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The field of artificial intelligence (AI) has seen a great deal of progress in recent years. 

Computers can now perform as well as people on a range of tasks, including classifying images1, 

transcribing speech2, analyzing medical imagery3, and playing games such as chess and Go4. 

Autonomous vehicles have driven millions of miles on public roads.5 Despite these successes, 

however, the field is facing a number of challenges, including how to make AI safe, more 

interpretable, and able to deal with more complicated situations and reason in more sophisticated 

ways. It is not clear that the solutions to these challenges can come from merely improving current 

AI techniques. After briefly reviewing the current state of AI and the obstacles it faces, we will 

look at some theories and findings from Psychology that may be able to inspire new approaches 

within AI. 

 It is particularly appropriate to look to our understanding of human cognition for such 

inspiration because AI’s recent successes are due to the use of neural networks, so-called because 

they are (very) loosely modeled after the functioning of collections of neurons. Neural networks 

are a form of machine learning, in which machine algorithms learn how to do tasks by being shown 

examples. Before the adoption of neural networks, traditional artificial intelligence required 

experts to write down rules that a computer program could follow to carry out a task. For example, 

linguists put together very complex systems to parse sentences and perform translation based on 

grammatical rules, including checks to catch the numerous exceptions to such rules. Machine 

learning techniques such as neural networks improved on that approach by feeding a program a 

huge number of examples of sample inputs and desired outputs in order to train it to derive its own 

rules for how to produce the desired output.  

When computers carried out explicit instructions carefully crafted by experts, it was 

relatively easy to interpret their output and understand why they made errors and at what point in 
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their operation the errors cropped up. It is much less easy in the era of machine learning when an 

algorithm makes a decision based on thousands of learned parameters of a neural network, the 

meaning of which is opaque even to its designer. A program running an autonomous car might 

receive as input a series of images from the car’s cameras and output a change in the steering 

wheel’s direction but give no clue as to how it worked out the long chain of reasoning from input 

to output. This ability of machine learning algorithms to go from raw input all the way to output, 

called ‘end-to-end learning’, is regarded as one of the great successes of recent work in AI and 

more and more problems are being tackled in this way. Researchers are only lately coming to 

realize that there is a downside to this approach: by making the intermediate steps of reasoning 

inscrutable, it is difficult or impossible to interpret the results or understand why mistakes are 

made. 

Interpretability is just one of the challenges posed by current end-to-end trained neural 

networks. Closely related are concerns about safety, for if we cannot understand the workings of 

a machine learning system, it is difficult to ensure its safe operation either before it is deployed or 

in real-time monitoring as it is working. If it does something dangerous, it would have to be taken 

offline and completely retrained. This introduces the third challenge, the inability to modify or 

upgrade just one aspect of an end-to-end trained neural network. Discrete changes to an already 

trained and deployed system are generally not possible, making it difficult to perform updates or 

corrections. The development of new systems is also impaired by this limitation, which 

significantly slows down the testing of potential improvements. In part because of this, the tasks 

that neural networks and other machine learning techniques have been applied to have remained 

relatively simple.  

Perhaps the most difficult challenge facing AI is discovering how to create more 
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complex systems that can perform more complicated tasks and engage in more sophisticated 

reasoning than is currently possible. Neural networks tend to be trained to do one thing, in one 

domain — for example, speech recognition or translating text from one language to another. A 

small number of more sophisticated systems have been made that combine two domains, as is the 

case in a neural network that answers questions about images. Even AI agents or robots that have 

to take action in a real or simulated environment typically plan their actions based on only one 

kind of input, usually visual, and output relatively simple commands such as direction and speed 

of movement. It is not clear how more complex behavior can be learned using methods currently 

popular within the AI research community. Fresh perspectives and methods will be required. 

These challenges could begin to be addressed if AI research underwent a paradigm shift 

from all or nothing end-to-end training to a more modular approach. There are many theories of 

modularity in cognitive science, some of which are more widely accepted than others. The simplest 

version would simply say that the mind or brain is at least partly made up of distinct functional 

components which in some respects can operate independently of other components. So far this 

ought to be relatively uncontroversial since it is widely accepted that the brain has some specialized 

regions devoted to particular functions, such as those which process sensory input. Indeed one of 

the early key writers on modularity, Jerry Fodor, believed that only what he called the “input 

systems” which process visual, auditory, and other perceptual inputs in particular domains could 

be modular.6 He argued that what he called the “central systems,” involving higher level reasoning 

capabilities which can reason across several domains, cannot be modular. In large part this was 

due to his very stringent and somewhat limiting definition of modularity, in place of which we will 

prefer that put forward by Peter Carruthers. Biological systems are messy and evolved over time 

so modules may be quite diverse in their attributes. Carruthers’s characterization of modules is 
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therefore intentionally loser and more flexible.  

Carruthers affirms that modules should be thought of as different processing systems 

with their own functions or set of functions and their own place or places, perhaps widely 

dispersed, within the brain. Some modules might be completely self-sufficient or encapsulated, 

consulting no other modules during their operation, while others might need to tap into the 

knowledge contained in other modules. Modules can be composed of other modules and so the 

intermediate outputs between these submodules might be available to yet other modules.7 This 

potential for hierarchical assemblies of modules is cited by advocates for modularity as one reason 

why modularity of mind is biologically plausible because such hierarchies are common throughout 

biology. 

Can we draw any further conclusions about modularity from principles of biology or 

evolution? Modularity theorists believe that we can, pointing out that it is widely accepted that 

biological organisms are organized along modular lines. Biological modularity manifests itself in 

a variety of ways. During embryonic development, some parts can develop independent of context. 

For example, small errors in gene expression have led to fully formed, somewhat functional eyes 

sprouting on the wings of flies.8 After development, parts of organisms with distinct functional 

roles have varying degrees of independence, including the ability to regulate their own 

physiological processes.9 From organelles to cells to organs to parts of the metabolic network,10 it 

is apparent that modular structure and substructure is common in biology. This is not by itself 

evidence that the mind is also organized in a modular fashion, but it does suggest that, as the 

mind/brain evolved along with the rest of an organism, it is likely that the same considerations 

which led to modularity in the organism as a whole might have done so as well for the mind.   

Many have argued that in biological systems that evolve over time through natural 
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selection, modularity is a required organizing principle or, at the very least, is very advantageous 

and so is commonly selected for. In order for natural selection to exert positive or negative 

selection pressure on a functional capability, that capability has to be expressed in a way that is 

independent of other traits in an organism.11 And modularity fits in some ways with how we 

understand evolution to operate: typically unable to completely and elegantly redesign a system in 

response to a new environmental condition, it usually has to “bolt on” a new capability or trait to 

the existing set of capabilities.12 An error in copying may lead the genes for a particular functional 

trait or module to be copied an extra number of times and those copies might be mutated in some 

way, leading to an additional functional module.13 Further, existing modules might be recombined 

in different ways that lead to additional capabilities. One of the debates surrounding modularity is 

the question of how many modules there might be, whether a small or ‘massive’ number. It seems 

likely that once a system has a modular architecture at all, it will tend to continue to accumulate a 

large number of additional modules through these duplication and modification procedures. 

Related to and just as important as the question of how many modules there might be that make 

up the mind are the questions of what kind of modules there are and how these modules interact 

with each other.  

We saw earlier that Jerry Fodor thought that only peripheral “input” processes such as 

those deriving from the senses could be modular. The more interesting, complex, and 

characteristically human “central” reasoning processes make use of the peripheral modules but are 

themselves not modular, according to Fodor. He restricts which mental processes could be modular 

by insisting that modules have to be “encapsulated,” unable to access information outside of them 

other than what they receive as input. Further, modules are restricted to particular stimulus 

domains and are not able to accept input outside their individual domain. Thinking done only with 



6 
	

such encapsulated modules would be quite inflexible. Even if some modules could communicate 

by receiving as input the output from other modules, according to Fodor such communication 

would be routed through rigid, predetermined “pipelines.” The creativity evident in human 

thought, including the use of analogies to very different domains when reasoning, would 

apparently not be possible in such a system. But since the encapsulation of modules seems to be 

at the root of the inability of Fodor’s “central” processes to be modular, why not just make them 

unencapsulated? 

Fodor believes that if the central reasoning processes were unencapsulated modules they 

would be called upon to do unrealistic — even impossible — computations, including searching 

through all of an agent’s beliefs before acting. This so-called Frame Problem was most memorably 

described by Daniel Dennett, who imagined a bomb disposal robot’s attempt to remove a bomb 

from a room before it explodes.14 Before the robot can act it must work out all of the consequences 

of its actions, including the countless number of irrelevant implications of those actions. It might 

work out that pulling the bomb out of the room would not change the color of the paint on the 

room’s walls, for example. It would not know whether its action would affect its beliefs or some 

part of the state of the world until it had systematically gone through all of its beliefs and possible 

effects on the world. Of course in Dennett’s story the robot and the room are blown up before long; 

the computation required could go on indefinitely, making the task either impossible or merely 

practically infeasible. Fodor calls this “Hamlet’s problem: when to stop thinking”15 and concludes 

from the fact that the necessary thinking would be computationally impossible or impractical that 

the mind’s central processes cannot be computations of any kind.16 

The process the bomb disposal robot went through to check all the possible outcomes of 

its actions was considered computational infeasible because it checked all possible implications 
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one after another, in serial fashion. If this checking could be done in a massively parallel fashion, 

however, it might no longer be so difficult or time-consuming. Instead of one module or process 

painstakingly testing one possible effect after another, an action planning module might share a 

description of the intended course of action with a large number of other modules which could 

check the consequences within their particular, narrow purview. These specialized modules could 

operate quietly in the background, only calling attention to themselves should they find anything 

that might be relevant to the original module’s calculations. Findings about unexpected deadly 

explosions would be returned to the querying module; non-effects on paint color would not. This 

simplified example, due to Shanahan and Baars, illustrates how a process operating in a serial 

fashion could draw on the resources of many other modules operating in parallel. Its 

generalization, the global workspace, could help resolve Hamlet’s problem, and Fodor’s. 17  

Global workspace theory, as originally proposed by Bernard Baars, is a theory of 

consciousness.18 Baars wanted to explain what he called “the central puzzle,” how to reconcile the 

limited capacity of conscious thought with the “vast” capacity of the brain to engage in tasks which 

may be mostly or entirely unconscious.19 Most of the activity of the brain’s modules or processes 

occurs below the level of consciousness, each module carrying out its own task unbeknownst to 

the other modules. But sometimes the output of a module is globally broadcast, making it available 

to the other modules. Baars and other advocates of global workspace theory contend that it is this 

global availability that makes something conscious. Baars often employs the metaphor of a theater 

to illustrate his theory: a large audience plays the role of the many unconscious processes observing 

what enters the global workspace while one or a small handful of audience members called on to 

the stage to perform for the others represents the broadcast of one or a small number of modules’ 

outputs to the rest of the brain’s modules. Similarly, Dennett has called consciousness “fame in 
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the brain.”* 

Global broadcast is not the only way that modules can interact. On the contrary, they 

must do so quite often because much of the work they do unconsciously requires the involvement 

of diverse processes, at least some of which will be found in other modules. Simply standing up 

from a chair would require the coordination of modules involving vision, balance, muscle 

movement, etc. Stanislas Dehaene and Lionel Naccache suggest that at least four categories of 

modules must participate in the global workspace, namely those involved in perception, 

movement, long-term memory, and evaluation of something as positive or negative, as well as 

attention mechanisms.20 Attention is regarded by many, including Carruthers, as the key to 

selecting otherwise unconscious modular outputs and making them conscious by globally 

broadcasting them.21 There may be (at least) two attention systems at work. A bottom-up attention 

mechanism is thought to monitor sense perceptions, bringing attention to important or relevant 

sensory data. A top-down attention mechanism maintains current goals and works to focus 

attention on perceptions and other modular outputs which are relevant to these. In a few cases, 

involving very startling stimuli like loud noises, attention may not be under someone’s control. 

But Carruthers, at least, proposes that in almost all cases, the direction of top-down and bottom-

up attention should be thought of as action. In part this is because the same region of the brain (the 

frontal eye-fields) plays an important role in both these kinds of attention mechanisms as well as 

in physically moving the eyes.22 That attention is a form of action suggests that, like other forms 

of action, its performance can be either good or poor and could be improved.  

Attention also plays a key role in working memory. The same brain regions involved in 

																																																								
*	Without going into the details of Ned Block’s theories on consciousness, we will briefly note that some thinkers, 
such as Carruthers, have claimed that states that are access-conscious are those that are globally broadcast and that 
phenomenal consciousness is also “co-extensive with” global broadcasting.	
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top-down attention are also at work in working memory tasks.23 According to Baars, everything 

in the global workspace is in working memory (along with other things), while Carruthers goes 

further in identifying the two. According to him, working memory is the global workspace where 

the stream of consciousness is experienced and conscious reflection happens.24 If the global 

workspace depends on and in some sense happens within working memory, its serial nature and 

limited capacity become more understandable, for the capacity of working memory is known to 

be quite limited. The limits of working memory, in turn, might play a significant role in the limits 

of human intelligence. Measuring intelligence, particularly along one scale, is clearly controversial 

and not obviously fruitful. However, some — including Carruthers — claim that the measure 

known as fluid g is meaningful and that it is highly correlated with working memory capacity, with 

various studies finding correlations from 0.6 to nearly 1.0. Carruthers suggests that almost all the 

variance in fluid g among people can be explained by working memory capacity along with speed 

of processing.25 What does this mean for speculation about the future intelligence of machines? 

Computers will certainly be able to compute faster than humans do, as neurons operate quite slowly 

even in comparison with today’s digital technology, so they will certainly beat us on speed of 

processing. Would machines have similar hard upper limits on working memory? It is hard to see 

why, suggesting that it is at least possible that AI could be, in some meaningful way, more 

intelligent than humans. If consciousness happens within working memory and machines had 

greater working memory abilities, what, if anything, would that mean about their being conscious?  

So far we have laid out the basics of a modular theory of mind and a global workspace 

within which modules can interact and will shortly describe how what we have covered could be 

applied to AI. But we should pause to note that the global workspace theory is conceived by its 

proponents as explicitly a theory about consciousness. Are we proposing conscious AI? Not 
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necessarily. Though it seems quite likely that consciousness, as a natural phenomenon found in 

evolved, biological creatures such as humans, contains nothing magical which would prevent it 

from one day also manifesting in artificial entities, it is almost equally likely that the mechanisms 

underlying it are not yet understood and that it requires more than organizing an AI program along 

modular lines with an analogue to the global workspace (even if we threw in metacognition, despite 

recent conjectures in Science that having metacognition and a global workspace might be sufficient 

for consciousness in machines26). However, it is believed that consciousness aids in — or is even 

required for — certain mental operations, so a proposal to structure AI on lines analogous to the 

mechanisms that underlie consciousness is best understood more conservatively as a proposal to 

allow for deeper, more flexible, and more human-like cognitive processes. It has been suggested, 

for example, that consciousness is required for integrating several streams of evidence to come to 

a decision and then maintaining that decision in mind through subsequent action steps.27 Others 

have suggested that the slow, deliberate reasoning typical of so-called System Two thinking, 

perhaps following explicitly learned rules of inference, can only be done consciously.28 

Spontaneously generating intentional behavior and combining mental operations in a novel way 

to address a new or unusual task have also been given as examples of actions requiring 

consciousness.29 Once a novel action or sequence of actions has been carried out and learned, it is 

possible for it to become automated in a way that does not require it to occupy conscious attention. 

In that case it would become one of the many unconscious processes or modules that we have 

suggested make up the mind. 

Introducing modularity would by itself represent an improvement over current standard 

practices within the AI research community, where the seamless, integrated, end-to-end 

architectures described earlier have become standard. A modular system would be much more 
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easily updated than a unified system without parts. Just as modularity of the mind was thought to 

be required or at least advantageous for its evolvability, so would a modular AI architecture allow 

for much more rapid testing of new ideas and techniques. It would greatly speed up research by 

allowing a much larger community of researchers to effectively cooperate in their efforts.  

By its nature modularity would introduce break points where modular outputs could be 

checked before being passed on to other modules, which would be beneficial in several ways. First, 

these would introduce the possibility of greater interpretability because there would at least be 

standardized places to examine intermediate outputs. Actually achieving greater interpretability 

would require additional work, of course, but this would be facilitated by the modular architecture 

as it would allow modules devoted to interpretation to be trained alongside the other modules. It 

is worth noting that some thinkers in cognitive science, including Carruthers, believe that much of 

our own mind is essentially opaque to us, including our intentions, goals, and values, and we have 

to learn to interpret ourselves as we learn to interpret others, so some of his and others’ work in 

this direction would be useful. It has been suggested by some, including Carruthers at an earlier 

stage of his writing, that the language module is the primary interface between unrelated modules 

and that natural language is the primary way of combining the output from such modules. Natural 

language would certainly be the most easily interpretable description for what goes on in a modular 

system, if it could be made to work.  

Modularity would help address some of the safety concerns around AI mentioned earlier 

in a few ways. First, it would allow for testing of isolated components, potentially making them 

less likely to behave unexpectedly during use. Second, the intermediate outputs discussed above 

would allow for better real-time monitoring of the internal behavior of AI systems, which are now 

essentially black boxes. Third, if unsafe behavior were detected in any module, a replacement 
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module could be more quickly trained than an entirely new system, and swapping the modules 

should be very rapid and easy.  

Learning the dynamics of the global workspace will be a challenge for any AI system. 

Carruthers’s conception of the attention mechanism which brings something into the global 

workspace as an action is potentially helpful, because AI researchers have many resources for 

modeling and training actions, such as reinforcement learning. Other writers have different ideas 

on how modules’ output reaches the global workspace, including notions of competition for 

attention. The fact that there is so much disagreement within Psychology about the nature (or even 

existence) of modules is a boon to AI researchers, who will be able to draw on all the different 

theories. No doubt nature settled on just one (or none) of them, and it would of course be best to 

be guided by the correct theory. But nature may not have found the only means to creating 

intelligent agents, and it should be beneficial to try diverse approaches. 

We suggested earlier that introducing modularity, as well as analogues of the global 

workspace, would have a beneficial effect on AI. But perhaps it would be better to say 

reintroducing, for several of the works mentioned in this paper referenced what they took to be 

“lessons from AI,” which were often about the value of modularity and even about an approach 

similar to the global workspace but which predated Baars by a decade.30 Sadly, the lessons of older 

approaches to AI which they were drawing upon have been all but lost in today’s mainstream AI 

community, focused as it is on machine learning techniques such as neural networks. In order to 

continue to make progress, old lessons will have to be relearned, a prospect made much easier and 

more likely by the work done in the intervening years within cognitive science.  
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