
AGILE DESIGN AND INTEGRATION OF ACCELERATORS
IN HETEROGENEOUS SOC ARCHITECTURES

PhD Proposal Exam
Davide Giri
January 21, 2021

2

THE HETEROGENEOUS SOC

M
o
b
il
ey

e
Ey

eQ
5

 (
2

0
2
0

)

N
V

ID
IA

 X
a
vi

er
 (

2
0

1
8

)

X
il
in

x
 V

er
sa

l
(2

0
1

9
)

A
p
p
le

 M
1

 (
2

0
2

0
)

Modern SoCs are increasingly heterogeneous

o They integrate a growing number of accelerators

3

THE ERA OF ACCELERATORS

Accelerators in Apple SoCs

> 60% of

die area

Images from vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis

loosely-coupled
accelerators

Apple A12 SoC

http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/

ACCELERATORS TAXONOMY: SPECIALIZATION

4[Cascaval 2010] [Shao 2015]

low specialization degree high

GPUs

Fixed-function
accelerators

[Peemen 2013]

CPUs
Programmable
accelerators

NVDLATPU

o Tightly coupled

o Part of the processor pipeline or

o Attached to the private caches

o Loosely coupled

o Attached to the on-chip interconnect or

o Off-chip

5

ACCELERATORS TAXONOMY: COUPLING

[Cascaval 2010] [Cong 2012] [Cota 2015] [Shao 2015]

The engineering effort keeps growing

o SoCs are increasingly heterogeneous and specialized

The integration of accelerators is complex and critical to the system performance

o Accelerators are typically designed in isolation with little attention to system integration

6

SOC DESIGN CHALLENGES

“The co-design of the accelerator microarchitecture

with the system in which it belongs is critical to

balanced, efficient accelerator microarchitectures.”

[Shao 2016]

o Programming

o Invocation, configuration, data allocation, …

o Data movement

o Integration flow

7

ACCELERATOR INTEGRATION CHALLENGES

“Existing research on accelerators has focused on

computational aspects and has disregarded design decisions

with practical implications, such as the model for accelerator

invocation from software and the interaction between

accelerators and the components […] surrounding them.”

[Cota 2015]

Increase SoC design productivity by mitigating the complexity of
accelerator design and integration

o Provide flexible pre-validated hw/sw SoC services for accelerators

o Avoid “reinventing the wheel”.

o Provide an automated flow for accelerator design and integration

o Need to support multiple languages and tools for accelerator design

o Contribute to open-source

o Foster collaboration and IP reuse

8

AGILE ACCELERATOR INTEGRATION

By providing hardware and software services for accelerator programming and data
movement paired with automated accelerator design and integration flows, an open-source
platform can effectively mitigate the increasing complexity of SoC design

9

THESIS AND CONTRIBUTIONS

Accelerator data movement

o Cache coherence

o Point-to-point communication

o Shared scratchpad

Accelerator design and integration flow

o C/C++ accelerator flow

o Deep learning accelerator flow

o Third-party accelerator flow

Accelerator programming

o Accelerator API library

Open-source contribution

o ESP release

o Accelerator benchmark suite

ESP Open-source SoC platform

Accelerator Flow

o Simplified design

o Automated integration

SoC Flow

o Mix&match floorplanning GUI

o Rapid FPGA prototyping

11

ESP METHODOLOGY

HLS
Design
Flows

RTL
Design
Flows

Vivado HLS
Stratus HLS
Catapult HLS

Rapid
Prototyping

SoC
Integration

SoC
SW Build

SW Library

third-party
processor cores

third-party
accelerators

accelerators

HW IP Library

third-party
accelerators’ SW

Linux apps
bare-metal apps
device drivers

ESP ARCHITECTURE

12

ACCELERATOR DATA MOVEMENT
Cache coherence

Point-to-point communication

Shared scratchpad

14

ACCELERATOR CACHE-COHERENCE MODES

o Coherent cache access (fully-coherent)

o Access to local private cache (same as CPUs)

o Hardware-managed coherence

o Coherent DMA

o Direct access to LLC

o Hardware-managed coherence

o LLC-coherent DMA

o Direct access to LLC

o Hybrid hardware- and software-managed coherence

o Non-coherent DMA

o Direct access to main memory

o Software-managed coherence

15

ACCELERATOR CACHE-COHERENCE IN LITERATURE

non-coh

DMA

LLC-coh

DMA

coh

DMA

fully

coh

Chen, ICCD’13 ✓

Cota, DAC’15 ✓ ✓

Fusion, ISCA’15 ✓ ✓

gem5-aladdin, MICRO’16 ✓ ✓

Bhardwaj, ISLPED’20 ✓ ✓ ✓

Spandex, ISCA’18 ✓

ESP, ICCAD’20 ✓ ✓ ✓ ✓

NVDLA ✓

Buffets, ASPLOS’19 ✓

Kurth, ArXiv’20 ✓

non-coh

DMA

LLC-coh

DMA

coh

DMA

fully

coh

Cavalcante, CF’20 ✓

BiC, DAC’11 ✓

Cohesion, IEEEMicro’11 ✓

ARM ACE/ACE-Lite ✓ ✓

Xilinx Zynq ✓ ✓

IBM Power7+ ✓

IBM Wirespeed ✓

Arteris Ncore ✓ ✓

IBM CAPI ✓

CCIX ✓ ✓

Protocol

o We modified a classic MESI directory-based cache-coherence protocol

o Work over a NoC

o Support all 4 coherence modes for accelerators

Implementation

o We implemented a cache hierarchy and we integrated it in ESP

o Multi-core Linux execution

o 4 coherence modes for accelerators

o Run-time selection of the coherence mode for each accelerator

o Run-time coexistence of heterogeneous coherence modes for accelerators

16

PROPOSED CACHE HIERARCHY
[Giri, NOCS’18]

ESP CACHE HIERARCHY

17

No absolute best coherence mode!

Depends on:
o Workload size and caches size

o Accelerator characteristics

o Number of active accelerators

18

COHERENCE MODES EVALUATION

Single accelerator execution Parallel accelerator execution

[Giri, IEEE Micro’18]

19

ADAPTIVE COHERENCE RECONFIGURATION

How to exploit heterogeneous and reconfigurable accelerator coherence?

Example of manually-tuned algorithm
We propose two adaptive approaches to select the best
coherence mode dynamically at runtime

o Manually-tuned algorithm

o Learning-based approach (Cohmeleon)

Framework

o Track system status

o At each accelerator invocation select coherence based on
system status and invocation parameters

o Track performance to train learning model

Implementation

o Integrated in ESP’s software stack

o Transparent to the accelerator programmer

o Negligible hw/sw overhead

[Giri, ASPDAC’18]

o Evaluation applications with multiple phases

o Highly-configurable traffic generator accelerator

20

ADAPTIVE COHERENCE EVALUATION

Example of possible appExample of possible app phase

21

ADAPTIVE COHERENCE EVALUATION

FPGA-based prototyping of multiple ESP SoCs

22

ADAPTIVE COHERENCE EVALUATION

o execution time by 40% o off-chip accesses by 74%

On average, both our approaches reduce

Accelerators can exchange data with:

o Shared memory

o Other accelerators (new!)

Benefits

o Avoid roundtrips to shared memory

o Fine-grained accelerators synchronization

o Higher throughput

o Lower invocation overhead

23

P2P COMMUNICATION

Implementation

o No need for additional queues or NoC channels

o Configured at invocation time

o On demand: initiated by receiver

o Support for one-to-many and many-to-one

Future work

o Improve generality of one-to-many and many-
to-one options

o Mixed p2p and regular communication

24

P2P COMMUNICATION
[Giri, DATE’20]

Two size thresholds for the accelerator scratchpad

o Minimum size to support the parallelism of the
datapath

o Must be tightly coupled with the datapath

o Minimum size to maximize reuse and minimize
memory accesses

o Must be on-chip

Goal: increase scratchpad utilization and reduce
memory accesses

Solution: shared scratchpad tiles

25

SHARED SCRATCHPAD

[Lyons 2012] [Pellauer 2019]

Planned implementation

o Multi-bank scratchpad

o Highly configurable DMA engine

o Basic computation and data reshape engine

o Same programming model of accelerators

o Memory-mapped: accessible by processors and
accelerators

26

SHARED SCRATCHPAD

ACCELERATOR PROGRAMMING Accelerator API library

Device driver approach

o A user app calls the device driver

o The device driver

o (optional) Flushes the caches

o Configures the accelerator

o Waits for the accelerator completion

o Returns control to the user app

28

ACCELERATOR PROGRAMMING MODEL

[Chen 2013] [Cota 2015] [Shao 2016] [Mantovani 2016]

API for the invocation of accelerators from a user application

o Exposes only 3 functions to the programmer

29

ACCELERATOR API
[Giri, DATE’20]

30

ACCELERATOR API

Usage

o Can be targeted by existing applications with minimal modifications

o Can be targeted to automatically map tasks to accelerators

Accelerator Invocation

o Invokes accelerators through automatically-generated Linux device drivers

o Enables shared memory between processors and accelerators

o No data copies

o Invoke multiple pipelines of accelerators in parallel

SoC services

o Simplifies the management of the hardware SoC services

o Cache coherence, p2p, shared scratchpad

ACCELERATOR DESIGN AND
INTEGRATION FLOW

C/C++ accelerator flow

Deep learning accelerator flow

Third-party accelerator flow

32

ACCELERATOR DESIGN AND INTEGRATION FLOWS

New accelerator design flows

o C/C++ with Vivado HLS

o Tutorial: esp.cs.columbia.edu/docs/cpp_acc

o Keras/Pytorch/ONNX with hls4ml

o Tutorial: esp.cs.columbia.edu/docs/hls4ml

New third-party accelerator integration flow

o Tutorial: esp.cs.columbia.edu/docs/thirdparty_acc

https://esp.cs.columbia.edu/docs/cpp_acc/
https://www.esp.cs.columbia.edu/docs/hls4ml/
https://www.esp.cs.columbia.edu/docs/thirdparty_acc/

33

ESP4ML
[Giri, DATE’20]

Featured accelerators

o Image classifier (hls4ml)

oStreet View House Numbers (SVHN) dataset
from Google

o Denoiser (hls4ml)

o Implemented as an autoencoder

o Night-vision (Stratus HLS)

oNoise filtering, histogram, histogram
equalization

34

ESP4ML: CASE STUDY

SoCs Applications

Our SoCs achieve better
energy efficiency than
Jetson and i7.

Chaining accelerators
brings additional energy
savings.

35

ESP4ML: ENERGY EFFICIENCY

0.1

1

10

100

1NV+1Cl 4NV+1Cl 4NV+4Cl

F
ra

m
e
s

/
Jo

u
le

 (
n
o
rm

a
liz

e
d
)

Night-Vision and Classifier

memory p2p

i7 8700k

Jetson TX1

0.1

1

10

100

1De + 1Cl

Denoiser and
Classifier

0.1

1

10

100

1Cl split

Multi-tile
Classifier

Performance increases
to up to 4.5 times
thanks to

o Parallelization

o Chaining (p2p)

Accelerator chaining
(p2p) reduces the
memory accesses by
2-3 times

36

ESP4ML: PERFORMANCE

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Cl split in 5 1NV+1Cl 2NV+1Cl 4NV+1Cl 2NV+2Cl 4NV+4Cl

F
ra

m
e
s

/
se

c
(n

o
rm

a
liz

e
d
)

memory p2p

37

THIRD-PARTY ACCELERATOR INTEGRATION FLOW
[Giri, CARRV’20]

THIRD-PARTY ACCELERATOR TILE

38

NVIDIA Deep Learning Accelerator

o Open source

o Fixed function

o Highly configurable

NVDLA small

o 8-bit integer precision

o 64 MAC units

o 128 KB local memory

Integrated with the new third-party
accelerator flow!

39

TPF: NVDLA CASE STUDY

SoCs evaluated on FPGA (Xilinx XCVU440)

o Ariane core

o 1-4 NVDLA tiles

o 1-4 memory channels

TPF: RESULTS

40

3.8

4.5

1.3

0.4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

LeNet Convnet SimpleNet ResNet50

fr
a

m
e
s

/
 s

e
co

n
d

1 NVDLA

Performance of NVDLA small in ESP

@ 50 MHz

18x lower than

NVIDIA’s results @

1GHz

performance preserved

TPF: RESULTS

41

3.8

4.5

1.3

0.4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

LeNet Convnet SimpleNet ResNet50

fr
a

m
e
s

/
 s

e
co

n
d

1 NVDLA

Performance of NVDLA small in ESP

@ 50 MHz

1

2.1

3.1

3.9

0

1

2

3

4

5

1 NVDLA
1 mem ctrl

2 NVDLA
2 mem ctrl

3 NVDLA
3 mem ctrl

4 NVDLA
4 mem ctrl

fr
a
m

e
s

/
 s

e
co

nd
 (
n
o
rm

a
li
ze

d
)

LeNet

Scaling NVDLA instances and DDR channels

@ 50 MHz

18x lower than

NVIDIA’s results @

1GHz

performance preserved

OPEN-SOURCE CONTRIBUTION ESP release

Accelerator benchmark suite

Chipyard, Pulp, Openpiton, BlackParrot

o Processor-centric

o Limited support for loosely-coupled accelerators

We released ESP in open-source,

including the contributions of this work.

We integrated the ESP accelerators in the

DECADES simulator and SoC platform
(decades.cs.princeton.edu, github.com/PrincetonUniversity/MosaicSim)

43

OPEN-SOURCE SOC DESIGN PLATFORMS

github.com/ucb-bar/chipyard

pulp-platform.org

parallel.princeton.edu/openpiton

github.com/black-parrot/black-parrot

https://decades.cs.princeton.edu/
https://github.com/PrincetonUniversity/MosaicSim
https://github.com/ucb-bar/chipyard
https://pulp-platform.org/
https://parallel.princeton.edu/openpiton/
https://github.com/black-parrot/black-parrot

Release: github.com/sld-columbia/esp

Website: esp.cs.columbia.edu

Channel: 13 videos

Documentation: 9 hands-on tutorials

Conference Tutorials: ESWeek’19, ASPLOS’20,

MICRO’20, ISPASS’21, ASPLOS’21

Teaching: Class projects of CSEE E6868 at

Columbia University

44

ESP RELEASE
[Mantovani, ICCAD’20]

https://github.com/sld-columbia/esp
https://www.esp.cs.columbia.edu/

Motivation

o Many accelerators designed and integrated in ESP over the years

o Lack of open-source accelerator benchmark suites

Release a new accelerator benchmark suite

o Multiple specification languages and tools

o Seamless SoC integration (ESP)

o Rapid FPGA prototyping

o ESP SoCs or single-accelerator on Xilinx Zynq MPSoC

o Included software stack for accelerator programming

45

ACCELERATOR BENCHMARK SUITE

46

ACCELERATOR BENCHMARK SUITE

Benchmark

Suite
Apps Language HLS-Ready HLS Scripts Optimized

Invocation

SW

Test on

FPGA

SoC

Integration

Cortex 20 C

PERFECT 15 C

CHStone 12 C ✓

S2CBench 21 SystemC ✓

MachSuite 12 C ✓ ✓ (Vivado HLS)

Rosetta 6 C/C++ ✓ ✓ (Vivado HLS) ✓ ✓ ✓

Proposed

Suite

>20 C/C++

SystemC

Chisel*

Keras

Pytorch

ONNX

✓ ✓ (Vivado HLS

Catapult HLS

Stratus HLS

hls4ml

Chisel*)

✓ ✓ ✓ ✓

* Generating RTL code from Chisel does not require HLS

PUBLICATIONS

48

Davide Giri, Paolo Mantovani, Luca P. Carloni

Accelerators and Coherence: An SoC Perspective

IEEE Micro (Special Issue: Hardware Acceleration), 2018

Davide Giri, Paolo Mantovani, Luca P. Carloni

NoC-Based Support of Heterogeneous Cache-Coherence Models for Accelerators

NOCS (IEEE/ACM International Symposium on Networks-on-Chip), 2018

Davide Giri, Paolo Mantovani, Luca P. Carloni

Runtime Reconfigurable Memory Hierarchy in Embedded Scalable Platforms

ASPDAC (Asia and South Pacific Design Automation Conference), invited, 2019

Luca P. Carloni, Emilio Cota, Giuseppe Di Guglielmo, Davide Giri, Jihye Kwon, Paolo Mantovani, Luca Piccolboni, Michele Petracca

Teaching Heterogeneous Computing with System-Level Design Methods

WCAE (Workshop on Computer Architecture Education), 2019

Davide Giri, Kuan-lin Chiu, Giuseppe Di Guglielmo, Paolo Mantovani, Luca P. Carloni

ESP4ML: Platform-Based Design of Systems-on-Chip for Embedded Machine Learning

DATE (Design, Automation and Test in Europe Conference), best paper nominee, 2020

Davide Giri, Kuan-Lin Chiu, Guy Eichler, Paolo Mantovani, Nandhini Chandramoorthy, Luca P. Carloni

Ariane + NVDLA: Seamless Third-Party IP Integration with ESP

CARRV (Workshop on Computer Architecture Research with RISC-V), 2020

49

P. Mantovani, Davide Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman, E. G. Cota, M. Petracca, C. Pilato, L. P. Carloni

Agile SoC Development with Open ESP

ICCAD (IEEE/ACM International Conference On Computer Aided Design), invited, 2020

O. Matthews, A. Manocha, Davide Giri, M. Orenes-Vera, E. Tureci, T. Sorensen, T. J. Ham, J. L. Aragon, L. P. Carloni, M. Martonosi

MosaicSim: A Lightweight, Modular Simulator for Heterogeneous Systems

ISPASS (IEEE International Symposium on Performance Analysis of Systems and Software), best paper nominee, 2020

Paolo Mantovani, Robert Margelli, Davide Giri, Luca P. Carloni

HL5: A 32-bit RISC-V Processor Designed with High-Level Synthesis

CICC (IEEE Custom Integrated Circuits Conference), invited, 2020

AGILE DESIGN AND INTEGRATION OF ACCELERATORS
IN HETEROGENEOUS SOC ARCHITECTURES

PhD Proposal Exam
Davide Giri
January 21, 2021

THANK YOU

REFERENCES

52

[Alsop 2018] J. Alsop, M. Sinclair, S. Adve, "Spandex: A Flexible Interface for Efficient Heterogeneous Coherence," International
Symposium on Computer Architecture (ISCA), 2018.

[Cascaval 2010] C. Cascaval, S. Chatterjee, H. Franke, K. J. Gildea, P. Pattnaik, "A Taxonomy of Accelerator Architectures and
their Programming Models," IBM Journal of Research and Development, 2010.

[Cong 2012] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, G. Reinman, “Architecture Support for Accelerator-Rich CMPs,”
Design Automation Conference (DAC), 2012.

[Chen 2013] Y. Chen, J. Cong, M. A. Ghodrat, M. Huang, C. Liu, B. Xiao, Y. Zou, "Accelerator-rich CMPs: From Concept to Real
Hardware," International Conference on Computer Design (ICCD), 2013.

[Cota 2015] E. G. Cota, P. Mantovani, G. Di Guglielmo, L. P. Carloni, "An Analysis of Accelerator Coupling in Heterogeneous
Architectures," Design Automation Conference (DAC), 2015.

[Fu 2015] Y. Fu, T. M. Nguyen, D. Wentzlaff, “Coherence Domain Restriction on Large Scale Systems,” International Symposium
on Microarchitecture (MICRO), 2015.

[Kelm 2011] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, S. J. Patel, "Cohesion: An Adaptive Hybrid Memory Model for
Accelerators," IEEE Micro, 2011.

[Komuravelli 2015] R. Komuravelli, M. D. Sinclair, J. Alsop, M. Huzaifa, M. Kotsifakou, P. Srivastava, S. V. Adve, V. S. Adve, "Stash:
Have Your Scratchpad and Cache It Too," International Symposium on Computer Architecture (ISCA), 2015.

[Kumar 2015] S. Kumar, A. Shriraman, N. Vedula, "Fusion: Design Tradeoffs in Coherent Cache Hierarchies for Accelerators,"
International Symposium on Computer Architecture (ISCA), 2015.

[Ham 2015] T. J. Ham, J. L. Aragón, M. Martonosi, "DeSC: Decoupled Supply-compute Communication Management for
Heterogeneous Architectures," International Symposium on Microarchitecture (MICRO), 2015.

53

[Lustig 2013] D. Lustig and M. Martonosi, "Reducing GPU Offload Latency Via Fine-grained CPU-GPU Synchronization,"
International Symposium on High-Performance Computer Architecture (HPCA), 2013.

[Lyons 2012] M. Lyons, M. Hempstead, G. Wei, D. Brooks, “The Accelerator Store: A Shared Memory Framework for
Accelerator-based Systems,” ACM Transactions on Architecture and Code Optimization (TACO), 2012.

[Peemen 2013] M. Peemen, A. A. A. Setio, B. Mesman, H. Corporaal, "Memory-centric Accelerator Design for Convolutional
Neural Networks," International Conference on Computer Design (ICCD), 2013.

[Pellauer 2019] M. Pellauer, Y. S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan, S. W. Keckler, C. W. Fletcher, J. Emer,
“Buffets: An Efficient and Composable Storage Idiom for Explicit Decoupled Data Orchestration,” Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2019.

[Mantovani 2016] P. Mantovani, E. G. Cota, C. Pilato, G. Di Guglielmo, L. P. Carloni, “Handling Large Data Sets for High-
performance Embedded Applications in Heterogeneous Systems-on-Chip,” International Conference on Compilers, Architectures,
and Synthesis of Embedded Systems (CASES), 2016.

[Shao 2015] Y. S. Shao, D. Brooks, "Research Infrastructures for Hardware Accelerators," Synthesis Lectures on Computer
Architecture, Morgan & Claypool, 2015, chapters 1-2.

[Shao 2016] Y. S. Shao, S. L. Xi, V. Srinivasan, G. Wei, D. Brooks, "Co-designing Accelerators and SoC Interfaces using Gem5-
Aladdin," International Symposium on Microarchitecture (MICRO), 2016.

