-log g — > log 7., N (xir; 1., E))

z 1=1 k=1 1k'= =1

Zizl Ekzl ik - 1og qit, — ElNzl Eff:l ik - log TN (%55 gy, L)

After adding the constrainti: >+ | ¢;. = 1 to ensure(z) is a valid distribution, we can

optimize(z) by setting its partial derivative (plus the Lagrange caaiat) to zero:

O[F+x: (1-4, ain)]
ik,

0= =1+1og g, —log TN (X3 py, Bk) =i = i =meN (X35 pay,, Bip) -

TN (X315, 5k)
Ef,:l T N (X5, )

SOk
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Mean and covariance parameters for the Gaussians can b douitarly:

O|F+A(1-K 7,
[7+( aﬂ%k_l w)] — _L Ele Gk — N\ = T, = _% 25:1 ik
= oun Ez 1 Ek 1 9ik log WkN(Xw Mg, Ek) OCEZ 1 qm<xz Nk)
0= ﬁkzizl Zk:l Gir log TN (x5 py,, i) OCZizl Qikzk +ZZ—:1 Qi (X5 — g, ) (X5 — gy, ) T

N N oo x N oo (x— T
SO T «— M’ l’l’k w’ and El;r — zz:l qu(XLN /"’k.)(xl IJ‘k)
Ei:l ik Ei:1 ik

0=

where{m; }&* | is constrained to be a valid probability distribution thgbiLagrange multiplier
A, which enforce$" 1 | m, = 1.

For high-dimensional input data, learning the full covada matrixX, involves@
scalar parameters, which can be cumbersome and potemigsdlycause of overfitting. For this
reason the Gaussians are often assumed to have diagonahooeamatrices (in which case
the off-diagonal elements df, are zeroed during updates) or even isotropic covarieHIces.

Class assignments can be easily read frongikdistributioni.e. Vi : z; «— argmax ¢;.
k

EM ALGORITHM FOR A MIXTURE OF GAUSSIANS

INPUT: {x;}¥, (data),K (number of clusters)

INITIALIZE : set{yu,} to random data points/: 1« + and 3y —var({x;})
REPEAT UNTIL CONVERGENCE

Vi, k: gy — — 5
ik Zk/ Tt N (X35 1430 , 34,1 (26)
2N g SN qixi T, SN qie(ei—py) (xi—py) |
«— ¢ ==L 7 —
Vk: m, N Mk SN an Ek SN qir

OUTPUT: {z;«argmax ¢}, (assignments)u,, 3; 15 | (Gaussians)
ke{l,...,K}

Another item of interest is that setting the covariance ioe$rtoX, = ¢- I, wheree — 0,

polarizes the)-distribution (nax @ (z) — 1) to reflect hard decisions and reduces the EM

update equations tb-means.

in which casex;, — Ip - T 0 "[()"i “k()z k(’“ :) whereD is the dimension of eack;.
i=1
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2.3.1 Heuristics for clustering

The clustering algorithms described previously monotalhjéncrease objective functions (via
coordinate ascent) and are thus prone to land in local minia@ious heuristics have been

devised that assist in overcoming this.

Furthest-first traversal

Parametric clustering algorithms are sensitive to theaingtet of cluster centerg;(?), so a
common initialization that often lies near a good solutised [49] for theory) is to construct
an initial set of centers with a furthest-first traversal.e8fcally, the cente;ugo) is a ran-
dom data point;,, and subsequent centeu&;;o), are set to the “furthest” data point from
{9 1l %} where distance is between a point and set of centers is defined

0
X; — I’I’Ig’)

. 0 (0 0 .
distance [xi, {,A 2;15 2 e M;(@_)l}] = kle{lngm 1y )

Random restarts

Another effective and commonly-used tactic to counteransgivity to the initialization of an
exemplar set is to re-run clustering with many differentigizations or random restarts. The

final result can then be chosen as the restart achieving gt@pemization.

Split-and-Merge

During clustering, centers can occasionally become pedidgersed in comparison to the data,
with many centers describing a few tightly-bunched data{scind relatively few centers de-
scribing more-dispersed data. In order for centers to rtegegenly to the proper regions, it
often entails them traveling through low-likelihood intezdiate solutions that will not occur
due to the update equations monotonically optimizing thiejective. This can be addressed by
introducing a heuristic that merges cluster pa@g{ where centers occupy roughly the same

space, and combining their data into one cluster does notatieally decrease the likelihood)



CHAPTER 2. BACKGROUND 15

or splits clustersd.g, the center describing data with the lowest probability)e Bpecifics of

split-and-merge criteria are described in [98].

k-log(k) heuristic

Dasguptaet al. show in [21, 22] for high-dimensional Gaussians (where disi@n D >
In K) that the EM algorithm for a mixture of Gaussians can avoidiyr@oor local minima by
initializing the algorithm withO(K In K') Gaussians and then pruning this backifausing

heuristics. They describe a two-round variant of the EM aigm which is summarized here:

e Pick L data points (wheré = O(K In K)) from {x,} and use them as the initial centers,
(). . Initialize covariance matrices W : £\ = 15 min,; || p; — g |”

for isotropic/spherical Gaussians.

Run one iteration of the EM algorithm to estimdie’") =" }-_ andvi: {q!))}£_,.

Automatically prune away clusters whose mixing Weig@gl1 qir, fall belowi + %

Prune away any further surplus clusters by selecingpeans from the remaining means

via a furthest-first traversal.

Run an additional EM update to obtain final estimates{fef’}, {=\”} and{4/’}.

A more thorough treatment of this heuristic can be found ij.[2

2.4 Exemplar-based clustering and thé&-medoids algorithm

The clustering methods in the previous section were basedsigning data to clusters char-
acterized by location and shape parameters such as meaasces, and even medians. The
k-medians clustering algorithm shown in equation](2.7) jules a natural segue to an alterna-
tive cluster representation—by actual data points calenplarsFor high-dimensional data,

it is slightly more efficient to store a pointer to a data ppint, rather than the full cluster data
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median,m;. This changes the-medians update equations4p«— argmin ||x; — x,,, || and
ke{l,..,K}

My %argmikn Do, =i [1X¥n = Xal|-

If thé z, andm; updates are iterated, there are numerous needlessly edpeiatance
computations in both steps—these could be efficiently prepguted as/i,j € {1,..., N} :
d(i, j) = ||x;—x,|| or equivalently, similaritiess(z, j) = —d(i, j). To complete the transition,
a final notation switch is storing the index of each data poEtemplar in anV-ary variable
cii ;€ KCAL,..., N}, instead of storing & -ary index to a cluster number,e {1, ..., K}.
Here, the set of exemplargg,, valid assignments fot;) is £ C {1,..., N}, indicated by

Vk €K, ¢, =k) and the set of non-exemplarskis= {1, ..., N}\K. Thek-medoids algorithm

is summarized below in equatidn (P.7).

K-MEDOIDS CLUSTERING ALGORITHM

.....

INITIALIZE : setK to a random subset dfl, ..., N} where|K| = K.
REPEAT UNTIL CONVERGENCE

Vi¢ K: ¢; « argmax s(i, k) and V€ KC: ¢ «— k
kek
N
VEeK: k« argmax Y. s(i,j)

jicj=k  i=1
T ci=k but i#j

2.7)

OuTPUT: {¢;} ¥, (cluster assignmentsf; (exemplars)

The k-medoids algorithm [8] greedily maximizes a quantity rederto as the data similar-
ity, Sdata = »_;cx¢ 5(4, ¢;). There is no longer any reason for enforcing similarity tadleéined
ass(i,j) = —||xi—x;||; for example, with expression data in bioinformatics it fleea more
convenient to use(i, j) = x, x;. There is no need for similarities to form a valid metric:
symmetry is optionals(, j) # s(j,)), as is the triangle inequality (i, k) £ s(, j) +s(j, k)).

A more general objective function, henceforth referredsohe net similarity, is obtained

2To be comparable with-means and EM for mixture of Gaussians and optimize the sédneetive, similari-
ties should be re-defined as negatgeared.? distance, unliké-medoids which uses negativé Histance.
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by including a model complexity term:

S = Z@s(@', ¢) — MK (2.8)

where \ is a user-specified regularization parameter. If the nurobetusters,K' = |K]| is

not specified in advance, it may seem at first glance that theimalarity is maximized by
making all data points exemplars, but this is not the casauserof the\ || penalty term. For
example, if the similarity of one data point to another wereater than- )\, the net similarity
would be higher if the first point were not an exemplar buteastassigned to the second point.
Some data points could be knowrpriori to be more or less suitable as exemplars, in which
case the model complexity term can depend on which datagpaistexemplarsy_, .- A(k).

We incorporate this into the framework by denoting theseefssimilaritiess(k, k) = —A(k)

or, for the constant-preference casé,: s(k, k) = p = —A\. This simplifies the net similarity

objective to:
N
S= Zi:l s(i,¢;) = Ziezs(i, ¢) + Zke/c s(k, k) (2.9)

In addition to similarities, thé&-medoids algorithm takes as input the number of exemplars,

K=K

, and monotonically optimizes the data similari$y,.. The algorithm is quite sensi-
tive to its initial exemplar set, and is thus typically rexnrith many €.g, hundreds of) random
initializations in order to find a solution with high net siamty and thus avoid more unfortu-
nate restarts that find poor local maxima&f This is typically not computationally burden-
some in the larger contextk-medoids clustering requirg8(N?) binary operations whereas
pre-computing a similarity matrix from data can requi?éN2D) operations (or worse), de-

pending on the similarity definition in use.

If the preference regularization parametér; p=s(k, k) is specified with no value ok,
the net similarity in equatio (2.9) can be maximized byII'rgentIyH searching over net simi-

larities resulting from multiple runs df~-medoids clustering initialized with different values of

3e.g, binary search, interpolation search
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K.

2.4.1 Linear Programming Relaxation

Maximizing the net similarity objective function in equati (2.9)—or evenS,,. for that
matter—has been shown to BéP-hard in general [56]. Linear programming relaxations
can, however, be employed to find optimal solutions in smablgms whereV < 1000; this

is outlined in the 0—1 integer program of equatidns (4. TDIP.

0-1 INTEGER PROGRAM FOR K-MEDIANS PROBLEM

.....

VARIABLES: b;; € {0,1} wherei,j =1,...,N

MAXIMIZE :

S — ZiNzl ijl boe (i, k) (2.10)

SUBJECT TQ

Vi: Zivzl by, = 1 (always in exactly one cluster)
Vi, ki bgr > b, (each cluster has an exemplar) (2.11)

SV b = K (optional total number of clusters)

OuUTPUT: {¢;} ¥, (cluster assignments),
whereb;, =1 = ¢;=k and Vj #k: b;; =0

The 0-1 integer program rephrases the previous setiypiofeger-valued variable{s:z-}fv: )
as N2 binary-valued variablegb;,. } wherec; =k impliesb;, = 1. The constraints in equation
(2.11) ensure the consistent mappingge=1 for only onek-value and that ifli £k : b, =1

then pointk must be an exemplab, = 1). Finally, a constraint on the number of clusters
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can be includedX:]kV:1 br, = K) if the net similarity,S, is being minimized and not just the
data-point similaritySg.s..

A common approach is to solve a linear program relaxation33bwherevi, j : BU €
Rand 0 < BU <1 or implemented in optimization software packages such d&E&H19]. If
the resulting solution is non-integer, stochastic rougdathniques or heuristics [69] have been
shown to produce satisfactory results. With current comguechnology, such approaches are
feasible for problems up to aboid00 data points containing millions of constraints. For the
exact solutions shown in Sectibn 4.1, CPLEX 7.1 softwareuwtidized which takes advantage
of branch-and-bound techniques and Gomory’s cuttingepfaathod [42].

Other possible approaches to exemplar-based clustermgyibérom techniques employed
for minimizing the sum of cut weights while partitioning gies (graph cuts) or its dual for-
mulation, maximizing network flow [31, 32]. The optimal tweay (binary) graph-cut can
be found in polynomial time [43], which corresponds to firglen X' = 2 clustering solution
whose search space is orfly{ N?). There are many approximate techniques for finding gen-
eral K-way graph cuts, such as simulated annealing [13, 62, 7Hb$sampling [41], and
iterated conditional modes [6], but more recent technicgiesh as using expansion moves
and swap moves [9] have shown greatly improved performafoe.example n-expansion
moves involve iteratively solving binary subproblems dansted by choosing one class label
and lumping the remainder in the other classj-swap moves involve finding swaps of two
class labels that improve the objective similar to the vesigbstitution heuristic described in

Sectior 2.b. A useful overview of these formulations candaml in [64].

2.5 The Facility Location Problem

Facility location is an important area of operations researSimply stated, it is concerned
with finding facility locations to be matched with subsetscaktomers so as to minimize a

delivery cost. If the task involves selecting a subset offis facility locations to be utilized
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Figure 2.2: The discrete facility location problem is cameal with finding a subset of poten-
tial facility locations (shown as buildings with ‘?’) to opén order to best serve a population
of customers (stick-figures above). Note that the backgtanmage is a map of Toronto, sug-
gesting that ‘distance’ need not be defined as Euclidednhdistance. In fact, it could be

Manhattan (L)—or perhaps more aptly, Toronto'(k—distance to reflect road travel distance,

average driving time (to account for traffic congestion axpressway speeds), or even travel
time via public transit.

(i.e. discrete facility location) and the cost is the sum of custbdistances from said facilities,
this is known as the-median problem (PMP). Alternatively, the cost could be rieximum

distance between customers and facilities—known ag-ttenter problem—in which case the
objective function is of the minimax variety instead of nsmn. The clustering framework

described in Sectidd 2 is closely related to phmedian problem.

The p-median problem was formally defined and investigated arditure from the early
1960s with notable contributions from Cooper ([15],[1Z8]) and Hakimi ([45],[46]); for a
more recent survey of approaches to the problem see [783. défined as follows: given a

set,V, of possible facility locations and a se¥{, of customers to be serviced, select a subset
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L C M of those facilities to open (whege= | £|) such that the sum of distances from customers
to their closest open facility is minimized. Matrix e RV, whereM =| M| is the number of
customers an@/ = |\V/| is the number of facility locations, contains distanceqidhat element

d., >0 is the distance from customer to potential facilityn.

In purely mathematical terms, the task is to sefecblumns of matrixD such that the sum
of the smallest element of each row is minimized. The costtion is

D(L) = Z%M L (2.12)

The search space for this problem is of s(fpé) and finding the optimal subsef,*, has
been shown to b&/P-hard in general [56]. An exact solution is possible for manyblems
with hundreds of facilities based on linear programmingxations of the integer programming
problem [11,86].M N binary variablegb,,,,} are introduced to indicate which facilities serve
each customei.e., b,,, =1 if customerm is served by facilityn, andb,,,, =0 otherwise), and
N binary variableqa, } indicate which facilities are openedd, a,, =1 facility n is open, and

a, =0 otherwise).
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0-1 INTEGER PROGRAM FOR P-MEDIAN PROBLEM
INPUT: distanceqd,,, } whereme{1,...,M}andne{l,..., N}
number of open facilitieg

VARIABLES: b,,,, €{0,1} anda,, €{0,1} wherem=1,..., M andn=1,..., N
MINIMIZE :

D= Z;V:l Zi; By (2.13)

SUBJECT TQO

Vm: ZnNzl bmn = 1 (demand of each customer must be met)
Ym,n: by, < a, (unopened facilities cannot service customers)

SN an=p (number of opened facilities)
(2.14)

The p-median formulation in equations (2]13=2.14) is the same-m&dians from equa-
tions [2.I0E2.111) if the customer and location sets aretickni.e., M =N.

For problems containing larger number of facilitiégé £ 1000), exact solutions via linear
programming relaxations are usually unavailable with entrrcomputing technology so the

task is left to heuristics. Standard facility-location hstics include:

Greedy Heuristic [66]: Initialize the set of open facilities(?, to be the empty set. Perform
p rounds during which an unopened facility € M\ £ is opened during thé" round
(LM = £ED U n,) so that the cost decrease between routB$L£") —D(L~V), is

maximized.

Stingy Heuristic [29]: Initialize the set of open facilitie(*) to be /. PerformA/—p rounds
during which one open facility,, € £ is closed so that the cost increase between

rounds,|D(L")—D(L~V)[, is minimized.

Alternating Heuristic [72]: The alternating heuristic is identical ftsmedoids clustering in

equation [(2.]7), whereby there are alternating phases ajrasg users to the closest
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opened facility and open facilities are replaced by newlifees nearest to median of

their customers’ location.

Vertex Substitution Heuristic (VSH) [96]: Randomly initialize£ to containp facilities. For
each unopened facility e M\ L, find the open facility/ € £ to substitute with it so as to
most-improve the cost function if possibles. max, [D(L£)—D(LUn\)]. This process

is repeated until convergence, when no cost-reducing isutosts are possible.

Some algorithms have provable worst-case guaranéeg$14]), whereby their solution’s

costD(L) is related to the optimal cogt(£*) by a constant factor as follows? <) 2=

<e.
Values ofe are rarely small and often much larger than the typical esorthis may be a
poor guide to selecting an algorithm [78]. The vertex substin heuristic [96] has been the
standard for comparison for four decades and provides this fix the variable neighborhood
search meta-heuristic [47] that was compared with affinipppgation in [10, 35].
Variable-neighborhood search utilizes speedups to tiggnadivertex substitution heuristic
by storing all nearest and second-nearest open facilieseich customer and only recomput-
ing certain elements in these lists when necessary [1@6]4 pertinent substitution is made).
It also restructures theg N —p) possible interchanges to involve fewer comparisons witlyea
exit conditions, and randomly chooses higher-ordery interchangésto escape local min-

ima.

2.6 Factor Graphs and the Sum-Product Algorithm

Many physical systems involve complex interactions amangd numbers of variables, which
can be realistically approximated by relationships betwsmall subsets of variables. For

example, an image’s pixels may all be interrelated, howdweisome applications this is ap-

“The m-ary interchange search space for each iteration has(4j4€'_”), which grows impractically large
for interesting problems wher® > 1000 andp is non-trivial 6 < p < N —5). Experiments forr = 2 have been
conducted [28] but only foV <30.
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Figure 2.3: A sample factor graph showing a relationshig/ben three variabless;, X5, and
X3, and two connecting function node§,and f5.

proximated as a regular network of correlations betweeghimiring pixels. Graphical models
are a useful device for succinctly expressing and visuajizhe structure and dependencies

present in networks of variables.

2.6.1 Factor Graphs

Standard graphical models such as Bayesian networks [@BMarkov random fields [60]
have long been used for modeling hierarchical dependeanttenergy-based models, respec-
tively. A more recent innovation is the factor graph [65], raghical model that provides a
natural way of representing global functions or probapitiistributions that can be factored
into simpler local functions. A factor graph is a bi-partigeph consisting of a set &f nodes
representing random variablés = { X7, X,..., Xy} (from domainx; x Xy x -+ x A&,,)
and M nodes representing a set of functidns= { f1, f2, ..., fu}. Each function nodef,,,
represents a function with codomain co) that depends only on the subset of variable nodes,
neighborsN(m) C {1, ..., N}, directly connected to it. The factor graph represents hajlo
function, customarily taken to be proportional to the jgmobability of each configuration

{X=x1, Xo=x9, ..., X,,=2, }, that is the product of all its function nodes:

M

FX=x) =] _ fm(xnem)

m=1

wherex v,y denotes the argument of functigh, {,, }nenim) -
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For example, the factor graph in Figlire]2.3 shows an intereciion betweefW=3 random
variables, X, X5, and X3, each of which can take on values € X}, 2, € X,, andas €
A3, respectively. The factor graph shows a topology with=2 function nodes wherg¢; is
connected toY; andX; (soN(1)={1, 3}), andf, is connected td, and X3 (SON(2)={2, 3}).

This implies a global function that can be factorized in thiéofving way:

f(w1, 9, 23) = fi(x1,23) - fo(we, 73) .

Interpreting the global function as proportional to thefoguration probabilities, the marginal
probability distributions{p; (x1), p2(x2), ps(z3)} can be found by summing over all configu-

rations of the other variables:

P(Xy=z)oc Y, > fle,me,23) = > > filwn,23) - fa(we, 23)

roEX2 3€X3 roEXs T3€X3

P(Xo=m)oc 3. > flrn,azas)= >, > filwr,23) fa(we,23) , (2.15)
r1E€X] T3€EX3 r1E€X]) 3€X3

P(Xz=z3)oc 3. > flrn,azas)= > > filwr,23) fa(w2,23) .
r1E€X] T2E€XS r1EX] T2EX>

Using the distributive law

>, [factors independent of y| - [factors dependent on y]

= [factors independent of y] - > [factors dependent on y]

the computation can be simplified to:

f(w1,22,23)
P(Xy=r1) o< 3 > filwy,ws)-fa(ze, 23) = D0 fi(wn, @3) - D0, e, fo(22,73)
T2€XD T3EXS T3E€X3
f(x1ﬁ2,x3)
P(Xo=w3) o< > > filwy,x3)-fa(zo, 23) = D folwa,w3) - Do, e, fi(21, 73)
T1€X T3EXS T3E€X3
f(z1,22,23)

PNt x S E Filow o dalen ) = | S flonan)] | S plonan)]

T1€AX1 T2E€X? T1EX] ToEX>
(2.16)
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Figure 2.4: Belief propagation on a factor graph. The funetio-variable node message,
shown in (A), is computed from incoming variable-to-fulmctinode messages along other
edges. Likewise, the variable-to-function node messad®)ns computed from incoming
function-to-variable node messages. The marginals foriala (C) can be computed from
all incoming function-to-variable messages.

In effect, the brute-force approach of summing togethepafisible products (equation
(2.18)) can be simplified by intelligently organizing thetiars into sum-product-sum-product
form (equation[(2.16)). Theum-product algorithpdescribed below, represents a computationally-

efficient rearrangement of these sums and products.

2.6.2 Sum-Product Algorithm

A notable formulation of the sum-product algorithm is JuBearl’s use of it as “belief propa-
gation” in [84] for marginalizing variables in Bayesian werks. The algorithm is a series of
rules—framed as passing messages between factor grapsrttE organize and automate
the application of the distributive property. For examptegquation [(2.116) where marginal
P(X; =) is computed, if the inner sum is considered a functioncof(i.e., uo(z3) =
> wmen, J2(2,73)), the expression becoméy X, =x1) = > . fi(z1,23) po(3) Where
1o IS @ "message” from the inner summation to the outer.

The sum-product algorithm involves the propagation of ragss from variable nodes to
function nodes  in Figure[2.4 (A)) and from function nodes to variable nodesn Fig-
ure[2.4 (B)). The message sent by a variable nédg to a function nodg,, is a function of

x, € X, and reflects the current probability distribution (‘bedi@fabout.X,, given evidence
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from all its other neighborsy(n)\m. Itis an element-wise product:

Vnm(Tn) = Hm’eN(n)\m fnt—n(Tn) - (2.17)

The message a function nodg,, sends to variable nod&,, is a function ofz, € A, and

reflects the current beliefs abaiit, given the function and its other neighbofgymn)\n:

pnn(Tm) = D fon (X)) - Hn,eN(m)\n Vs —m(Tn) - (2.18)
XN(m)\n
Note the shorthand use &y, for {z,, }nenim) @NAXNEN\A TOr {20 }re Nm)\n
Finally, the current beliefs about any variablg,, can be computed any time by fusing

incoming function-to-variable messages:

(X =1,) = HmEN(n) JUB—— (2.19)

These are known as pseudo-marginals, though for singlpexiad graphs.¢., tree-structured
graphs that contain no loops), these converge to the truginads of f(x) in a finite number

of message-update iterations [84].

2.6.3 Loopy Belief Propagation

Pearl [84] shows that belief propagation converges to tine tnarginals in a finite number of
message-update iterations for singly-connected graphth ndépect to the general case, he

states:

When loops are present, the network is no longer singly-eciea and local propagation
schemes will invariably run into trouble ... If we ignore tbristence of loops and per-
mit the nodes to continue communicating with each other #weifnetwork were singly-
connected, messages may circulate indefinitely aroundtpesland the process may not
converge to a stable equilibrium ... (even if it does) thiggstotic equilibrium is not co-
herent, in the sense that it does not represent the pospeababilities of all the nodes of
the network. (p. 195)
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Previous impressive empirical results from the area ofrogtheory [5] were shown to be
a special case of belief propagation in this loopy case [&8Hitional factor graphs (involving
applications such as medical diagnostics [79] and phaseapping [63]) were investigated at
the time; positive results gave additional credence todka that pseudo-marginals provided
useful enough approximations thagmax, ¢(z,) = argmax, P(z,)for many nodes (val-
ues ofn). Theoretical justification for loopy belief propagatiomsvlater shown [111], where
update equationk (Z1[7=2]19) were related to minimizing-akergence [18] computed using

Bethe’s free energy approximation [7] from 1935.

Given a factor graph describing a probability densitygk) o< [[,, fm(Xn@m)), ONe can
search for a simpler approximating distributi@p(x), such that the KL-divergence between
them, D(Q(x) || P(x)) = 3, Q(x)-log 32, is minimized. WhereP(x) o< [T, f(Xx(m)),

this expands to:

D(Q(x) || P(x)) + constant = Y Q(x)-log Q(x) = Y Q(x) Y _10g fon(Xntm))

If it is assumed that the approximating distributiQfx) can be factorized into single-node
marginalsy, (x,,) for each variable node, and function-node or clique matgipg(x.)) for

each function no&ike this:

Q(X) - Hi:;l qn(l’n)‘N(n)‘_l ) (220)

then the Bethe approximation to the free energy is obtained:

Fhethe = 2 O Gm(Xnm)) 108 @m(Xnem) — D0 D @m(Xnm)) 108 frn(Xn(m))
XN XN (2.21)

— 2 (INMI=1) 2 gn () 10g ga(an) -

Tn

SFor example, in the factor graph from Figdrel2.3, the singlde marginals arg,—; (z1), ¢.—2(z2), and
qn—3(x3); the clique marginals arg,—1 (1, r3) andg,,—a(x2, x3).
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It is useful to perform coordinate descent minimization lo& Bethe free energy subject to

the valid distribution constraints thetr: » . g,(z,)=1andvm: gm(XnGmy) =1, and

XN(m)
the constraint that single-node marginals are consisteghtaique marginal&/m,n € N(m):
qn(xn) = Exmm)\n dm(Xn@m)). The complete derivation is shown in AppendiX A, however,

the end-result yields familiar-looking update equation$adlows:

Vn—»m(xn) X H ,um’—m(xn) and ,Um—m(xn) X Z fm(XN(m)) : H Vn’—»m(xn’) ,

m’€N(n)\m XN(m)\n n/€N(m)\n

qn(xn) X H Mm—»n(«rn) and C]ﬂ”L(XN(m)) X fm(XN(m)> : H Vn—»m(xn> y
meN(n) neN(m)

(2.22)
where they, (x,,) are pseudo-marginals from earlier. It should be noted tratifigly-connected
graphs the factorization in equatidn (2.20) is exact andatgerithm converges to the exact

marginals.

2.6.4 Max-Product Algorithm

As described in [1], the idea behind the sum-product algoriaind factor graphs can be applied
to any commutative semiriigln many cases it is more desirable or efficient to use the max-

product algorithm, whose messages are updated as follows:

Vp—m(Tn) H P —n () and g (zy) X max Fon (X)) - H Vs —m ()
m! €N(n)\m Nmn n/eN(m)\n

(2.23)
For the max-product algorithm, the computationgfr,,) andg,, (xu»)) pPseudo-marginals
is intended for estimating the best configuratia, of the variablesx, which can be per-

formed as follows:

6A semiring is an algebraic structure which generalizes thditiwe and multiplicative properties of the set
of natural number#! (including zero); unlike rings, there is no requirement thach element have an additive
inverse.
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* J—
x, = argmaxH

Tn

: JUS—— (2.24)

meN(n

These quantities are closely related to evaluations ofetst configurations in the Viterbi
algorithm more so than the probabilistic interpretatiorsactio 2.6.2. Note that for reasons
of numerical stability, much of the work in this thesis isfeemed in the max-sum semiring,

which is isomorphic to max-product via the mapping- log(z), assuming: > 0.



Chapter 3

Affinity Propagation

The exemplar-based clustering algorithms described iti@®et2.452.b operate by iteratively
refining a randomly-chosen initial set of exemplasC {1,2,..., N}, but this works well
only if that initial subset of data points is close to a gooldison. Affinity propagation simul-
taneously considers all data points as possible exemm@achianging real-valued messages
between them until a high-quality set of exemplars (andesponding clusters) emerges. Mes-
sages are updated on the basis of simple formulae that reflecproduct or max-product up-
date rules and, at any point in time, the magnitude in eaclsagesreflects the current affinity
that one point has for choosing another data point as its pkegnhence the name “affinity

propagation”.

Affinity propagation takes as input a collection of realtaed similarities between data
points,{s(i, k)}, where each similarity(i, k) indicates how well the data point with indéx
is suited to be the exemplar for data painEach data point is paired with a variable node,
in a factor graph (Sectidn 2.6) as shown in Figuré 3.1. A value = k for i # k indicates
that data point is assigned to a cluster with poikhtas its exemplary, = k indicates that
data pointk serves as a cluster exemplar. The graph’s function is a @net net similarity

(exponentiated, so the function is non-negative), defirscfdlows:

31
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(A)

file) file) f5(c) wCp) fule)

<C1 & €3

s(1,¢,) s(2,¢,) s(3,¢5) s(i,c;) s(N,cy)
(B) (C)
candidate exemplar k data point supporting
data point /’

competing candidate
exemplar k’

a(ik")

data point candidate exemplar k

Figure 3.1: Affinity propagation is an exemplar-based @risty algorithm that performs be-
lief propagation on the factor graph shown in (A). Two kindsressage are passed in the
graph;responsibilitiegB) are passed from variable nodes to function nodes (lata points

to candidate exemplarsfvailabilitiesare passed from function nodes to variable nodes (C),

interpreted as candidate exemplars to data points..
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S from (29) coherence constraint
N -

7

S (i) =30 log file) :

. . i S\, G ) + . og Jk\C o N s(iy¢q) | N e N——

F(c; s) = e4—i=1 k=1 =II_ eI _ m@Eren"en) 31
Note that the first term in the exponent involves the net sintyl, S, from thek-median

problem, except that similarities are exponentiated taens'(c;s) always evaluates to a

positive function. The second term contains a coherencsti@nt defined as follows:

0, if ¢, #k but Ji: ¢; =k (disallow clusters without an exemplar)
fi(c) = (3.2)
1, otherwise
which causes the function to evaluate to zero for the inaatteconfiguration of a cluster
without an exemplat,.e., a data point has chosert as its exemplard, = k) with k& having
been incorrectly labeled as a non-exemplae4 k).

Each component of'(c; s) is represented by a function node and each lap& repre-
sented by a variable node. Eag¢f(c) term appearing in equation (8.1) has a corresponding
function node that is connected to all variabtes:, . . ., cy. In addition, eacl (i, ¢;) term has
a corresponding function node that is connected to theeswagiabler;. The log of the global
function F'(c; s)—in this caseS(c) (previously referred to as net similarit§)—is given by

the sum of all the log-functions represented by functionasod

3.1 Sum-Product Affinity Propagation

The sum-product algorithm can be used to search over coafigos of variables in the factor

graph to maximize(c; s), which also maximizes®(® (andS(c)) subject to the coherency
constraint. The sum-product algorithm for this particidesiph topology can be derived in a
straightforward fashion and consists of sending messagesvariables to functions and from

functions to variables in a recursive fashion (see Setti6i@p
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O(N™) vector message updates

The message sent from variable nagéo function nodef,(c) consists of N non-negative
real numbers—one for each possible valyef c,—and can be denoted .. (j) as shown in
Figure[3.1(B). A later simplification reduces thi&vector to a scalar value, making affinity
propagation scale linearly in time and memory with the nundfesimilarities. The message
sent from function nodg¢;(c) to variable node; also consists o real numbers and can be
denotedv;. ,(j) as shown in Figure3.1(C). At any time, the valuecptan be estimated by
multiplying together all incoming messages.

Since thep-messages are outgoing from variables, they are computid &ement-wise
multiplication of all incoming messages:

N
pick(ci) = e T aiep(c) (3.3)

k/'=1,
k'K

Messages sent from functions to variables are computed hipihging incoming messages and
then summing over all variables except the variable the agess being sent to. Because all
function nodes are connected to Alivariable nodes, this nominally involvés-1 summations

over NV possible configurations—for each &f function nodes.

O(N?) vector message updates

Fortunately, all functiong f;.(c)}._, are binary-valued constraints that are completely factor-

izable giverc;, as follows:

N

[1 [ci#k], for cp #k
fule) = ¢
1, forc.=k.
If the two casesg, = k and ¢, # k, are handled with separate expressions, the functions

can be absorbed into the summations by changing limits,racaiiing messages can be inde-

pendently summed (sum and product operators change pl&ege®rdingly, the message sent
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from function nodef;, to variable node; is:

sum over all conﬁgurations satisfying fi given c¢;

az<—k Cz ZZ ZZ Z fk ]17]27 - '7ji—laci7ji+17 - -ajN) ' H pz’ﬂk(]z’)

Ji J2 —1 Jit1 ihi'#£i
( all Conﬁguratlons with or without cluster k
.

Hi’-i’;éi Zj pi—k(j) , fori=kand c,=k;

all configurations without cluster k
N\

Hi’:i’;ﬁi Z]ﬁﬁk pl,ﬁk(]) ’ for i=k and Ck # k ;

all configurations, with or without cluster k&
7\

k is an exemplar

——
ok k) - [T Do, pemili) o forizkand e =k

all Conﬁgurations with no cluster k all Conﬁguratlons with a cluster k
E pro—i(7) H E pi—k(J + pqu H E pi—k(j), fori#k and ¢; #k .
\ J: 77k iti'¢{i,k} Ji£k thi'¢{ik} J

These vector messages are easier to interpret if we viewdlsehe product of constant and
variable (with respect to;) components as followsy; .« (¢;) = pi—k - pi—r(c;) @anda,x(c;) =

@k Q;i(c;). This changes the messages to:

pi—k(ci) = estier) . Hk’:k’;ﬁk Q! Hk’:k’;ﬁk it (¢3) (3.4)
and
( ~ . .
[Tivics P~k - Tliniess D25 it (4), fori=k and ¢y =k ;
() Hi’:i’;ﬁi Pir—k Hi':i';éz’ Zj:j;ék pik(j), fori=Fk and ¢, #k ;
Qi \Ci) =

Hi’:i’;ﬁi ﬁi’—)k . ﬁk—)k(k‘) . Hz nifg (i} Z pzl_>]<;( ) for 'l?ék and C; = k: ,
[T piw IT 22 pr—i(d) + L P pr—n(B) - TT 22 piie(4), for ci# ki

\ 010 it i #£k 1" hi'g{i,k} J
(3.5)

For convenience, if we let; ., = > p;—x(j) then>_ p;x(j) =1 and thusz Pi—rk(J) =
Jii#k Jii#k
1+ pi—i(k). Also note that in the update for.._,(c;) (equation[(3.5)), none of the expressions
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explicitly containc;—only the choice of expression depends @n Consequently, thev-

vector of messages,. (c;) has only two unique values: one far=k and another foe; # k.

Settinga;r = a;k(c; : ¢; # k) makesa,;.x(c;) = 1 for all ¢; # k. This also means that
[ &iw () = qie,(c;) for all ¢; # k and [ [ &;p(c;) = 1 for ¢; = k, leading to further

k:k'2k K k'2k
simplification:

S(ivk) . H s / f | — k
e ket kit Yi—k', 10 G ’
prn(cr) = | # (3.6)
e*ei) - Gy (c;) - Hk':k';ék Qi fore; 7k,

and

H,-/:i,# Pir—k - Hi,:i,# 1, fori=k and ¢, #k ;
Hi’:i’;&i Pir—t; * Pr—k(K) - Hi’:i’gﬁ{i,k} 1+ py_r(k)], fori#kand ¢;=k ;

[ pir - ITL+IT pi— - osre(K) - TT [L + pi—i(k)], for ik and ¢;#k .
i%ili ik ik il Lk}
(3.7)

Qe f (Cz) =

Next, solve forﬁi_%(ci = ]{7) = pi_qf(ci = k))/ﬁl_qf and&ﬁ_k(ci = ]{3) = ozi<_k(ci = ]{3)/0_42'<_k

to obtain simple update equations where gleda terms cancel:

ooty = Pore=R) i) - [wrr iz
ik Y Pimk() 3 [e00) - A ()] - [ i re
(3.8)
and

N Mﬁk%k(k)'ni’:i’g{i,k} (141 ()] fOl" k;é’b
TPt Lt P Pr—k (B) Tirirg 5 0y [14Por— i (R)] '
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O(N?) scalar message updates

Noting thatp; .. (c;) anda;_(c;) for ¢; # k are not used in the updates (specifically, because
a;—r(ci#k)=1), messages can be considered to be scalar instedehoy vectors. Working in
the log-domain for numerical range reasons, scalar varitdbfunction messages are defined

ase’"F) = 5; (k) and scalar function-to-variable messages™ds’) = a;._ (k)

II [1 + er(i/’k)}, for k=1 ;

‘ s(i,k) ) il
r(i,k) __ € a(i,k) __ _
T Y [k ealik)] and 7 = . 1 —1 1 .
o e (k:k) 11 [H—e"“’ )] +1], for ki .
ki {i,k}

(3.10)

Message- (i, k) is referred to as the “responsibility” sent from data paitd candidate ex-
emplar pointk, reflecting the accumulated evidence for how well-suiteitfpois to serve as
the exemplar for point, taking into account other potential exemplars for pointhe “avail-
ability” a(i, k), sent from candidate exemplar pointo data point, reflects the accumulated
evidence for how appropriate it would be for poirtb choose poink as its exemplar, taking
into account the support from others that pdirghould be an exemplar. All data points can
be considered to be either cluster members or candidatedaesndepending on whether they

are sending or receiving availability or responsibilityssages.

To estimate the value of a variahlgafter any iteration, multiply (fuse) together all incom-

ing messages to variable nodeand use the valug that maximizes the product:

6 = argma, [T 0 4()] = avgma [0 T as e T, i ()

= argmax; [¢*).e*(")] = argmax; [s(i, j) + a(i, j)] .
(3.11)

An alternative form that includes availabilities and resgbilities but not input similarities
can be obtained by including an additional term insidedhgnax | - | that leaves the result

unchanged as follows:
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er(:F) from (310)

A a(ik) fs(i,k)/ ( s(i k) a(i,k’)>\ B a(ik) . r(ik)
C; argmax | e € (& € = argmax |e €
) 2 i gma | | (3.12)

= argmaxy, [a(i, k) + (i, k)] .

O(N?) scalar message updates

Each iteration involves computiny? availability and responsibility messages (from All
points to allN points), and each message expression in equafiod (3.1dy&sO (N ) binary
operations which yields aff( ) algorithm. If intermediate expressioRgi) = ,_, es(i-#)+alik)
and A(k) =T, [1 + ¢""®] are defined—which can be calculated at the start of each itera

tion in O(N?) time—each message can be compute@(m) time as follows:

_ os(ik) _ AW for k=i ;
k) = — —— and ¢"(F) = o o1\, 1
R(i) — esR+atin) (1 L gmrthgy, [1rer® jo[:;e , ])7 for ot .

which makes an entire iteration possibleN?) space and time (using a parallel message-
passing schedule).

In practice, this approach leads to numerical instabilitg ¢o limited machine precision
when correctingR(i) = Y-, e* M@ into 37, e*CFITalR) by subtracting:s(-F) ek,
To overcome this, it is necessary to store cumulative surdsramipulate expressions to com-

pute R(k) and A(k) accordingly.

3.2 Max-Product Affinity Propagation

Applying the max-product algorithm to the factor graph igu#ie[3.1 overcomes some of the

numerical precision difficulties described previously atgb produces clustering results that
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are invariant not only to similarities with arbitrary addée constan& but also to multiplicative
constants (the ‘units’ similarities are expressed in). Vhaable-to-function messages are
unchanged from sum-producg. p; . (c;) = e*@). ] s (c;) but the sums in the function-

k" k'£k
to-variable messages are replaced by max operators:

best possible configuration satisfying fi given c¢;
- -

;r(c;) =max max- - -max max- - -max | f(j1, jo, - - -, Ji—1, Ciy Jit1s- - JN) | | pir—r(Jir)
J1 J2 Ji—1  Ji+1 IN Iy
ihi'#£q
( best configuration with or without cluster &
7\
7 N

H""’;ﬁ maX] pz’—»k,‘( ) fOI' Z—k and Ck—]{j .

best configuration without cluster k

N
7 N\

H-/«/#- max; s, pi—k(j) , fori=kand ¢, #k ;

- k is an exemplar best conﬁguratloth with or without cluster k

—N— ) )
Pr—k(k) - Hi,:i%{i’k} max; pi—i(j) , fori#kand ¢;=k;

best Conﬁguratlon with no cluster £ best conﬁguratlon with a cluster k

max max Pr—k(J H Ir1a}<;p2_,/LC , Pre—rk(k H max pi—k(g) |, fori#k and ¢; #k .
it {i, k ihi'd{i, k}

As with sum-product, representing theSevector messages as the product of constant and

variable components changes the messages to:

pii(c;) = 5o . [hener Qirr = Tlprgs, i (ci)

1For sum-product affinity propagation, similarities appealy in responsibility equations and solutions are in-
variant to additive constanite., s’ (i, k) = s(i, k)+constant because”"¥) =es(:k) /57, [es(i’k/)ea(i,k’)} _

S(’L k)Jrconstant/ Z s(i,k')+constantea(i,k'):|
k/

k' £k {
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and
)
[ Litines it - Tining max pii(j), fori=k and cp =k
HM# Pir—k Hi’:i’;&i max; iz pi—i(J), fori=kand ¢y #k ;
i k(c) = Hi/:,-/# Pi—k * Pr—i (k) - Hi,:i,ﬂi’k} max; pi—i(j), foriz#k and ¢;=k ;

ol ﬁ’—>k iy s TNAXK G5 kﬁ’—df,] )
max Hz.z;ﬁz v Hz.z;éz Rk Pi ( ) : fOI'CZ%k%Z

[Lieiess Pt - Pr—n(E) - Tlingregi gy M85 pirie(4)
# ¢{i,k}

\

Let pjr = max p;.x(j) SO max p;.,(j) = 0 andmax p;;(j) = max[0, p;—(k)]. For
7i#k Fi#k j
availabilities, leta;, = a;x(c;: ¢ # k) which makesa;. x(c;) = 1 for all ¢; # k and

[iepes @ierr (i) = Qie,(c;) fOr ¢; # k and ][, dicss (k) = 1 otherwise. This leads to

simplification:
s(i,k).H Ain 1r. T i
€ krktk Qie—k’ s 10T Gy )
pi—k(ci) = ' ’
es(isci) dr—ci(ci) . Hk’:k’;ﬁk Qi for¢;#£k
and
4
H’i/:i’;ﬁ’i pi’—ﬂg : Hi’:i’;ﬁi max []., ﬁfl/_)k(k)], fOl" 'l: k and Ck; — k ,
H,-/:i,# Pir—k * Hi,:i,# 1, fori=k and ¢ #k ;
O‘z%—k(ci) = _

Hi’:i’;ﬁi ﬁi’—>k . ,51@_4@(]{3) . Hi’:i’%{i,k} max [1, ﬁl’ﬂk(k)L for ’l#k and Ci:k ,

x| [T v TT L TT pr-premi(k) - TT max [L, o (k)] |, for c; £k

ikl i ikt iti'¢ {ik}

Solving for p;_x(c;=k) = pi_r(ci=k)/pi—r @and &;_r(c;=k) = o (ci=k) /a; s, yields

further cancelation:

Srnomt) = PP k) ) - e i
pi—>k‘ Zj:j;ék pz—>k(]) Zj:#k[es("vj)- d“_j(])] W

(3.13)
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and

Gii(ci=k) = aii(ci=k) /i = aii(ci=k) /o (j: J7k)

Ty ILin i1z max[l, py_y(k ..
: ’kH’,’¢7 (1, By k()],fork’:Z,
_ JUI
e 71’~>k/3k4’k(k)nz/z/€{z,k} max[l, ﬁllﬂk(k’)] f k .
- —— - , for k#1 .
max“m it Pk Ph— e (K) T ir. 40 £,y max(L, Pigk(k)]]

(3.14)
Finally, messages are definedds, k) = log p,—.(k) anda(i, k) = log &; (k) to ob-
tain simple update equations shown[in (3.15), where the é&x@tession for(i, k) is due to

log otiy = min(0, log x) and the estimaté is as beforel(3.12).

AFFINITY PROPAGATION

.....

INITIALIZE : set ‘availabilities’ to zera.e. Vi, k: a(i, k) =0

REPEAT: responsibility and availability updates until convergen

Vi k: r(i,k) = s(i, k) — max [s(i, k') + a(i, )]

KKk
> iing; max[0, r(é, k)], for k=i 3.15
vik: ali k) = {min [O r(k k)iz max|0, (i’ k)]] for l{;;«é(z )
’ ) ihi'g{ik} ) ) )

OUTPUT: cluster assignments= (¢4, . .., ¢y ), ¢ =argmax, [a(i, k)+7r(i, k)]

Note:c may violate{ f;} constraints, so initializé-medoids withc and run to
convergence for a coherent solution.

The simplicity and effectiveness of these update equatiame made it the standard incar-

nation of affinity propagation since its initial 2007 pulatimn inSciencd38]. All experiments

in Chapter§ 35 use this form of the algorithm.

It is interesting to note that the greeflymedoids clustering algorithm can be rewritten to

use responsibilities and thus more closely resemble affmapagation:

Vie{l,...,N} keK:r(i,k)=s(i, k) — max s(i, k') and ¢;=argmaxr(i, k)
Ktk ek

VkeK: k«argmax > s(i, §)

j:Cj:k ﬁci:k
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The major difference is that in computing responsibilitidgre are no availabilities to modu-
late similarities and hard decisions are made. Insteadefireements are performed on a fixed

set of exemplarsg.

3.2.1 Max-Product vs. Sum-Product Affinity Propagation

Replacing the summations with max operators eliminatesitimeerical precision issues from
sum-product affinity propagation; findi%%ﬁ can be done cleanly in linear time by holding
the cumulative largest and next-largest array elementseimaony. Another advantage is that
additive constants in the similarities are canceled out@réesponsibility update equation and
multiplicative constantsi.e., s'(i,k) = s(i, k) - constant scale both the responsibilities and
availabilities but leaves cluster assignmentsnchanged (as long as numerical issues are kept

in check).

3.2.2 Dynamics of Affinity Propagation

Availabilities are initialized to zero for the first iterati, sor(i, k) is set to the input similarity
between point and pointk minus the largest competing similarity between peiahd other
potential exemplars.e. r(i, k) = s(i, k) — max s(i, k). This competitive update does not take
into account how many other points favor each candidate pkathough in later iterations
when some points are effectively assigned to other exespilheir availabilities will drop
below zero. This decreases the effective value of the qooreting similarity to which it is
added and gradually withdraws them from the competitiong¢cab exemplar. Foi = £,
the “self-responsibility”r(k, k) is set to the input preference(k, k), minus the largest of
the similarities between poirtand all other candidate exemplars. This reflects accuntulate
evidence that point is an exemplar, based on its input preference tempered bylhswited

it is to be assigned to another cluster’'s exemplar.

The responsibility update lets all candidate exemplarspsienfor ownership of a data
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point so accordingly, availability updates gather evidefiom data points indicating whether
each candidate exemplar would make a good exemplar. Thialailiy of point i to serve
as an exemplar for poirt, a(i, k), is set to the self-responsibility(k, k&) plus the sum of
positive responsibilities candidate exempkareceives from other points (not including
the message destination). Only the positive portions adnimiog responsibilities are added
(max]0, -] term), because it is only necessary for a good exemplar taiexpome data points
well (those with positive responsibilities) regardlesfoiv poorly it explains other extremely-
dissimilar data points (those with negative responsiegjt If the self-responsibility (%, k)
is negative—indicating that poirit is currently better suited as belonging to a cluster rather
than being an exemplar itself—the availability of pointo serve as an exemplar could be
increased if some other points have positive responsésiltoward point. To limit the in-
fluence of unjustifiably-strong incoming positive respiigies—which could arise from a
pair of extremely-similar ‘twin’ data points—the total sugthresholded so that it cannot rise
above zero due to thein|0, -] operation. The “self-availability&(k, k) is updated by adding
positive components of incoming responsibilities but withthe final threshold.

The message-passing dynamics of affinity propagation eghpdi a toy dataset of 27 two-

dimensional points are shown in Figlirel3.2.

3.2.3 Preferences for Affinity Propagation

A global shared preferengewherevic {1,..., N}: s(i,i) =p, is often used as a control knob
to govern the number of clusters found by affinity propagatids shown in Figure_313, lower
values ofp penalize the use of data points as exemplars more heavilgaddo fewer clusters,

while the effect with higher preference values is the op@sr his is an advantage in that the

2Further intuition is obtained by imagining an algorithmttihas currently identified< exemplars and is
considering labeling another data point as an additionatgtar. By switching away from their old exemplars
and choosing the new exemplar, some data points will caugecegase in the net similarity. However, creating
the additional exemplar will cause its preference to be dddehe net similarity and, since it will no longer be
assigned to one of the old exemplars, the net similarityadetrease by that similarity value. Since the preference
is usually low compared to similarities, the differencessially large and the additional exemplar will be created
only if the total gain in similarity exceeds this negativduea This intuition shows that the preferences have
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Figure 3.2: The dynamics of affinity propagation are showndadand-crafted dataset of
N =27 two-dimensional points. Negative squared Euclidean d¢sas used as a measure of
similarity and a global preferengeis set to the minimum similarity which yields the natural-
looking three clusters (see Figure]3.3 for further anajysitessages are depicted as chevrons
pointed towards candidate exemplars; the blue intensity goportion to the responsibility
plus availability, (¢, k) +a(i, k), which is used in clustering decisions (see equafion [3.15)
Note that messages are weak and uniform in all directioneddy iterations, but clusters be-
gin to emerge by iteration 15, with corner points far moreaiarof their exemplar than central

points. The algorithm is fully-converged by iteration S@ptgh faint probabilities of alternate
configurations remain visible near the center of the plot.
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K (number of clusters)
[
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p (shared preference)

Figure 3.3: A shared preference valye,can be used as a control knob to vary the number
of clusters, K, found by affinity propagation in the toy example from FigBt2. Notice that

a relatively wide range of preference values, between rgugh= —10 andp = —3, lead

to the natural-looking three clusters € min, 4 s(i, k) ~ —5.2 from Figure[3.2 is marked)
compared to a narrow range leading to an apparently unhawoeclusters. The dynamics
tend to become quite unstable and non-monotonic past 10 clusters, which is sensible
given that there are onlly =27 data points.

number of exemplars need not be specified beforehand, agadulitomatic model selection
based on a prior specification of how preferaladep(iori log-probability) each point is as an
exemplar. Note that a relatively wide range of preferendaeglead to the natural-looking

configuration with three clusters as opposed to a narrowerégagling to two clusters.

3.2.4 Implementation Details

A MATLAB implementationapcl ust er . mis available for download at http://www.psi.toronto.edu

and has been downloaded several hundred times to date f BHimibty propagation’s appeal is
the fact that the simple update equations can be easily meieed as shown in the following

~20 lines of MATLAB source code:

the same ‘units’ as the similarities, since similarities @neferences are traded when deciding whether or not to
create exemplars.
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N=si ze(S,1); A=zeros(N,N); R=zeros(N,N); %initialize nessages
S=S+le- 12xrandn(N, N)*(max(S(:))-mn(S(:))); %renove degeneracies
| anbda=0.9; % set danpening factor
for iter=1:100,
Rol d=R; % NOW COVPUTE RESPONSI BI LI TI ES
AS=A+S; [V, I]=max(AS,[], 2);
for i=1:N, AS(i,l(i))=-inf; end; [Y2,12]=max(AS,[],2);
R=S-repmat (Y,[1,N]);
for 1=L:NR(i,1(i))=S(i,lI(i))-Y2(i); end;
R=( 1- | anbda) * R+l anbda* Rol d; % danpeni ng responsibilities
Aol d=A; % NOW COVPUTE AVAI LABI LI TI ES
Rp=max(R, 0); for k=1:N, Rp(k, k)=R(k, k); end;
A=repmat (sun(Rp, 1), [N, 1] ) - Rp;
dA=di ag(A); A=min(A 0); for k=1:N, A(k, k)=dA(k); end;
A=(1-1 anbda) * A+l anbdax Aol d; % danpening availabilities
end;
E=R+A; % pseudonargi nal s
| =fi nd(diag(E)>0); K=length(l); % indices of exenplars
[tnp c]l=max(S(:,1),[],2); c(l)=1:K;, idx=l(c); % assignnents

Several implementation details should be noted. Firsgoannoise on the order of ma-
chine precisicﬁ should be added to input similarities (li®2) in order to remove possible
degeneracies. For example, if similarities are symmetfrittevo data points are isolated from
the rest, there may be indecision as to which one of them dhmuthe exemplar and that can
lead to oscillations. Another example is if multiple clustg solutions have the same opti-
mal net similarityS—especially common when similarities belong to a finiteesgtrange of

integers—the algorithm may oscillate between optima. Fostdatasets, however, this is not

necessary and the solution is invariant to the added(hoise

As described in Sectidn 2.6.1, belief propagation methodserge to exact solutions in a
finite number of iterations when the factor graph topologgiigly-linked (no cycles). Be-

havior is generally reported as less-stable and more promsdillation as the number of

3This can also be seen as randomly flipping the least signifizigs of the floating-point mantissa for each
input similarity value.

4For example, affinity propagation was input the 400-poirivéi faces dataset (see Section]4.1) with a
typical preference gf = —60 and over the course of 1000 trials with different random @aidditions, there was
no consequential variation in the algorithms’s behavige(eplar set at each iteration was identical). On the other
hand, randomly-initializing availabilities to non-zeralues can lead to slightly better solutions.
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Figure 3.4: The net similarityy, is shown as a function of iteration for runs of affinity prgpa
tion with different dampening factors, The higher values of unsurprisingly lead to slower
convergence rates but often lead to more stable maximizétige) = 0.3 for an example of
non-monotonic oscillatory behavior that ultimately comes).

tight cycles increase. Affinity propagation’s [potentygltompletely-connected factor graph
is an extreme case, and thus the implementation contairallel message updates—where
Vik: r(i, k) is computed and thewi k: a(i, k)—necessitates that messages be dampened,

which is done as follows:

(o) =X ) (1) " ) and al-, ) = A-a® ) 4 (1-0) @™ )

setting the dampening factorto 0.9 has been sufficient in almost all cases to ensure con-
vergence. For the 400 Olivetti faces dataset examined itidbeé€.1, a dampening factor of
A=0.4 is sufficient for convergence with no oscillation; this i®am with other values ok in

Figure[3.4.
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At any stage in the message-passing procedure, interraeglistering solutions can be es-
timated from¢; = argmax [a(i, k) +7 (4, k)]. This often produce§f;. } constraint-violating solu-
tions which can be fesolved by defining the set of exemplakSasd the set of non-exemplars
K=1{1,2,...,N}\K such thatvk € K : ¢, =k andVi € K : ¢; #i. Then run a half-iteration
of k-medoids to properly assign the non-exemplaes,Vi € K : ¢; < argmax s(i, k). Affinity
propagation is considered converged if, for some constamii t s itergfiltc)ns, exemplar sét
remains unchanged. The number of iterations should alsoleded by constants ni t s (in
case)\~1 leading to no exemplai&’| = 0 for many iterations initially while self-availabilities
a(k, k) slowly rise) andnaxi t s (in case of non-convergence, perhaps due to degeneracies).

For final results, performance can be slightly enhanced bging k-medoids to convergence

and not just the half-iteration to satisfy constraints.

3.2.5 Sparse Similarities and Affinity Propagation

Affinity propagation is well-suited to take advantage ofrsgg in data. When similarities are
computed between each data point, the algorithm shown iatequ{3.15) isO(N?). Some
problems are structured in such a way that many data pointsotgossibly be represented

by many others as exemplais. 3i, k : s(i, k) = —oco. In this caser(i, k) is automatically

— 00

—oo anda(i, k) is inconsequential because it is overpowereanix [;_(;,?)+a(i,k)]. For
such a spargedataset withV data points but only/ < N? values of(i, k) € {1,2,..., N}?
wheres(i, k) > —oo, only M responsibility and availability messages need to be coetput
and exchanged. In terms of storage, the sparseness strgatube stored for quick traversal
using2M 2- or 4-byte integersi! for eachi-value, M for eachk-value), and\/ similarities,
responsibilities, and availabilities need to be stored-agté or 8-tjﬁte floating-point values.

This results in memory requirements betwaén)/ and32- M byte

5The data is only sparse in the sense that a matrixpfsimilarities) has zero entries; in the log-domain the
missing similarities become co.

5There is no need to store values ofa(°'Y) or r(°19) | as there is no advantage to dampening messages
masse
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3.3 Alternate Factor Graph for Affinity Propagation

An equivalent formulation of affinity propagation can beided by usingN? binary variable
nodes (orM/<N? for sparse situations) armV constraint function nodes more in line with the
0-1 integer programming formulations from Section 2.4.% b&fore, variables;;, € {0, 1}
indicate cluster assignments whégg= 1 for i # k indicates that data poiritis in a cluster
characterized by exemplar data pointandb,, = 1 indicates that point is an exemplar.
Function nodeg f5.(b1x, bax, - - -, bai) 12, enforce a similar constraint as before (disallowing
clusters without an exemplar), and additional functionesqdy; (b;1, bio, . . ., bin )}, enforce

that all data points are in exactly one cluster (possiblyresx@mplar):

0, if bkk%l but Ji: bzkzl ;
Je(big, bogs .. bng) = [bkk:max bik] = (3.16)
' 1, otherwise ,

and
0, if ST bin#1;

1, otherwise .

gi(bz’h 52‘27 ceey bz’N) (3-17)

[
[
o=
i
s
o
[
—_
I

The global function is:

N N N N
F(bys) = [T IT €"*<“ - TT fulbk, bons - bnw) - TT 9i(bir, biz, - -, bin)
i=1k=1 k=1 =1
N N N N
2 2 bikes(i,k)+ 3 1og fi(bik,bzk k)t 3o 10g gi(bi1,biz;....bin )
— ezzlkzl k=1 =1 .

Four types of messages are passed between variable nodesetioh nodes as shown in
Figure[3.5. Messages outgoing from variable nodes are émegit-wise product of all other

incoming messages as shown here:
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s(1,1) s(1,2) 5(1,3) s(LN)

| I —{ ,(b1ybryebin)
blr <b12‘r <b115 e e @%{
s(2,1) 5(2,2) 5(2,3) s(2,N))

l | e | 95(b31,055,...,0,y)
bZ bZ bZ
s(3,1) s(3,2) 5(3,3)

l | e = 03(b31,b35,...,b3y)
b, b b, ..

Gz‘kl = 0;(bj1,bi, -, byy)

s(N,1) s(N,2) s(N,3) ‘

| [\ A 61 (5u1Brareensbn)
by by by

fil(by,byy,byy)  [fa(D12,055,0By5)  [fal(B13,By3,--,bys) [ (Brwboio--sbpi) L (Dips Do By

Figure 3.5: An alternate grid-topology factor graph can beduto derive affinity propaga-
tion. N-state variable; is divided into N binary variabled;;, b;», . .., b;x under additional
constrainty; that >0 by, =1.
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0i(0)-;x(0), for b, =0; 0i(0)- Bix(0), for by, =0;
oie(1)- (1), for by, =1 oi(1)- B (1), for by, =1

These binary messages can be ‘normalized’ and insteadseyiesl by a scalar ratig, =

_ pi(1) oik(1)-Bir (1)

i = s = owou and py, = 25 = THEBEE = oyl

ik (0) oi1(0) i3 (0)
outgoing from the similarity function nodes can be intetpdeasc; (b;,) = e***("F) so the

Likewise, messages

normalized ratio would be;;, = Z’“Eég = ebis(bk) - Messages outgoing from theconstraint

nodes differ for sum-product and max-product messageamgdbey are as follows:

zskp(blk) = Z Z Z Z Z [gl(]b]?v cee 7jk—17 bikajk-ﬁ-l) s 7jN) ' Hk’;k/;ék Tik’(jk’)i|

Ji J2 Jk=1 Jk+1

Dkt £ [Tik’(l) Mg iy Tik”(o)]7 for by =0;
Hk’:k";ﬁk Tik! (0), for bzk =1 ;

MP, _ . . ) . .
ik (b2k> = Inaxmax:- - -maxmax- - -max gi(.]17.]27 ey Jh=15 Uik Jrg1, - - JN)' HTik’(]k’)
J1 J2 Jk—1 Jk+1 IN k" k'#k

k%%zi |:Tzk/(1) . Hk”k”%{k,k’} Tzk//<0)i| y fOI‘ blkzo ’

Hk’:k’;ﬁk Tik/(O), fOl" bzkzl .

These can be expressed in terms of the scalar ratios, (99 is replaced withl andr;;(1)

with 7;;, to yield simple sum- and max-product update equatjéjis= 22{28 =1/> i and
ik K'k'#k

MP _ Byt () .
ik T ,B%P(O) 1/]%2’22‘72]{)

Messages outgoing from the othgiconstraint function nodes are somewhat more compli-

cated:
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agy (bir) =220 30 D0 E fl(.]17.]27'"7ji—17bik7ji+17"'7jN)'Hi’;i’;éipi’k(ji’)]

J1 J2 Ji—1 Jit+1
(

Hi,:i/# pi(0) =1, fori=Fk and by =0
Hi’:i’;ﬁi [pir(0)+pirie(1)] = Hw;y;si [L+pir], fori=Fk and by, =1;

Pre(1) TT [0irk (0)+pirk (1) 4+ pr(0) T T pirk (0) = pre- I T [1+pirk] +1, for ik, bix=0;
i k) i {i k) i (k)

L e (D) T oy [P (0) +pii ()] = i T Lining s 0y [1+pirk], for ik and by =1,

SP__ Zskp(l) Hi’:i’;éi []‘ + pi/k]’ fori=*k ,
50 il = () =

-1
(1 + ok [y [1+ Pz”k]) , forizk,

and for the max-product algorithm,

Q%P(bik) =1naxiax- - -1laxmax- - - nax [fi(jlaj% ooy Jim1s biky Jig1s -5 I )T pi’k(ji’)]
e Jizt o Jitt N it

( [Liviess pik(0) = 1, for i=k and by, =0

[ Linings max [pirr(0), pirg(1)] = [Lini; max [1, pirg], for i=k and by =1;

= max (pkk(l) : Hi’:i’gﬁ{i,k} max [pyx(0), pirr(1)], prx(0) - Hi';i’;«éz‘ pi’k(0)>

= max (1, Pk * [ Tinirge iy max [1, pi/k]) , fori#k and by, =0

pkk(l) H max [plfk(O), pyk(l)] = Pkk" H max [1, pi’k]a for Z;’él{? and blkzl )

L itig{ik} itirg {ik}
so aMP — 2 (1) _ [ Lz max(1, pys], fori=k;
oG = 1\I£P (0) -

min (0, Pk Hi,:i,gé{i7k} max[l,pi/k]) , fori#£k .

Because;, = o;,a;, andp;, = o181, We can absorb the-updates into the-updates by re-

writing it aspf = 0.5 =03/ > Tiw =0/ Y. oaw v andpllt = o, BN —U,k/ max Tir =
kK2 k:k2k kFk

Uik/ﬁ% oy . Then, the standard affinity propagation formulation froect®nd 315312
can be recovered by labeling responsibilitiés k) =log p5F °* MP and availabilities: (i, k) =

lOg aSP or MP
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3.4 Other algorithms for clustering via belief propagation

Several additional algorithms that employ belief propegefor exemplar-based clustering are
possible and have been explored. The following sectionriescseveral possibilities; they are
more tightly-constrained (Sectibn 3.4.1) or have highengotational complexity (3.412-3.4.4)

than affinity propagation and are thus not developed further

3.4.1 Affinity propagation with added non-empty cluster corstraint

In its earliest formulation [34], affinity propagation ctasng employed a factor graph with
identical topology but more stringent constraint functipy;(c)}_,. Not only did this func-
tion disallow exemplar-less clusters (as is the case Yjilic)}), but also clusters without
any non-exemplar members. This was coupled with a seqlemtissage-passing schedule
to prevent periodic swings where all data points were camnsil exemplars (heading empty

clusters). The constraint is as follows:

0, if ¢ #k but Ji: ¢; =k (disallow clusters without an exemplar) ;
file) = ¢ 0, if ¢, =k and Vitk: ¢; £k (disallow clusters lacking non-exemplar members) ;

1, otherwise .

The second line inf;(c) does not appear itfy(c) and is shown in red. This leads to

significantly-more complicated update equatidns (3.18)@®20), that are less intuitive:

Sum-product formulation:
(k) — es(i,k)/zk,:k/#k [es(i,k’)ea(i,k’)}

Hi’:i’;ﬁi [1 + 6T(i,’k):| *1, fOI' k=1 X

([6—7"(16,/6)71} ,Hi/:i%{i’k} [1 + 67‘(1"7’*3)} -1 + 1>_,1for ki .

(3.19)

6a(i,k) —
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Max-product formulation:
SNl ., .,
’f’(l,k‘)—S(’L,k’) k%%ﬁ [S(lak) +CL(’L,]{,‘)]

max min [0, 7 (¢, k)] + 3 sy max [0, 7 (i k)], for k=1 ;

O <—12?Xk i[O, K, (5, 8) + Somax 0, (2 k)D for ki .
(3.20)
This algorithm, while stillO(N?), was shown in [25] to have quite inferior performance
due to the extra constraint unnecessarily preventing tdaisthm from moving through regions
of the search space on the way to better solutions. To contparevo algorithms, the task
of clustering image patches described in [34] was exarHiné’atches were clustered using
both versions of affinity propagation and the resultinglilk@d was compared to 100,000
restarts of.-medoids clustering (requiring roughly 1000 times the catapon as both affinity

propagation algorithms), and tiseienceversion of affinity propagation achieves better results

for a wide variety of parameters, as shown in Figuré 3.6.

3.4.2 Alternate factor graph: N binary nodes

Instead of having variables, ¢, . . ., cy that makeN-ary assignments of each data point to
clusters, it is possible to us€ binary variables that only indicate whether or not each fpoin
is an exemplar. For each binary variab{é;}Y,, b;=1 indicates that data poiritserves as
an exemplar and,=0 that it is a non-exemplar—implicitly belonging in the clesto which
it has highest similarityargmax,., _, s(i, k). This setup is reflected in the factor graph from

Figure[3.7, with constraint functions absorbing similastas follows:

"Briefly (see [34] for details), a tiling 024 x 24 non-overlapping patches was extracted from the image and
translation-invariant similarities were computed by camipg smallerl6 x 16 windows within each patch. The
lowest squared error between windows (over all possibtestations) was chosen as a similarity measure.
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Figure 3.6: Performance (measured by ranking within 10Dy@8tarts of:-medoids cluster-

ing plus one run of each version of max-product affinity pgadéon) for various numbers of
clusters on a patch clustering task. A common value for tleengtar preferences was tuned
to producek = {2,3,...,12} clusters and the result was compared to that obtained from
100 000 random initializations df-medoids. In most cases, tiszienceversion of affinity
propagation [38] finds a configuration at or near the best efntanyk-medoids initializa-
tions, while the oldeNIPSversion [34] performs comparatively worse. For few clusterg.

K ={3,4,5}), the clustering task is trivial (search spaces of §i2¢= 41664, (°) =635376,

and (654) =7624512, respectively), so 100 000 restartskemedoids works well. Larger search
spaces (e.gk =9 has(‘)) ~3x10'°) show a clearer benefit for affinity propagation.
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h,(b;s) h,(b;s) hs(b;s)

N NS \\

hN(b;S)

7

Figure 3.7: An alternate factor graph for exemplar-basadteting with/N' binary variables,
b, b, ..., by, Wwhereb, = 1 indicates that data poiritis an exemplar. Non-exemplars (indi-
cated byb, = 0) are implicitly assigned to the exemplar most-similar terth this is incorpo-
rated into constraintd,, hs, ..., hy.

(> b >0] - maxy, @R b=l for b, =0 (i is a non-exemplar) ;
hi(bl, bg, ey bN, S) =
e*9) forb;=1 (iis an exemplar) .

Note that the initia[) . b, > 0] multiplier ensures that the degenerate case where there are

no exemplarg,e. Vi: b; =0, is not allowed. The global function is:

no-exemplar exemplar non-exemplars belong to cluster
case not allowed preferences with most-similar exemplar
N — N A

~

N N 2 N .
F(b’ S) - Hi:l hl(b7 S) - [Zi’bil} . Hi:bi=1 68(272) . Hi:bizo mk’ax |i65(l’k).[bk:1}} (321)

The algorithm isO(N?) after some optimization, and preliminary experimentatigit small
problems has shown it to be even slower than exact (linegranoming) methods with worse

results than affinity propagation.

3.4.3 Alternate factor graph: K N-ary nodes

It is possible to re-write the exemplar-based clusterimdpjam explicitly in terms of findingy

clusters usindgs< N-ary variables, each of which indicate an exemplar suchdghat indicates
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Yy(c) Y,(c) Ys(c) Yilcycyenns

< K \\%L\'
AN

b,(c1,6,) lc1,€pe0Ch) bilyenCy)

Figure 3.8: An alternate factor graph for exemplar-basadteting using’” N-ary variables,
c1,09,. .., Ck, €ach of which index an exemplar. Non-exemplars are intplieissigned to
the exemplar most-similar to them; this is incorporated canstraints);, v, ..., 9 y. Con-
straintsg,, ¢, . . ., ¢ ensure that no points are duplicated in the set of exemplars.

that data point is an exemplar. The factor graph topology is shown in Figue Bhere areV
function nodes{v;}% |, each of which computes tfi& non-exemplar data point’s contribution
to the net similarity by choosing the most-similar cluster.addition, there ard( function
nodes{¢:}X_,, that include exemplar preferences in the global functimh @so enforce the
tedious constraint that there are no duplicate or repeatdgars. These functions are defined

as follows:

K

N ‘
VYi(cr, e, .0 k) = Hizl (maxkze{l,Q ..... K} eslier) . H (& 7&2]) ;

k'=1

i NI e
%(01702,---,0K)IH< max es(“k)) :

K k—1
Or(cr, ey i) = I_LC 1<es(ck’ck) H » [c;ﬁéck/]), k>1.
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They lead to the following global function:

F<Clac27 - CK; S):Hle ¢k(01702, .- -;Ck) : Hf\il 1%'(01,027 .- ->CK)

preferences o duplicates) in most-similar cluster  only non-exemplar:
K [ mA k=1 N - — K —
= II| e’ -TT lew#ew] |- 11 max e T [ep #]
E=1 =1 i=1| k€{1,2,...K} k=1

Computation of sum-product and max-product messages cdori®in polynomial time
(in particular, theg-constraints can be efficiently absorbed into theonstraints for max-

product), but this is not explored further in this thesis.

3.4.4 Alternate factor graph: ternary nodes

A final factor graph worth brief mention is shown in Figurel3.8 involves ternary vari-
ables{tix} (i xef1.2,...N}2 and i<k fOr indicating cluster membership, whetg = 1 indicates
that data point is in a cluster whose exemplar is data pointt;, = —1 that data point
k is in a cluster whose exemplar is data pointndt;, = 0 otherwise. There aré/ bi-
nary variables{b;}~ , indicating whether each data poirt,is an exemplari = 1) or non-
exemplar §; =0). Function nodes enforce the usual constraints With;, ..., b;,...,tin) =
{bl- > max tki] -{bi > max —tik} -[1 :i_zl [tri=—1] + b; + év: [tix=1]| acting similar to equa-

k€{172 ..... ’i—l} k:E{’H—l ..... N} k=1 k=i+1

tions (3.16) and (3.17) in Sectién B.3.
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Figure 3.9: This factor graph for exemplar-based clusteiimvolves ternary variables
{tie} i p)eq1,2,... N2 and i<k fOr indicating cluster membership wherg = 1 indicates that data
pointi is in a cluster whose exemplar is data pdint;, = —1 that data poink is in a cluster
whose exemplar is data poiihtandt;, =0 otherwise.



Chapter 4

Benchmarking Affinity Propagation

The affinity propagation algorithm for exemplar-basedtinag performs well at finding clus-
tering solutions that optimize net similarity. This chapbenchmarks affinity propagation
alongside 15 other clustering methods for a range of smak: (1000) and large {V > 5000)

datasets.

4.1 Olivetti faces: Clustering a small dataset

The Olivetti faces dataset [87] is a collectiordof) 64x64 greyscale images of human faces (10
from each of 40 people) with varying facial expressions agitting conditions. The complete

dataset is available at http://www.cs.toronto.edaiveis/data.htmnd shown in Figure 4.1.

T W W W [0 G o e o |

Figure 4.1: The Olivetti dataset [87] consistsiof) 64 x 64 greyscale images of human faces.

60
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Figure 4.2: The exact (CPLEX 7.1) solution time is plottedaasinction of X' (number of
clusters). The curve is thin in cases where only an appraeirealution was foundi.g., a
bound to several decimal places); for mastvalues the optimal solution was found along
with the set of exemplars that yields it. Most interestinugons take minutes to find, with
some in the/ <50 range requiring several hours.

To lessen the effects of the background, only the cebtral0 pixel window (normalized to
have mean intensity zero and standard deviatiéhis used to compute pairwise similarities.
The similarity s(i, k) of face image to face image: was set to the negative sum of squared

pixel differences between these two images.

4.1.1 Exact clustering solutions

This dataset was of particular interest because it has a &rgugh search space to challenge
approximate algorithmse(g, for N = 400 points andK = 40 clusters, () ~ 10°® possible
exemplar sets) but is small enough for the linear progrargmatexation §2.4.1) to feasibly
find exact solutions for most parameter settings.

CPLEX 7.1 optimization software was used to compute optichadterings of the Olivetti
data for all possible numbers of clusters,, K = 1,2,..., N using the linear programming

formulation from Sectio 2.411. In most interesting cases, K < 100, several minutes of
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Figure 4.3: The contributions (and tradeoffs) of data santies S,...) and exemplar pref-
erences to net similarityy) are shown for exact CPLEX solutions. Increasing the exampl
preference ) monotonically increases the optimal number of clustéfy, (out the zoomed-
in region illustrates that not alk-values é.g. K € {186, 187}) have associated preference
ranges. Note that - K is linear but appears logarithmic due to the horizontal agiag a log
scale.
computation time were required for CPLEX to find a solutiorshewn in Figuré 4]2. Exact
solutions were found fo366 K -values; bounds (though not solutions with exemplar sats) t
were tight to several digits of precision were found for teenaining34 K-values and are
shown as thin lines in the figure.

Closer examination of the exact linear programming requitside several valuable in-
sights into the exemplar-based clustering problem setuguré{4.3 shows the similarity of
data to exemplarsS.:»), the total preference of exemplars-(K), and their sum, the net

similarity (S). Separate curves are shown for different numbers of a¢kisé@d each quantity

is shown as a function of the globally-shared preferepcé,.;. is constant with respect o
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so it is shown as an ensemble of horizontal lines; eaclk is linear with slopek’. Noting
that all similarities and preferences are negative, theesuare ordered differently in both of
the component plots: faf,..., the curves are parallel and sorted according to ascenfding
becauseS,... is highest where there are the fewest non-exemplar datasphigh £X). The
total preference of exemplars has the reverse situatioererurves with increasing slope are
sorted in order of descendirfg because solutions with few clusters contain the smallest pr
erence contributions/penalties. The sum, net similaity Sq...+p - K, is also plotted and
illustrates the tradeoff between the two terms and how thiengbnumber of clusters increases
as the preference is increased.

The optimal number of clusters increases monotonicalliz Wie preference, however, not
every K-value has an associated interval of preference values fachwit is optimal—for
this problem the set oK € {20, 21, 23,28, 34, 46,62, 100, 101, 118, 129, 186, 187} falls into
this category. Apparently, CPLEX has difficulty optimizimg regions specifically around
these missing<-values and with the only exceptions being néak {129,186, 187}. The
situation aroundx” € [185,189] is illustrated in the highly zoomed-in Section aroumd:
[—10.8877, —10.8875]. At the point where thek’ = 185 and K’ = 188 curves intersect, the
K = 186 and theK = 187 curves are both below; because their slopes are higher tigan t
K = 185 curve they are never greater for lower preferences nor ageaber higher for greater
preferences than the more-slop€d= 188. The intuition is that the preference cost of adding
an extra exemplar in the area aroynd —10.8876 (whereK = 185 is optimal) never outweighs
the savings of a bette$,.;. solution, and it only becomes worthwhile (the net similaih-

proves) when three additional exemplars are added.

4.1.2 Performance of Affinity Propagation

Next, affinity propagation was run usifng00 different global preference values logarithmi-
cally sampled between 1200 and—0.7 (randomly sampled from the horizontal axis of Fig-

urel4.4), each requiring less than one minute of computatio® An important consideration
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Figure 4.4: Affinity propagation was run on the Olivetti facataset witi 000 global prefer-
ences ) sampled randomly from the horizontal axis shown above.nitmeber of clustergy’,
found is plotted as a function @fin (A) and superimposed over the exact solution found by
CPLEX. There is little divergence between the two curved,iamostly takes place fok <6.
The CPU time required for affinity propagation is shown in;(B}ypically requires seconds
whereas CPLEX requires minutes or even hours. With—10, the solutions split into two
regions because many runs oscillate; this representsnisesting solutions wher& > 100

for N = 400.



CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 65

is whether affinity propagation finds the ‘correct’ numbercaisters; the resulting number
found are shown in Figuie 4.4 alongside optimal values fdun@PLEX. For a large range of
preferences (untpp > —10 i.e. K > 300), affinity propagation finds solutions quite close to the
optimal K. The net similaritiesS, achieved by affinity propagation are shown in Figurée 4.5
as well as optimal values derived from CPLEX (computed using Sq.i. + K -p). In addi-
tion, Figure[4.b shows the total similarity of non-exemglamts to their exemplarsy,., as

a function of K' for both algorithms.

Finding a suitable preference using cross-validation

For datasets such as the0 Olivetti faces where negative squared Euclidean distanosed
as the similarity measure, a suitable choice of preferenoebe made by employing ten-fold
cross-validation. This was attempted by running affinitygagation for the set dfo00 global
preference values described in Secfion 4.1.2 on ten diffe¥e= 360-sized training sets with
10% of the data held out for validation. Using the clustesotutions found by affinity prop-
agation, mixtures of isotropic Gaussians were found (ongtép-from EM) and the likelihood
of the validation sets under the mixture was computed. Ehshown in the plot of total vali-
dation log-likelihood as a function of preferengg {n Figure[4.6. The preference value with
the highest log-likelihoody* ~ —31.5082, corresponds to affinity propagation finding= 58
exemplars as shown in Figure U.4(A).

4.1.3 Performance of other clustering techniques

Results were computed for 15 additional clustering albarit and are shown in Figuifesi4. 710 4.22.
They were computed using a 64-node computing clasted involved roughly a year of total

single-node processing time inAILAB 7.5 (R2007b). Random restarts (where applicable)

1The information processing lab at the University of Torgrtgoint effort between Profs. B. Frey, F. Kschis-
chang, and W. Yu, consists of a Linux-based computing alust®4 computing nodes, each with 12 GB of RAM
and two dual-core AMD Opteron 2220 CPUs running at 2.8 GHz.
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Figure 4.5: The quality of affinity propagation’s solutidios the Olivetti faces data are shown
as a function of the preference (A) and number of clusters TBese two different setups
lead to different cost functions as shown in the verticalsaxehen the number of clusters is
controlled by a global preference, as in (A), the net similarityS, is maximized reflecting
the tradeoff between exemplar preferences and data paoniiagiies. When the number of
clusters is explicitly defined as in (B), the similarity betwn data points and their exemplars,
Sdatas IS Maximized.
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Figure 4.6: A suitable choice of preference for ti¥) Olivetti faces dataset using ten-fold
cross-validation is shown. Affinity propagation was run gairting sets forl 000 shared pref-
erence values, and Gaussian mixture distributions weraddafor each clustering solution
found. The validation log-likelihoods are shown, with thesbpreferencey* ~ —31.5082,
corresponding to a solution with' =58 exemplars.

are shown (shaded) as described in the legend, with medsirabd worst of 10, 100, 1000,
etc.runs demarcating boundaries where shading is lightenedijfgmlly, the median best and
worst runs oft restarts are defined as the median result of as many samyietrials as avail-
abl¢1. Performance after one second, one minute, and one hourfti@fe are also shown
to better illustrate the tradeoff between running time audlity of solution. To facilitate eas-
ier comparison, all algorithms are shown on plots with th@eacales on both axes and, in
contrast with Figuré 4]5(B), the horizontal axis (numbeclosters,K) is shown with a linear

scale, and the vertical axis is shown relative to CPLEX'SmatSg.x-

The algorithms examined includemeans and the EM algorithm for a mixture of Gaus-

sians, which is suitable because similarity is defined asdigative sum-of-squared-differences

2The sample median best and worst runs@starts are thé).5)/* and1—(0.5)'/* quantile results of" >> ¢
restarts. This can be seen by considering the median maxwhtnandom variabled/,, Us, .. ., U,, distributed
uniformly on [0, 1]. Defining M) = median[max(U;, Uy, ..., U;)], thenP[U; < M® Uy < MWD U, <
MW] = (P[U<M(t>])t = 0.5s0M® = (0.5)"/t. For example, if a total of’ = 10° random restarts are
computed, the median best of ten restarts igthe)!/1° ~ 0.933" quantilei.e., the66700"-best restart.
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betweerb0 x 50 pixel windows, &500-dimensional data space. These algorithms were all run
until convergence or 100 iterations, whichever came first. digorithms that find only a par-
titioning of data points but no exemplars, the resultingipan is ‘quantized’ by initializing

a single restart ok-medoids to find the locally-optimal set of exemplars for taetition (or

if means characterize cluster centers, quantized to exas)plin more detail, the algorithms

examined are as follows:

Affinity Propagation

Affinity propagation was run with a dampening factor’ef 0.9 for a maximum of 1000 itera-

tions (where 100 consecutive iterations of no change in pkarset qualifies as ‘convergence’)
and is shown on all plots for easier comparison. Runninggiare shown in Figurie4.4; it is
typically several seconds. Performance noticeably degragtweens = 150 and K = 300,

where the solution search space is largest.

Vertex substitution heuristic (VSH) with variable neighbor search

The vertex substitution heuristic is shown alongside CPlaad affinity propagation in Fig-
ure[4.7. This is by far the most competitive algorithm, aecimg optimal results for this prob-
lem in a matter of minutes for all’-values. It is implemented with variable neighbor search as
described in Sectidn 2.5 and [47]. For problems of this si&H is competitive with affinity
propagation in terms of computation time and Fidure 4.7 shibvt initializing VSH with the

output of affinity propagation usually achieves soluticarsduperior to the median VSH run.

k-medoids clustering (with or without k-log(k) heuristic)

k-medoids clustering is shown alongside CPLEX and affinitypaigation in Figur€ 418 with
several million random initializations computed pgervalue. It is the simplest and fastest al-
gorithm available, and results from many restarts show watétion. Affinity propagation

outperforms millions ok-medoids runs beyonfl” = 10; interestingly, the number of restarts
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typically required for an optimal solution roughly increasby a factor of ten for every addi-
tional cluster beyond( = 3 until 10 million restarts no longer finds an optimal solution

K =11's search space (which is roughl9®° in size). k-medoids with thek -log(k) heuristic

is shown in Figuré 4]9. This is implemented as described atii®@#2.3.1 with the caveat for
extreme cases thatin (K -In(K'), N) is used as the initial number of clusters before pruning.
This algorithm is somewhat slower per restart than regkdaredoids but shows modest im-
provements given the same amount of time (apparent by cangptinie one hour performance

curves).

k-means (with or without %-log(k) heuristic; exemplars from partitions or means)

k-means clustering is shown alongside CPLEX and affinity agagion in Figures 4.10-4.113.
This is implemented as described in Secfiod 2.1 and is run5@@-2limensional data points
to convergence; exemplars are identified either by feedirgésulting cluster partition into
k-medoids or by initializingk-medoids with an exemplar set consisting of points closest t
each megi Due to the high dimensionality of the input data, only hwutdr or thousands
of runs are typically feasible within a few hours. Thaneans algorithm with thé -log(K)
heuristic is also shown; it substantially improves the tesben compared té-means without

the heuristic.

EM for mixture of diagonal or isotropic Gaussians (exemplais from partitions or means)

The EM algorithm for mixtures of Gaussians is shown along€iLEX and affinity propa-
gation in Figure§ 4. 14-4.118. Exemplars can be identifiedasitipns, in which case cluster
assignment is determined to be the Gaussian with the maxireapnnsibilitu, or they can

be identified by data points closest to the means (as kvititeans). Runs with diagonal and

3If fewer than K exemplars are found due to two means being closest to the exenaplar, the run is dis-
carded.

“4In cases where a Gaussian has no member data points afshdhtieg (leading to fewer thail partitions),
the run is discarded.
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runs with isotropic/spherical Gaussians are shown; thie digiensionality of the data makes
computation time per run quite high, negatively impactieguits. Finally, to more-closely ap-
proximate the:-means results—which may be better because they optimézeghsimilarity

unadulterated by different covariances for each clustens-of the EM algorithm with siher-

ical Gaussians using a shared global variance anneale@dtaem are shown in Fig. 4H.8

Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering is shown along€ié.EX and affinity propagation in
Figure[4.19. Hierarchical agglomerative clustering ( [3,,103]) involves creating a linkage
structure (easily visualized as a dendrogram) for a dataseaining a series of nested clusters,
beginning with NV clusters and ending with one large cluster. At eachVof 1 steps, two
subclusters are selected to be merged together using orevefas possible criteria; &'-
clusters partitioning of the dataset can be realized byirftplor revisiting the result of the
(N — K)" agglomeration), akin to ‘chopping’ off the dendrogram te¢ehe height where it
hasK branches. The MrLAB statistics toolbox implementation of this algorithm wagdis
with all implemented linkage methods attempted: singl&dge @.k.a. nearest neighbor),
complete linkaged.k.a. furthest neighbor), average linkaga.K.a. unweighted pair group
method with arithmetic mean, UPGMA), weighted averageadiisg¢, centroid linkage, median
linkage @.k.a.weighted center of mass distance, WPGMC), and Ward’s lieKauper squared
distance). The resulting partitions for ea§hvalue were then fed inte-medoids clustering for
refinement and exemplar discovery. For this Olivetti datasard’s linkage method—which
combines clusters so as to minimize the increase in thewatiain-cluster sum of squares—

is the only method with competitive results; not surpriseansidering its cost function is

SFor these experiments, EM for a mixture of isotropic/sptarGuassians was employed with means ini-
tialized from data via a furthest-first traversal and a stiggtobal) variancerk : X, = o%Ip whereo? =
N—lD Zf;l (Xi—uci)T(Xi—Nci)- Variances (or standard deviations) were gradually amdet near-zero via
theo,ew =0.99-0,q Update at each EM iteration. A total of 1000 iterations weirefor each EM optimization,
meaningrgna = 0.99190.0; it 1a1 ~ .00004-01nit1a1. Also, all N =400 possible furthest-first traversal initializations
were attempted for eadki-value, resulting in the range of results shown in Figuré4.1
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equivalent to the definition of similarity.

Convex Clustering (Lashkari-Golland, 2007)

The convex clustering method (Lashkari-Golland, 2007] [§ 8hown alongside CPLEX and
affinity propagation in Figure 4.20. This algorithm is basedthe idea that instead of max-
imizing a typical mixture-model log-likelihoog: ZiNzl log [Zle 7ka<Xi§/~Lk)] (wheref is

an exponential family distribution function), the problean be reformulated to maximizing

LS log [E;.Vzl wje‘ﬁdw(%xj)] where mixture component densities are located at each data

point. Hered,(x;, z;) must be a Bregman divergence [&8{§. d,(z;, z;) = —s(i,7)), and
N

so the latter likelihood is convex whose global optimum,jeabto > © 7, = 1, can be found
j=1

in polynomial time. Thes parameter is used to control the sharpness of the mixture com
ponents, which turns out to be a multiplicative adjustmdrthe negative similarity for this
example; it controls the number of exemplars found by therdlyn. Consistent with other

experiments [82], the convex clustering algorithm seenhsit@ poor performance in practice

Markov Clustering Algorithm (van Dongen, 2000)

The Markov clustering algorithm [99] is a graph-based @rtisyy algorithm based on simu-
lation of stochastic flow in graphs; results of the algorithpplied to the Olivetti faces are
shown alongside CPLEX and affinity propagation in Figurel4.Zhe algorithm performs
competently for very large numbers of clusters, but is diffitco configure for finding small

K.

Spectral Clustering

Spectral Clustering is shown alongside CPLEX and affinigpaigation in Figure 4.22. Spec-

tral clustering methods use the top eigenvectors of a mdeiiwed from the distance (nega-

Sperhaps the dimensionality of the Olivetti dataset playaréip convex clustering’s poor performance; results
on two-dimensional toy datasets of various sizes yield rsatisfactory results.
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tive similarity) between points to partition the datasebinolusters. For these simulations, a
spectral clustering algorithm [80] (based on [74, 104]) sedi Briefly, theKk largest eigen-
vectors are computed (usingAviLAB’s svds command) for anV x N normalized distance
matrix with diagonal elements set to zero and stacked intd/ ank” matrix whose rows are
normalized (to have unit length) and then clustered ugimgeans. The cluster assignments
of the NV rows of the matrix of eigenvectors correspond to the assgmsnfor theN data
points, which is fed intd:-medoids to refine the solution and identify locally-optiragem-
plars. This formulation of spectral clustering is not ingat to the scaleife. units) of the
pairwise similarities so the input pairwise distance isdid by a factorg, such that the nor-
malized distance between pointand; is defined asl;; = —s(i,j)/o. For each number of
exemplars, 36 normalization factors spanning four ordemsagnitude were attempted, namely
0€{0.1,0.2,...,0.9,1,2,...,9,10,20,...,90,100, 200, ...,900}. Most trials require 10—20
seconds of CPU time; a few take longer than a minute but norgelathan two minutes. Per-
formance is decent fak < 25 clusters, but it dramatically falls off for more clustersot that
spectral clustering algorithms operate without exemptgrgartitioning along gaps in data
(i.e, minimizing ‘cut’ weights), which is an entirely differetbjective than exemplar-based
clustering. The algorithm is included in the comparisontfe& sake of completeness.

For applications involving computer vision and this Olivéices dataset, see Sectionl5.1.
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(A OLIVETTI FACES: Affinity propagation, Vertex substitution heuristic
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Figure 4.7: Olivetti faces and affinity propagation, versaistitution heuristic. (A) shows
1000 runs of the vertex substitution heuristic alongsidmigf propagation (red stars) and
affinity propagation followed by VSH (green stars). Affingyopagation alone performs some-
what worse than the median performance of VSH, but affiniyppgation followed by the
vertex substitution heuristic performs significantly betthan the median run of VSH alone.
(B) shows the same plot with a compressed vertical scalettiireomparable to subsequent
plots.
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OLIVETTI FACES: k-medoids clustering
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OLIVETTI FACES: k-medoids clustering with k-log(k) heuristic
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OLIVETTI FACES: k-means clustering (partitions)
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Figure 4.11: Olivetti faces antkmeans clustering with-log(k) heuristic (by partitions)
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OLIVETTI FACES: k-means clustering (by means)
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Figure 4.12: Olivetti faces andkmeans clustering (by means)

OLIVETTI FACES: k-means clustering (by means) with k- Iog(k) heuristic
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Figure 4.13: Olivetti faces andmeans clustering with-log(k) heuristic (by means)
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Figure 4.14: Olivetti faces and EM for mixture of diagonaluSsians (by partitions)
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OLIVETTI FACES: EM for mixture of isotropic Gaussians (partitions)
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Figure 4.17: Olivetti faces and EM for mixture of isotropiasians (by means)
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Figure 4.18: Olivetti faces and EM for mixture of sphericauSsians (annealed variance)
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Figure 4.19: Olivetti faces and hierarchical agglomerathustering algorithms
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OLIVETTI FACES: Convex clustering algorithm
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OLIVETTI FACES: Spectral clustering
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Figure 4.22: Olivetti faces and spectral clustering

4.1.4 Affinity Propagation and Mixture of Gaussians models

The previous section demonstrates that, for the Olivete$adataset, affinity propagation per-
forms significantly better than parametric clustering rodth ¢-means, EM for mixture of
Gaussians) on the task of exemplar-based clustering. Atiqudbat naturally arises is: how
well does affinity propagation perform when the task is pataim clustering? For example,
if cluster centers were parameterized by means and notreamed to be actual data points,
means might better-describe high-dimensional Gaussgtrikdited data, where the data would

tend to lie near a hollow hypersphere surrounding the mean.
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OLIVETTI FACES: DATA LOG-LIKELIHOOD
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Figure 4.23: Olivetti faces are clustered using parametustering methods (EM for mixture
of spherical, diagonal Gaussians) and data log-likelilscer@ compared with corresponding
mixture of Gaussians models learned from affinity propagégdiclustering results.
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For the Olivetti faces data, EM for a mixtures of diagonal aptierical i(e. isotropic)
Gaussians was run for a rangefofvalues and the resulting data log-likelihoods are shown in
Figurel4.28. The plot shows the performance range usingaliiple (V) furthest-first traver-
sals to initialize at each setting &f. Then, the previous results of affinity propagation are
compared by computing means and covariﬂwﬁ@sm the clustering partition and evaluating
the data likelihood under the apppropriate mixture modél.alyorithms use the same lower
bound for variancesl()~%), which is frequently invoked when computing variancesfrsin-
gleton clusters that consistly arise beyakid> 150 (due to the output partitioning of affinity
propagation containing hard assignments).

Notice that for this dataset, affinity propagation does a&dejb at finding Gaussian mix-
ture models, even though it is optimizing an entirely diferexemplar-based clustering cost
function more comparable to a set of spherical Gaussiarsansingle (global) variance. For
all values ofK, affinity propagation falls within the performance rangdwthest-first traver-
sal initializations of the EM algorithm. Notably, for mixes of diagonal Gaussians in the
range30 < K < 50, affinity propagation’s performance exceeds even the Inédization of

EM.

4.2 Affinity Propagation and Large Datasets

The results presented in the previous section and in [10¢atel that for small datasetd/(<
1000) such as the Olivetti faces, the vertex substitution héaffi’equently outperforms affinity
propagation. However, because CPLEX optimization softvean be used to find exact solu-
tions for such small datasets, a question that naturalgesaiis: “how do affinity propagation
and the vertex substitution heuristic compare for largebf@ms, where exact clustering is not
practically feasible?”. In this section, affinity propaigatis comprehensively compared to the

vertex substitution heuristié-medoids k-means, EM for mixtures of Gaussians, hierarchical

"The covariance matrices for affinity propagation are comgub be of the same forme(y. diagonal,
isotropic) as the mixture of Gaussians models to which coispas are made.
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clustering, and spectral clustering on three datasetsatong many thousands of data points.

In the case of larger datasets, comparison is less straimgfafd for two reasons:

o Affinity propagation (and CPLEX linear programming) use ihgut preference to find
a set of exemplars to maximize the net similarity. Other algms explicitly require
the number of exemplars as input and then attempt to maxitheeimilarity of the
data to an exemplar set of that size. With the exception ofdingputationally-infeasible
linear programming relaxation, the two optimizations aseinterchangeable; many runs
of affinity propagation could be required in a possibly{iegs bisection search for a
preference leading to a specifiédvalue. On the other hand, a similar search over
K-values (potentially with many restarts) would be requifedother algorithmsé€.g.
k-medoids) to minimizes if a preference is specified. This was not a problem with the
smaller Olivetti dataset, where algorithms could be rurafbpossiblek -values or many

preferences (leading to most if not &ll-values).

e The exact solution is unavailable as a baseline for compasgs solution quality com-
parisons over a range &f- or p-values cannot be in absolute terms. Differences between
Saata OF S Vary across several orders of magnitude for different \eatié or p (see Fig-
ure[4.3), so performance differences between algorithrttsowt perfectly-matched
are not visible at a global scale without subtracting a neadseline such as the opti-
mal value (as in Figurds 4.7 fo 4]22). For consistency, thedigin this section use an
approximate baseline equal to the median performance ofd¥of%-medoids clus-
tering, which is easy enough to be computed for all [thousasffi possible values of

K.

Another issue with larger datasets is that computation tsree more important variable
in assessing algorithm performance and so plots need tatréile extra dimension. Plotting
in three dimensions—as illustrated in Figlre 4.25—is ehatl and lacks perspective, so two-

dimensional slices across notable points on the time (onetejone hour, one day, one week)
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axis are shown instead. Each plot contains a smooth curvesetiteral dozep- or K-values,
where the number of clusters varies approximately flgm= 10 to K = N/2, as shown on
the horizontal axes. Slices along the or p-axes were shown in [35] but require the number
of clusters to be consistent across all algorithms; thisldvbe somewhat arbitrary, given that
affinity propagation’s solution only finds an approximation

The datasets examined consist of measurements for 8124 oous$, 11,000 handwritten
digits, and customer ratings for 17,770 movies from Netfl8imilarities range from nega-
tive squared Euclidean-distance in a 64-dimensional deeaesfor the handwritten digits, to
uniform-loss embeddable in 121-dimensional space for moashs, to extremely-high dimen-

sion as is the case for the sparse movie ratings data.

4.2.1 Mushroom data (V=_8124)

The mushroom dataset [90] is available at the UCI Machineriieg Resposito@z It contains

22 discrete, non-ordinal attributes for each of 8124 musm®as illustrated in Figufe 4124.
These attributes include color, shape, and surface clesistats of the mushrooms’ cap, gill,
and stalk—the stalk root attribute is ignored because it asenthan 30% incomplete. The
similarity function uses the uniform loss as shown in equrafé.1) which counts the number
of matching attributes between each mushroom, meaningstiméarities are integers in the

range0 < s(i, k) <21.

21
s(i, k) = [(:" mushroom's/" attributg) = (k" mushroom's" attributg|  (4.1)
j=1
Simulations were carried out for the same set of clusterlggradhms as in Sectioh 4.1

and are shown in Figurés 4126-4.27. Simulations were chaig using algorithms such as

k-means (with and without thie-log (k) heuristic, finding exemplars by initializinggmedoids

8Located at http://mlearn.ics.uci.edu/MLRepository.htm
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Figure 4.24: The mushrooms dataset contains 22 discretepmnal attributes for each of

8124 mushrooms, as illustrated above.

with the means and by the cluster partitions), EM for mixtaféGaussians (using diagonal

and isotropic/spherical Gaussians, finding exemplars lgnsmand by partitions), hierarchical

clustering, and spectral clustering. These techniqugsaelthe data

relatively low-dimensional vector space which is accostpdd by a one-hot representation of

being embedded in a

each attribute; this expands the data to a set of 121-dimmealddinary-valued vectors.

Hierarchical clustering required roughly an hour for eatthe seven linkage methods to

form the linkage tree structure; then eaghvalue required several seconds to find the exem-

plars using:-medoids initialized with the cluster partitioning. Theués

were not competitive

and required several gigabytes of memory — more than otgeritims €.g. affinity propaga-

tion required about 1.6 GB of RAM). As mentioned earlierutesfor a range of computation

times andk - or p-values are shown in the 3D plot of Figlre 4.25.
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Figure 4.25: Results fok-medoids with a range of computation times andor K-values
(preferences or number of exemplars) are shown in the 3Daghlove. The plot is a useful
illustration of the parameters involved in the algorithna d@ne issues at play in visualizing the
results, but it is not informative for algorithm comparigeonsider the appearance if additional
algorithms were shown). For this, 2D plots that are cut aleotgworthy slices of the CPU
time-axis are shown in Figurés 4126-4.28.
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MUSHROOM DATA: Best result after ONE MINUTE of CPU time
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Figure 4.26: Performance comparison for mushrooms daafteetminutes of computation.
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Figure 4.27: Performance comparison for mushrooms datéteethours of computation.
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Figure 4.28: Performance comparison for mushrooms datfteetdays of computation.
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After a total of 3 years of single-CPU computation time sp@mthe mushrooms dataset,
Figured 4.26-4.28 show that among the algorithms examinddiader most circumsances,
only the vertex substitution heuristic achieves resulis éine competitive with affinity propaga-
tion. Spectral clustering achieves fairly good solutidng,requires many days of computation
time as it searches for appropriate values ofd¢hgarameter.

Affinity propagation and the vertex substitution heuristie examined more directly in
Figure4.29, which displays results on the same axes asd9@uZb=4.28. Computation times
are also shown, and affinity propagation usually requires680minutes whereas the vertex
substitution heuristic requires several minutes for smiiait 50 and up to two hours for larger

K >500.

4.2.2 USPS digits IV = 11000)

The next-largest dataset examined consists of 11,000 hrétetwdigits originating from United
States Postal Service ZIP code scans from BuffaloH.Nﬁhis is in the form of 110 x 8
greyscale images of each handwritten digit ‘0’ through fér, a total of 11,000 images / data
points—the dataset in its entirety is shown in Figure 4.3 Similarity between two images
was set to the negative sum of squared pixel differenceghylike the Olivetti data, implies
k-means and mixture of Gaussians parametric mazislirectly minimize the similarity (al-
beit with means instead of exemplar data points). Note fhat 10 is not necessarily the
proper choice for clustering this data; even though a usghgisifier might assign one of ten
possible labels if it classifies each digit image accordmgd associated numeral, clustering

as an earlier step in the analysis can very well find signifigamore than ten digit exemplars.

SAvailable at http://www.cs.toronto.edu/ roweis/datmht
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MUSHROOM DATA: Solution Quality
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Figure 4.31: Performance comparison for USPS datasetraftertes of computation.
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Figure 4.33: Performance comparison for USPS datasetdster of computation.
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Simulations were carried out for the same set of clusteriggrathms as in Section 4.2.1
and are shown in Figurés 4131-4.32, except for spectrakeing which did not produce results
within a week of CPU time. Some techniquésngeans, EM) rely on the original data in the
form of an11000 x 256 data matrix rather than the similarity matrix.

Hierarchical clustering required somewhat less than am bbcomputation time for each
of the seven linkage methods to form the linkage tree stragthen eacli’-value required sev-
eral seconds to find the exemplars usingnedoids initialized with the cluster partitioning. The
results turn out to be competitive only for extremely largenibers of clusterse. K > N/2.
After a total of ten years of single-CPU computation timergmnalyzing the USPS dataset,
the main competitor for the affinity propagation algorithgrthe vertex substitution heuristic.
After a few minutes of CPU time (before VSH and affinity propfign report results), the
k-means algorithm achieves quite competitive results tteadaen better than affinity propaga-
tion for small K’ < 50; this is most likely because it is directly minimizing sqedrEuclidean
distance which happens to be the definition of (negativeilaiity for this problem.

As before, affinity propagation is compared directly witle trertex substitution heuristic
in Figure[4.3%. Computation times are shown, and affinityppgation requires several hours
whereas one run of the vertex substitution heuristic regua varying amount of time that
depends on search space size; ranging from several mirartdsw values of X' < 20 to
roughly a day for higher values df > 2000. VSH outperforms affinity propagation in terms
of both computation time and solution quality f&F < 60; affinity propagation outperforms
VSH in terms of speed (at times by a factor of 5), achievingtwhs of similar quality beyond

K =200 or so.

4.2.3 Netflix movies (V=17770)

The largest dataset explored is a collection of Netflix cogtoratings for 17,770 movies,
available at http://www.netflixprize.com and illustratiedFigure[4.35. The data consists of

~100 million ratings from 480,189 Netflix customers for 1Q#ovies, so the data could be
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Figure 4.35: The Netflix dataset consistsaf00 million ratings of 17,770 movies by 480,000
Netflix customers, as shown above. Most movies are rated hgrkeds of customers, and
likewise, most customers have rated hundreds of moviesnd&aare given in units of ‘stars’
ranging betweer andx x x x x, with thex x xx rating being the most common.

represented in &7770x 480189 matrix that is~98.8% sparse. Typically, customers have rated
roughly 100 movies and most movies have at least 100 cussoraings. Ratings are given as
one through five ‘stars’, with x x x x being the highest rating (used 23% of the time) and
being the lowest (used for 5% of ratings); ratings are mfistrex + or xxx*, with a frequency

of roughly 30% each.

Movies are clustered using a similarity function that aedsdor users giving similar rat-
ings to similar movies; the similarity(i, k) between movié and moviek is set to the negative
mean-squared-difference between ratings for viewers aamtionboth movies, denoted by set

C;. Ratings for customers who have viewed one movie but not therare ignored; for



CHAPTER 4. BENCHMARKING AFFINITY PROPAGATION 100

movies with very few or no common viewers, similarities aggularized as described in equa-
tion (4.2). Briefly, if there are fewer than five common usedings then the expression is
regularized by padding with enough simulated rating défiferes of2 to equal five common

user ratings (this is required for 5.3% of movie pairingsuié pairs with no common users

are assigned a similarity efoo (necessary for only 0.2% of cases).

—00, Cir, =0 (0.2% of cases)

Tic—Tkc 2 2.(5— ik
s(i, k) = _ Zcecy k5) e Ick‘), 0 <|Ciu| <5 (5.3% of cases) (4.2)

Tic—Tke 2
_Zceciké—_k"‘)’ ICir| =5 (94.5% of cases)

Simulations were carried out for clustering algorithmg tfa&e similarities as input--
medoids (including thé-log(k) heuristic), the vertex substitution heuristic, and affitop-
agation. Because the dataset consist$7af70 x 17770 inputs requiring roughly 2.5 GB of
memory (plus working space), the more memory-intensivergélyns such as hierarchical
clustering and spectral clustering were not feasible. &tman results from 8 years of single-
node CPU time are shown in Figure 4.86—4.38, with identioaldontal and vertical scales for

easy comparison.
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Figure 4.37: Performance comparison for Netflix dataset &ivurs of computation.
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As before, the only algorithm examined that was competitntd affinity propagation is
the vertex substitution heuristic (with the exception ofmgoregions oft-medoids reporting
first results quicker than affinity propagation in the firstfaninutes). Another set of simu-
lations was conducted for a range of preferendésv@lues) and, additionally, for a range of
N-values (number of data points) accomplished by clusteyimig the first/N movies. Affinity
propagation is compared directly with 20 random restar, with results shown in Fig-
ure[4.39. The plots show that for larger datasets contaiNirg6000 data points and finding
K > 50 exemplars, affinity propagation clearly comes out on topemms of both solution
quality achieved and computation time. In terms of componatime, affinity propagation is
much less sensitive to the number of exemplars, and fordg@mbdlems is faster than a single
restart of VSH (by as much as a factor of ten for the full datasd K > 500).

Varying the dataset size and number of clusters provideppartunity to examine several
algorithms’ memory requirements. As shown in Fidure Wi4Medoids has the lowest memory
requirements, doing much of its computation in-place wejligble memory required beyond
that for storing the input similarities. The vertex suhgtdn heuristic has modest memory
requirements that depend on the number of clusters (forikgeapck of the swaps); for the
full Netflix dataset it ranges from 102% of the input simitgitapacity (similar tat-medoids)
to 136% using the range of preferences from Figure]4.39. Thety propagation algorithm
has much greater memory requirements in keeping soft irdtom; it requires roughly 310%
of the input similarity capacity, mostly to keep equallyesil availabilities and responsibilities

in memory.

Otwenty restarts are recommended in [10] by operations relsexperts for a good solution.
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Figure 4.39: Performance comparison for Netflix dataseteen affinity propagation and the
vertex substitution heuristic, for a range of Netflix datgesi (V) and number of clustersx)).
For large datasets\{> 10000) and non-trivial numbers of cluster&’(> 100), (A) shows that
affinity propagation consistently finds better solutionartt20 runs of the vertex substitution
heuristic. The running times for the algorithms are shownafifinity propagation (B), one
run of the vertex substitution heuristic (C), and 20 runshefiertex substitution heuristic (D).
Affinity propagation takes hours for the most complex praidewhile one run of the vertex
substitution heuristic can take days, and 20 runs can tak&sve
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Figure 4.40: The memory requirements fomedoids, affinity propagation, and the vertex
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The vertex substitution heuristic requires between 2% &9%d Bore, depending on the value
of K. Affinity propagation requires roughly 310% times the inpimilarities capacity, mostly

for storing availabilities and responsibilities.



Chapter 5

Applications of Affinity Propagation

A major benefit to affinity propagation is that it clustersadatthout having a specific model
of the data built into the method; this has lead to its use indewariety of problem domains
using rich application-specific similarity models. Thisapier briefly explores several results

from the topics of computer vision and bioinformatics.

5.1 Affinity Propagation and Computer Vision:

Image categorization

Many computer vision tasks either produce a clustering pfiirieatures as output or require
it as a preprocessing step for subsequent analysis. Exetylee been used with success in
a variety of vision tasks, including image synthesis [27,]18uper-resolution [33,92], image
and video completion [52, 105], and combined tracking arjdailuletection [40, 97].

The use of exemplars is attractive for several reasons. aively small number of repre-
sentative exemplars can capture high-order statistissg®ach exemplar can simultaneously
express dependencies between a large number of imageefeatur contrast to general sta-
tistical methods for which many parameter configurations @arespond to unrealistic data,

each exemplar is an image or an image fragment so it natwaithgsponds to realistic image

107
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data. For this reason, exemplars can be used to make meglistictions for missing image
data and avoid the blurring that often occurs when parametethods are applied. Exemplars
are represented efficiently as pointers into the trainirtg @&g., a subset of image features),
so the number of bits of information needing to be specifiaihduexemplar learning is quite

small [48].

5.1.1 Augmenting the Olivetti dataset

The Olivetti datasetfd.1) was modified for computer vision experiments as foltotsex-
amine the effect of a wider range in image variation for eaahvidual, the images of ten
individuals were extracted, and for each of the resuliifg images, three in-plane rotations
and three scalings were appHe@roducing a dataset @00 images. Initially, the similar-
ity between image and imagek, s(i, k) was set to the negative of the sum of squared pixel

differences.

5.1.2 Performance on unsupervised image classification

In several vision tasks, such as image or video summarizdabels are unavailable and the
goal is to detect meaningful image categories in an unsigeghfashion. Even in supervised
tasks, it can be helpful to first perform unsupervised categtion of images or image parts
so as to reduce the dimensionality of the input and simplifyesvised learning. Here, the
performance of affinity propagation is explored in termsmsupervised classification error of
the learned categories based on the true categories, whatdearned category is associated
with the true category that accounts for the largest numiaait@a points in the learned category.
The classification rate will approach 100% as the numberashied categories approaches the
number of training cases, so classification rates are regp@s a function of the number of

learned categories.

1The rotations weré—10°, 0°, +10°} and the scaling factors wef@.9, 1,1.1}.
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Figure 5.1: Performance on unsupervised classificaticor éor the Olivetti face data. The
classification rate (fraction of images correctly clasdifihere the learned category is associ-
ated with the true category that accounts for the largestoeurof data points in the learned
category) is plotted against the number of clusters or elasg . Results for affinity prop-
agation, best of 1000 runs éfmedoids clustering, and the vertex substitution heuriste
shown. For larger numbers of clusteesq, K > 25), k-medoids clustering typically achieves
a classification rate 3—5% worse than affinity propagatiothervertex substitution heuristic
(which both achieve similar results).
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Figure[5.1 plots the classification rate as a function of tiralmer of clustersK) for affinity
propagation, the best of 1000 runsiemedoids clustering, and the vertex subsitution heuristic
on the faces dataset containing 900 images. Affinity propagachieves similar results to
the vertex substitution heuristic but typically achieveslassification rate 3—-5% better than

k-medoids clustering, for the sanié

5.1.3 Performance using non-metric similarities

In the context of comparing two face images, squared Eumfidistance ignores the fact that
certain facial features may appear in different positioneach image. This section outlines
a non-metric similarity function that can be tailored tod/anatching face images, and shows

that it achieves higher classification rates.

Denoting the vector of pixel intensities for imagemndk by x; andx, the previous section

used the following definition of similarity:
s(iy k) = =[x — x|

Here, the similarity of image to imagek is computed by extracting a sub-image from the
center of image and finding its best match to all sub-images (not necesseeityered) in
imagek. Let T denote an operator that cuts a window of a fixed size out ofrttege it is
operating on. There will be many operators correspondimifterent possible positions from
which the window may be extracted; [€ denote the operator that cuts the window out of the

center of the image. The non-metric similarity used herevisrgby:
s(i, k) = — H}En | Tox; — Txy|?

The original Olivetti images of sizé4 x 64 are used here with a window size & x 50.

Figure[5.2(A) shows an example of an imagdgupper left) and the windows that achieve the
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minimum in the above expression for the other nine imagesarsame (true) category.
Figure[5.2(B) plots the classification rate against the nemdb clusters [) for affinity

propagation applied to this non-metric similarity functiolncluded for comparison is the
plot obtained using:-medoids clustering and the vertex substitution heurggtiplied to the
same non-metric similarity function. Also included is thératy propagation plot obtained
using the negative squared Euclidean distance similaritesscribed in the previous section
(circles, as before). The non-metric similarity definitifatilitates a significant increase in
the classification rate and affinity propagation achieveslar classification rates to the vertex

substitution heuristic and higher classification ratesgarad tok-medoids clustering.

5.2 Affinity Propagation and Sparsity: Exon Detection

An important problem in current genomics research is theodisry of genes and gene variants
that are expressed as messenger RNAs (mRNAS) in normaésisdn a recent study [37],
DNA-based technigues were used to identify more than 800p0@8sible exons (‘putative ex-
ons’) in the mouse genome. For each putative exon, an Agieroarray probe matching a
60-base long DNA segment was used to measure the amounte$ponding mRNA that was
present in each of twelve mouse tissues. Each twelve-dioeadsector, called an ‘expression
profile’ for the DNA, can be viewed as a feature vector indiggathe putative exon’s function.
Also, when nearby segments of DNA undergo coordinated ¢rgigon across multiple tis-
sues, they are likely to come from transcribed regions ofsdmae gene [36]. By grouping
together feature vectors for nearby probes, we can detaessgend variations of genes.
Figurel5.8(A) shows a normalized subset of the data and tfives examples of groups of
nearby feature vectors that are similar enough to providdeece of gene units. The actual

data is generally much noisier [36], and includes:
e Multiplicative noise, because exon probe sensitivity cary by two orders of magnitude.

e Correlated additive noise, because a probe can crossdmiin a tissue-independent
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Figure 5.2: Unsupervised image categorization using netriasimilarities. (A) The similar-
ity of an image (left) to each of the other images is deterahiog finding the best match (in
terms of squared error) between a window centered in tharfiesge and all possible equally-
sized windows in the second image. (B) The classificatiom iaplotted against the number
of exemplars (shown as squares) for affinity propagatics pttst of 1000 runs df-medoids
clustering, and the vertex substitution heuristic usirggrtbn-metric similarity function. Also
shown (as circles) is the plot for affinity propagation apglusing the metric similarity func-
tion described previously. Again, affinity propagation ahé vertex substitution heuristic
achieve similar classification rates, which in turn are ss\@ercentage points better than affin-
ity propagation applied to the previously-examined medinailarities.
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Figure 5.3: Exons can be detected by grouping together DNfnsats with similar nor-
malized expression patterns across tissues, shown in (Apakse matrix of similarities is
constructed as shown in (B), where the zeroeth data poimt isteon exemplar (background
model) and off-diagonal similarity entries are computethasjuation[(5.11). The probability of
each expression profile under the background model is piadéeé first column and along the
diagonal (as preferences) along with a global preferenddieglterm,p, used for controlling

the false-positive rate.
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manner to background mRNA sources.

e Spurious additive noise, due to a noise measurement proxeaa biological effects

such as alternative splicing.

To account for noise, false putative exons and the proxiwfitgxons in the same gene, the

input similarity s(i, k) between DNA segment (data pointdnd DNA segment is:

(i-k) Bli—K| o327 S [ = ey +2)]”
e®\W = Be” P max < p(y, z,0) - 5.1
e 22 (v2mo?)12 (5.1)

wherez!™ is the expression level for the™ tissue in the™ probe (in genomic order). The pa-
rametergy, z, ando were assumed to be independent and uniformly distridwed(y, z, o) o
1 over the domain. To account for the non-transcribed rediemgscontaining introns), an ad-
ditional artificial data point was included (which is indeb@s data point)’) and the similarity
of each other point to this ‘non-transcribed exemplar’ wetetnined by evaluating each point
under a mixture of Gaussians for the entire dataset; thikgsaand model likelihood is re-
ferred to ag(z;) soVi > 0: s(i,0) =log po(x;). The preference for the artificial data point
was set tos(0, 0) = +oo to guarantee its selection as an exemplar (this was aldddgeil by
settingvi > 0: s(0, i) = —oc), whereas the preference for every other data point wae skét
background model log-likelihood plus a shared preferencst@antp, that was used to control
the number of exemplars found and thus the sensitivity ofgtstem.

A total of 75,066 DNA segments were all mined from the genoonerfouse Chromosome
1, with a similarity matrix constructed as illustrated irg&ie[5.3(B). Not al(75066 + 1)? ~
5.6 billion possible similarities were used or even computéa; éxponentialBe?1*~*! prior
term and the assumption that genes on the same strand magsintiarities for|i— k| > 100

could be approximatedas —oo. This reduces the problem size to approximately 15 million

2Based on the experimental procedure and a set of previamsiptated genes (RefSeq), they were estimated
asf=0.05,y€[0.025,40], z € [- max z*, + max z!"], ando € (0, + max z]").

3According to ground truth (RefSeq), less than 1% of genesrsgrha distance of more than 100 probes (none
spanned more than 165). The sparseness constraint canatatena span of 200 if the exemplar is centered.
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similarities and messages to exchange—99.73% sparse-ughlyothe same difficulty as a
non-sparse problem witi'15 x 106 ~ 3900 data points. Figure 5.4 illustrates the identification
of gene clusters and the assignment of some data points tmtiiexon exemplar.

After clustering ther5067 x 75067 sparse matrix of similarities, DNA segments assigned
to exemplars other than the non-transcribed exemplar wansiadered to be parts of genes.
All DNA segments were separately mapped to the RefSeq degaifaannotated genes [85] to
produce labels used for reporting true positive and falsitipe rates. These results are com-
pared in Figuré5l5, where the true-positive (TP) rate istptbagainst the false-positive (FP)
rate for affinity propagation ank-medoids clustering. For each number of clusters, affinity
propagation was run once and took roughly six minutes, vassrenedoids clustering was
run 10,000 times which required 208 hours. Affinity propagatchieves significantly higher
TP rates, especially at low FP rates which are most usefubblodists. At a FP rate of 3%,
affinity propagation achieved a TP rate of 39%, whereas tkeibmedoids clustering result
was 17%. For comparison, at the same FP rate, the engin¢edingdescribed in [36]—which

integrates additional biological knowledge—achieved adte of 43%.
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Figure 5.4: Affinity propagation was used to detect putaéi¥ens (data points) comprising
genes from mouse chromosome 1. A small portion of the datdrendmergence of clusters
during each iteration of affinity propagation are shown.daleframe, the 100 boxes outlined in
black correspond to 100 data points (from a total of 75,066étpe exons), and the 12 colored
blocks in each box indicate the transcription levels of tbeesponding DNA segment in 12
tissue samples. The grey profile on the far left correspamda artificial data pointi& 0) with
infinite preference that is used to account for non-exororege.g, introns). Lines connecting
data points indicate potential assignments, where grag limdicate assignments that currently
have weak evidence and dark-colored lines indicate assgtsrthat currently have strong
evidence.
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Figure 5.5: Affinity propagation was used to detect putaéi¥ens (data points) comprising
genes from mouse chromosome 1. For each number of clustEmgygropagation took six
minutes, whereas 10,000 runsiefmedoids clustering took 208 hours. The false positive rate
was adjusted via a constant added to the preference; thisfgloe resulting true-positive rate
versus false-positive rate for detecting exons (usingsfbem RefSeq [85]) shows that affinity
propagation performs better at detecting biologicallyiier exons thark-medoids clustering.
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5.3 Treatment Portfolio Design via Affinity Propagation

A central question for any computational research collatiog with a biologist or medical
researcher is in what form computational analyses shoutsbbenunicated to the experimen-
talist or clinician. While application-specific prediati® are often most appropriate, in many
cases what is needed is a selection of potential optiontablaito the biologist/medical re-
searcher, so as to maximize the amount of information gtfmen an experiment (which can
often be viewed as consisting of independently-assaygetsr If the number of options is
not too large, these can be discussed and selected man@allthe other hand, if the num-
ber of possibilities is large, a computational approach bepeeded to select the appropriate

options. Affinity propagation has been shown [26] to be aeatife approach to this task.

5.3.1 Treatment Portfolio Design

For concreteness, the possible set of options is referrasl ‘tceatments’ and the assays used to
measure the suitability of the treatments as ‘targets’ rEtreatment has a utility for each tar-
get and the goal of what is referred to as treatment portétdgign (TPD) is to select a subset of
treatments (the portfolio) so as to maximize the net utdityhe targets. The terms ‘treatment’,
‘target’, and ‘utility’ can take on quite different meansgdepending on the application. For
example, treatments may correspond to queries, probesperimental procedures. Examples
of targets include disease conditions, genes, and DNA hinelents.

The input to TPD is a set of potential treatments or quefiea representative population
of targetsR, and a utility functionu : 7 x R — R, whereu(T, R) is the utility of applying
treatment’ € 7 to targetR € R. This utility may be based on a variety of factors, including
the benefit of the treatment, cost, time to application, timesponse, estimated risic. The
goal of computational TPD is to select a subset of treatmBnts 7 (called the ‘portfolio’)

SO as to maximize their net utility for the target populatioh defining aspect of the utility

function is that it is additivei(e., the total or net utility is a sum of component utilities)r fo



CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 119

portfolio P, the net utility is:

max u(7, R) .
TeP
RER

To account for the fact that some treatments are preferalathers regardless of their efficacy
for the targetsd.g, different setup costs), a treatment-specific cost functioZ — R can be
used. The net utility, including the treatment cost is:

UP) = max u(T, R) — ZC(T)

TeP
ReR TeP

Provided with7', R, u andc, the computational task is to fingca%( U(P). Note that the number

of treatments in the portfolio will be determined by balarcihe utility with the treatment cost.

In general, the treatment set does not equal the target ken, TPD can be viewed as a
facility location problem with treatments serving as pai@rfacilities (exemplars) and targets
as customers. Affinity propagation can be adapted to adthisssf point: is a target and point
k is a treatment, theg(i, k) can be set to the utility of that treatment for that targepaint &

is a treatments(k, k) can be set to the negative cost for that treatment.

One important difference, however, between the probletestents for exemplar-based
clustering and TPD is the distinction between treatmendistargets. The basic affinity prop-
agation algorithm treats all points as potential exempais every non-exemplar point must
be assigned to an exemplar. In TPD, only treatment can betedlas exemplars, and only
targets have utilities for being assigned to exemplarafftnents). Treatments that are not se-
lected for the portfolio (exemplar set) are neither exemgpfer assigned to another exemplar

(treatment).

To allow some treatments to not be selected for the portésishalso not be assigned to any
other points, a special ‘garbage collector’ point is introed and the similarities of treatments
to this point are set to zero. So, unless there is a net bemetility minus cost when including

a treatment in the portfolio (exemplar set), it will be as&d to the garbage collector point. In
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Figure 5.6: Treatment portfolio design can be rephraseering of similarities and preferences
for affinity propagation. Constraints on similarities foedatment portfolio design (TPD) are
outlined in equatior (512).

summary, the following similarity constraints account fiee bipartite structure of TPD:

s(target treatment=u (treatmenttarge) and s(target target)=s(target garbagg¢=—o00

s(treatmentgarbag¢=0 and s(treatmenttargej=s(treatmenttreatmer{)=—oc (5.2)

s(garbagetarge)=s(garbagetreatment=—o0
s(treatmenttreatment=—c(treatmen, s(target targe)=—o00 and s(garbagegarbagé=+oo

The last constraints ensure that targets cannot be selastedemplars and that the garbage
collection point is always available as an exemplar. Theifipéorm of similarities under these
constraints is illustrated in Figute 5.6. Note that messaged only be exchanged between a
treatment and target if the utility is netoo; this makes the algorithr®(|7|-|R|) instead of
O(|T+R|?).

5.3.2 Application to HIV vaccine cocktail design

The issue of HIV vaccine cocktail design can be nicely posed aPD problem. The idea

with this is to find a set of optimal HIV strains for the purpasfepriming the immune sys-



CHAPTER 5. APPLICATIONS OFAFFINITY PROPAGATION 121

(A) treatments7, are HIV strain sequences

- - MGARASVLSGGKLDKWEKIRLRPGGKKKYKLKHIVWASRELERF - - -
-+ MGARASVLSGGELDRWEKTIRLRPGGKKKYQLKHIVWASRELERF - - -
- MGARASVLSGGELDRWEKIRLRPGGKKKYRLKHIVWASRELERF - - -

(B) targets;R, are short subsequenceé that correspond to epitopes

KKKYQLKI:[.‘L‘ T,
KKYHFNLA‘&VA

KYQI:KHLVW; S

LI.II\IIV'r

KKYRLKHIV RPGGKKKYR Lu&v&? :
GGICIS TWASRELER
KYRLKHIVIVE 2 Rk DKWEKT Ao e T LF'FLURWEKIRL
YREKHIVWA SRR DEr e o YQURATVR DRWEKIRLR
RLKHIVWAS LKHIVWAS RWEKIRLRP

Figure 5.7: Treatment and target sets for HIV vaccine dedsige treatments/, are thousands

of HIV strain sequences that differ slightly from each ottee to mutations (shown in bold).
Sequences are shown as chains of amino acids (represenéad stsings from an alphabet of

20 Latin letters). The target® are a set of short sequences that correspond to the epitopes
to which immune systems respond. For this application, adisfble (overlapping) 9-mers
extracted from the HIV strain sequences are used.

tems of many patients. The treatmefitare thousands of HIV strain sequences (available at
www.hiv.lanl.gov). The target® are a set of short sequences (patches, fragments) that corre
spond to the epitopes to which immune systems respond (a#18-are used). See Figlire]5.7
for more details. The utility.(7', R) of a strainT’ for a fragmentR would ideally be set to its
potential for immunological protection, but following thgproaches in [30,53,54,81], it is set

to the frequency of the fragment in the database of HIV secpeeii fragmentR is present in

strainT’, and zero otherwise, as in equatibn {5.3).

frequency of R in HIV sequence database, if 1" contains R ;
u(T,R) = (5.3)
0, otherwise .
The net utility is also referred to as ‘coverage’.

Figure[5.8 shows aligned pieces of HI\Gag protein from several different strains, with

two variable sites marked by arrows as well as known or ptedit-cell epitopes for the MHC
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MGARASVLSGGKLDKWEKIRLRPGGKKKYKLKHIVWASRELKRF

MGARASVLSGGELDRWEKIRLRPGGKKKYQLKHIVWASRELKRF

MGARASVLSGGELDRWEKTIRLRPGGKKKYRLKHIVWASRELKRF

———————

MGARASVLSGGELDKWEKTIRLRPGGKKKYKLKHIVWASRELKRF

———————

MGARASVLSGGELDKWEKIRLRPGGKKKYQLKHIVWASRELKRF

MGARASVLSGGELDRWEKTIRLRPGGKKKYQLKHIVWASRELKRF

———————

MGARASVLSGGELDRWEKIRLRPGGKKKYKLKHIVWASRELKRF
1 1

Figure 5.8: Fragments of Gag protein with epitopes recaghlzy several HIV-infected pa-
tients. Epitopes recognizable by a single patient are shioarsingle color; mutations marked
by red arrows escape MHC | binding.

molecules of five different patients taken from the Westeustfalia cohort [71]. Epitopes
recognizable by a single patient are shown in a single calod, each patient is assigned a
different color. Some mutations (marked by red arrows)aget MHC | binding. For example,
the red patient can react to the 9-mer epitope VLSGGKLDK mfthst sequence, but not to
VLSGGKLDR in the second. On the other hand, other mutatiansat affect MHC binding,
but may affect T-cell binding (a different set of T-cells Wihrget different versions). The
white patient could be immunized against three forms of #raes epitope: KKYKLKHIV,
KKYQLKHIV, KKYRLKHIV. In this small example, a vaccine canédesigned consisting of
the following segments which epitomizes (in an immunolaggense) the seven strains shown
in the figure: VLSGGKLDKWEKIRLRPGGKKKYKLKHIVWASRELERFLSSGKLDRW-
EKIRLRKKYQLKHIVWKKKYRLKHIVW.

Much discussion among HIV vaccine experts has been focust#teaeed for constraining
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vaccine constructs optimized for coverage to resemblealttoccurring strains [30,81]. This
is motivated by several pieces of evidence suggesting thaation from naturally-occurring
strains often reduces efficacy in animal models as well asatine trials, both in terms of
the cellular and antibody responses. Thus, [81] proposeshament of the vaccine with a
sequence that sits in the center of the HIV phylogenetic tseethat this single native-like
(but still artificially-derived) strain is used to providewerage of immune targets in as natural
a way as possible, while the additional coverage is achievild an epitome fragment(s).
In contrast, in their recent paper [30], Fisctetral. avoid the use of fragments altogether
and propose building the entire vaccine out of multipleisttike constructs optimized by
simulated strain recombination, dubbed ‘mosaics’. A mosaccine is therefore a cocktail of
artificially-derived strains, not existent among the olsedrstrains of the virus, but achievable
by recombining the existing strains many times. These wa&ccomponents resemble natural
strains, but have higher 9-mer coverage than would be exgpdodbm a cocktail of natural
strains. Mosaics can always achieve higher coverage thamahatrains, so while they may

not be viable as vaccines, they provide an upper bound om{igiteoverage.

As the dataset of known HIV sequences is constantly growimgpotential for achieving
high coverage with a cocktail of true natural strains is gngras well. Newly-discovered
strains differ from existing ones mostly by the combinatidpreviously-seen mutations rather
than by the presence of completely-new 9-mers. In fact,heiset al. have increased the
Gag vaccine coverage with their use of mosaic by some 4-5%nparison to natural strain
cocktails. As the problem i8/P-hard, the natural strain cocktails (treatment portfglios
their paper are found by a greedy technique analogous todhexvsubstitution heuristic,
which may further decrease the perceived potential of ahgtrain cocktails, especially for
a larger number of components. For a large dataset corgstih755 Gag proteins from the
LANL database, a Gag sequence consisting of the best fouratatrains affinity propagation
could find had only 3% lower coverage than the mosaic of theesape optimized on the same

data (69% vs. 66%). Obviously, as the dataset grows, the gtatipnal burden for finding the
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optimal cocktail grows exponentially, as is the case forgéeeral TPD problem.

Furthermore, while potentially-important for the celluEm of the immune system, the
closeness of vaccine components to natural strains is eeee mmportant for properly pre-
senting potential targets of the humoral (antibody) armhef immune system. As opposed
to the T-cell epitopes, antibody epitopes are found on thtase of the folded proteins. It
has been shown that slight changes in HI¥Bv protein can cause it to mis-fold, and so
naturally-occurring HIV strains are more likely to funatiproperly than artificially-derived
Env proteins.

In these experiments, the TPD problem for Gag vaccine cocktamization is performed
with larger cocktails, where the coverage approaches 80#wove and exhaustive search is
computationally infeasible. Affinity propagation is useditd an approximate solution, and its
achieved utility is compared with that of the greedy methiod the mosaic upper bound [30].

Table[5.1 summarizes these results on 1755 strains.

Table 5.1: The utility (“epitope coverage”) of vaccine golibs found by affinity propagation
and a greedy method, including an upper bound on utilityr{€busing mosaics).

vaccine Natural strains Artificial mosaic straing
portfolio size | Affinity propagation Greedy Method (upper bound)

K =20 77.54% 77.34% 80.84%

K =30 80.92% 80.14% 82.74%

K =38 82.13% 81.62% 83.64%

K =52 84.19% 83.53% 84.83%

These results show that affinity propagation achieves higbeerage than the greedy
method. Importantly, these results also suggest that ttefisa in coverage necessary to
satisfy the vaccine community’s oft-emphasized need founahcomponents may in fact be

bearable if large datasets and appropriate algorithmssae to optimize coverage.



Chapter 6

Conclusions and Future Directions

In conclusion, clustering data by identifying exemplaredabints rather than parametric meth-
ods allows for rich domain-specific models that can achieygesor results, as explored in
Chaptef 5. Affinity propagation (see Section|3.2) is an imtive and readily-extensible clus-
tering algorithm that identifies exemplars quickly and ssstully. It consistently finds better
solutions than standard exemplar-based clustering #hgasisuch ag-medoids, and achieves
comparable or better results to workhorse algorithms sadheavertex substitution heuristic

(VSH) in far less time for large datasets.

Specifically, the benchmarks in Sectidn 4 show that for latgesets with thousands of
data points, many restarts bfmedoids clustering (Sectidn 2.4) will achieve mediocsutes
within a few minutes; allotting the algorithm more hours ayd of CPU time will only yield
slight improvements in solution quality. Affinity propagat requires more minutes (or, for the
largest dataset examined, hours) thkamedoids but achieves vastly superior results. For large
datasets, the vertex substitution heuristic with variaigighbor search (Sectién 2.5) achieves
comparable or worse results than affinity propagation buires days or weeks of CPU time.
For small datasets with hundreds of data points, affinitppgation and the vertex substitution
heuristic both achieve near-optimal results though folisgaproblems (where the number of

clusters is much less than half the number of points), VStilided with affinity propagation
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seems to be the best balance between computation time amtbsajuality. In any case,
optimal clusterings of these small datasets can be fourtd limiar programming techniques
in a matter of hours.

In the two years since its introduction, affinity propagatias spawned a growing volume
of research, such as:

Vector quantization codebook design (Jiat@l. in [51])

Soft-constraint affinity propagation for gene expressiataqLeoneet al. in [68])
Multiple view image segmentation (Xiaet al. in [108])

Finding light sources using images (&bal. in [2])

Image categorization and normalized mutual informaticalysis (Griraet al. in [44])
Semi-supervised object classification wal. in [39])

Image-audio dataset analysis (Zhat@l. in [113])

Gene3D: Protein analysis (Yeasal. in [110])

Protein sequence clustering (Wittkepal. in [107])

Affinity propagation with isomap-based metrics (Bataal. in [4])

Data streaming and analysis of grid computing jobs (Zhetrag. in [114])
Analysis of cuticular hydrocarbons (Keet al. in [58])

Analysis of brain tissue MRI data (Vernad al. in [100])

Clustering speakers from audio data (Zhangl. in [115])

Color-based clustering for text detection in imagesdiyal. in [112])
Analysis of hydrophobic-polar protein model (Santatal. in [89])

Face recognition with linear discriminant analysis (€ual. in [24])
Clustering text data (Kinet al. in [59])

Adaptive extensions of affinity propagation (Waetgal. in [102])
Knowledge discovery in medical data sources (Sxrdl. in [91])
Analysis of land-use and land-cover data (Carceli@l. in [12])
Customer micro-targeting (Jiarag al. in [50])

An interesting and recent research thrust is Dirichlet esscaffinity propagation [95]
which involves adapting the graphical model in Figlrel 3.5ntorporate a Dirichlet prior
over the size of clusters into the factor graph. This reprieg®n can then be viewed as max-
imum a posterioriinference of a Dirichlet mixture model where the means arestained to
be exemplars (co-located with data points) and varianeexad.

The affinity propagation algorithm raises many new questfonfurther research:

The relationship between max-product belief propagatiwh lanear programming relax-
ations is not well-understood but is beginning to be moreslyithvestigated€.g, [94, 109]).

In [88], a linear programming relaxation for the weightedtohéng problem is compared to

max-product belief propagation with a proof that “if thenpiar programming] relaxation is
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tight, i.e,, if the unique solution is integral, then the max-sum alyoni converges and the re-
sulting estimate is the optimal matching”. Much theordtwark remains in analyzing affinity
propagation but this suggests a starting approach.

Clustering is traditionally an unsupervised learning tdsk there are many applications
where some labeled (or at least partially-labeled) datessable for semi-supervised learning.
The affinity propagation factor graph can easily be exterid@acorporate additional pairwise
constrains such as requiring points with the same labelgean the same cluster with just an
extra layer of function nodes. The model is flexible enoughrftormation other than explicit
constraints such as two points being in different clusters/en higher-order constraints.g,
two of three points must be in the same cluster). There maylesapplications where-wise
similarities are useful, such as triple-wise similaritfes finding collinear points€.g, data
from astronomical tracking)

Finally, the paradigm shift of using pointers to exemplatadastead of problem-specific
parameters may have wider applicability. A cluster is a $engbructure, perhaps requiring
only one exemplar to identify the location of its center. Ela@omplex structures such as
d-dimensional subspaces could use 1 data points to be specified, or clusters could have
additional attributes such as a scale or shape—analog@&tussian’s covariance matrix—

that could be specified by multiple exemplars.
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Appendix A

The Bethe free energy approximation

Using the notation from Secti¢n 2.6.3, a factor graph withodes representing variabXs=
{X1, Xs,..., Xy} and M nodes representing functioddi, f, ..., fa} describes a global
function that can be factorized d$X=x) =[["_, f(Xn(m)). We letN(n) C{1,2,..., M}
represent the set of function nodes neighboring variablen@and N (m) C{1,2,..., N} the
set of variable nodes connected to function nedsuch thak v, is the argument of function
fm and is shorthand for the sét,, },.cn@). The current beliefs or marginal of each variable
node are referred to as(z,) and the clique marginal of variable nodes connected to ifomct
node f,,, areg, (Xnwm))-

Belief propagation updates are now shown to be equivalerdadinate descent minimiza-

tion performed on the Bethe free energy expression in equé®i.21), reproduced here:

Fhethe = 2 2 Gm(Xnem)) 108 @ (Xnem) — 20 Yo @m(Xnam)) 108 frn (Xnm))

m XN(m) m XN(m)

=2 (IN(n)[=1) 32 gn(2n) -10g gn(n)

Tn

Constraints must be added to ensure thaythestributions are valid probability distributions,

i.e,Vn:y_ qn(z,)=1andvm:}_ ¢m(Xn@m)) = 1, and that the single-node marginals are

XN(m)

consistent with clique marginalén,n € N(m): ¢,(z,) = > ¢m(XN(m))- Incorporat-

XN(m)\n

ing these as Lagrange multipliers, the expression to magrhecomes:
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L= Foane + Lon Cnenim S Anl@n) [an(w0) = Sy tm(viom)|
Y [1= S @ Cinem) | + 50, 80 [L= 5, an(0)]

Taking partial derivatives with respect to the marginald setting them to zero yields:

OL/0qn(xn): —(IN(n)|=1) = (IN(n)|—1) - 108 u(x0) + 3= e nin) Amn(Tn) — Bn =0,
OL [0 (Xnim)): 1+ 108 G (Xntm)) = 108 for(Xnm)) = D

~~

because
2 X Amn(@n) X am(Xnem) = X 2 Amn (@) gm (XN(m))
n€N(m) Tn XN(m)\n n€N(m) XN(m)
(A.1)
Solving for the marginals yields an update equation in teofrthe Lagrange multipliers
Qs Bn, @Nd A, (). The first two are constant with respectit@nd can be dropped if unit

normalization is performed after each update.

1 _ Bn

Qn($n) — eINm)[-1 EmEN(n) Amn (Tn)— [N(n)|—1" O( H e Amn (zn) /(| N(m)|—1) ,
G (X)) = 2menem Amn(En)HO8 fmn G JFam =1 o g (Y T @dmn(@n)
neN(m)

The “message” from variable nod€, to function nodef,, can be defined ag, .., (z,) =
1/(IN(m)|-1)

n—m/

ermn(@n) "which leads to simple expressions for the marginglgs,,) o [lonenin)
and g, (Xnemy) < fm(Xnem)) - [Le Nem) Vn—m(z,). These expressions can be substituted into

the marginals’ consistency constraiht, O (XN(m)) = @n(zn), to yield:

N(m)\n

Z (fm(XN(m)) : H Vn’—>m(£n’)> X H Tll/_Jn]Z =1

XN(m)\n n’€N(m) m/€N(n)
U (A.3)
o fn&ENem) - T vem(zn) | o vnom(@n) ™ 1 iﬁ‘n]\{(m 1)
XN(m)\n n/€N(m)\n m’eN(n)

Finally, the “message” from function nodkg, to variable nodeX, is defined to be,,, ., (z,,) =
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2 i S (X50m)) - Tlwentmyyn Viw—m(@w). In this case, the final expression can be manip-

ulated from equatiori (Al3) to make the following simplificets:

:U’m—WL('In) X Vn—>m<$n)_1 : H anm/(xn)l/ON(m,)'_l)

m/eN(n)

U

TT tonen(zn) o< 1 [Vwm(a:n)—l NLvene ynﬂm,(xn)l/umwn—n]

meN(n) meN(n)
= [T v (@) - | T Vi () NV ANGR) 1)
meN(n) meN(n)
= T] ,/nqm(xn)—1+IN(m)\/(IN(m)\—1) =11 anm($n>l/(|N(m)\—l) o ()
meN(n) meN(n)

and

’um_’”(x”) x Vn*m(aj”)_l ’ H Vn—>m’<xn>l/(‘N(m/)|_l)

m/eN(n)

Y

1 ttwv—nlan) o< II [anm,(xn)—l.nm,,ejv(n) V,Hm,,(xn)l/wv(m”n—l)}
m/€N(n)\m m/€N(n)\m

- [unqmmw Il unqm«xn)-l] [ 1 Am<>7)>]

m/€N(n) m/€N(n)

= Vp—m(zp) .

To summarize, we find the now-familiar belief propagatiodate equations:

Vnﬂm(l’n) X H ,Udm’—m(xn) and ,Udm—m(xn) X Z fm(XN(m)) : H Vn’ﬂm(l’n’) ,

m/€N(n)\m X N(m)\n n’€ N(m)\n

Gn(n) o< [T ptm—n(zn) and Qm(XN(m)) X fm(XN(m)) T V() -
meN(n) neN(m)

(A.4)
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