
ESP4ML
Platform-Based Design of System-on-Chip for

Embedded Machine Learning

Davide Giri
Kuan-Lin Chiu
Giuseppe di Guglielmo
Paolo Mantovani
Luca P. Carloni DATE 2020

Combines and

• ESP is a platform for heterogeneous
SoC design

• hls4ml automatically generates
accelerators from ML models

Main contributions to ESP:
• Automated integration of hls4ml

accelerators

• Accelerator-accelerator communication

• Accelerator invocation API

Open-source design flow to build and
program SoCs for ML applications.

ESP4ML

2

• Open-source tool developed
by Fast ML Lab

• Translates ML algorithms into
HLS-able accelerator
specifications

o Targets Xilinx Vivado HLS (i.e.
FPGA only)

o ASIC support is in the works

• Born for high-energy physics
(small and ultra-low latency
networks)

o Now has broad applicability

hls4ml

3

Image from https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/

ESP motivation

Heterogeneous systems are pervasive

Integrating accelerators into a SoC is hard

Doing so in a scalable way is very hard

Keeping the system simple to program while doing so is even harder

ESP makes it easy

ESP combines a scalable architecture with a flexible methodology

ESP enables several accelerator design flows
and takes care of the hardware and software integration

4

B
L
A
D
E

C
E
N
T
E
R

D
A
T
A

CPU GPU

$

Accelerators

I/
O

D
D

R
Embedded SoC

Rapid
Prototyping

SoC Integration

A
p

p
lic

at
io

n
 D

ev
el

o
p

er
s

H
ar

d
w

ar
e

D
es

ig
n

er
s

ESP overview

5

*
*

 B
y

le
w

in
g

@
is

c.
ta

m
u

.e
d

u
L

ar
ry

 E
w

in
g

 a
n

d
 T

h
e

G
IM

P

**

accelerator

accelerator

HLS
Design
Flows

RTL
Design
Flows

*
 B

y
N

vi
d

ia
 C

o
rp

o
ra

ti
o

n

…

…accelerator
*

Processor

new design flows

ESP architecture

• Multi-Processors

• Many-Accelerator

• Distributed Memory

• Multi-Plane NoC

4

The ESP architecture implements a
distributed system, which is scalable,

modular and heterogeneous,
giving processors and accelerators

similar weight in the SoC

ESP architecture: the tiles

7

ESP methodology in practice

8

interactive
automated

manual
manual (opt.)

Generate accelerator

Test behavior

Generate RTL

Test RTL

Optimize accelerator

Specialize accelerator
(not required by hls4ml flow)

Generate sockets

Configure SoC

SoC Flow

Compile bare-metal

Simulate system

Implement for FGPA

Compile Linux

Deploy prototype

Design runtime apps

Accelerator Flow

A
p

p
lic

at
io

n
 D

ev
e

lo
p

e
rs

H
ar

d
w

ar
e

D
es

ig
n

e
rs

HLS
Design
Flows

RTL
Design
Flows

…

…

…
accelerator

accelerator

accelerator

…

…

…
accelerator

accelerator

accelerator

**

ESP accelerator flow

Developers focus on the high-level specification, decoupled from

memory access, system communication, hardware/software interface

A
p

p
lic

at
io

n
 D

ev
el

o
p

er
s

H
ar

d
w

ar
e

D
es

ig
n

er
s

HLS
Design
Flows

RTL
Design
Flows

Performance

A
re

a
 /

 P
o

w
e

r

3

2

1 High-Level Synthesis

Code Transformation

Ver. 1

Ver. 2

Ver. 3

RTL
Design Space

Programmer View
Design Space

…

…
accelerator

accelerator

accelerator

9

10

ESP Interactive SoC Flow

SoC Integration

…

…

…
accelerator

accelerator

accelerator

11

New ESP features

• New accelerator design flows (C/C++, Keras/Pytorch/ONNX)
• Accelerator-to-accelerator communication
• Accelerator invocation API

New accelerator design flows

C/C++ accelerators with Vivado HLS

• Generate the accelerator skeleton with ESP
o Takes care of communication with the ESP tile socket

• Implement the computation part of the accelerator

12

Example of top level function of ESP accelerator for Vivado HLS

void top(dma_t *out, dma_t *in1, unsigned cfg_size,

dma_info_t *load_ctrl, dma_info_t *store_ctrl)

{

for (unsigned i = 0; i < cfg_size; i++) {

word_t _inbuff[IN_BUF_SIZE];

word_t _outbuff[OUT_BUF_SIZE];

load(_inbuff, in1, i, load_ctrl, 0);

compute(_inbuff, _outbuff);

store(_outbuff, out, i, store_ctrl, cfg_size);

}

}

New accelerator design flows

Keras/Pytorch/ONNX accelerators with hls4ml

Completely automated integration in ESP:

• Generate an accelerator with hls4ml

• Generate the accelerator wrapper with ESP

13

Accelerator-to-accelerator communication

Accelerators can exchange data with:

• Shared memory

• Other accelerators (new!)

Benefits

• Avoid roundtrips to shared memory

• Fine-grained accelerators synchronization

o Higher throughput

o Lower invocation and data pre- or post-
processing overheads

14

Accelerator-to-accelerator communication

• No need for additional queues or NoC
channels

• Communication configured at
invocation time

• Accelerators can pull data from other
accelerators, not push

15

API for the invocation of accelerators
from a user application

• Exposes only 3 functions to the
programmer

• Invokes accelerators through Linux
device drivers
o ESP automatically generates the device

drivers

• Enables shared memory between
processors and accelerators
o No data copies

• Can be targeted by existing
applications with minimal
modifications

• Can be targeted to automatically
map tasks to accelerators

16

Accelerator invocation API
ke

rn
e

l
m

o
d

e

Linux

ESP core

ESP accelerator driver

u
se

r
m

o
d

e

ESP alloc

ESP Library

Application

Accelerator invocation API

17

ke
rn

e
l

m
o

d
e

Linux

ESP core

ESP accelerator driver

u
se

r
m

o
d

e

ESP alloc

ESP Library

Application

/*

* Example of existing C application

* with ESP accelerators that replace

* software kernels 2, 3 and 5

*/

{

int *buffer = esp_alloc(size);

for (...) {

kernel_1(buffer,...); // existing software

esp_run(cfg_k2); // run accelerator(s)

esp_run(cfg_k3);

kernel_4(buffer,...); // existing software

esp_run(cfg_k5);

}

validate(buffer); // existing checks

esp_cleanup(); // memory free

}

API for the invocation of accelerators
from a user application

• Exposes only 3 functions to the
programmer

Accelerator API

18

/* Example of double-accelerator config */

esp_thread_info_t cfg_k12[] =

{

{

.devname = “k1.0",

.type = k1,

/* accelerator configuration */

.desc.k1_desc.nbursts = 8,

/* p2p configuration */

.desc.k1_desc.esp.p2p_store = true,

.desc.k1_desc.esp.p2p_nsrcs = 0,

.desc.k1_desc.esp.p2p_srcs = {"","","",""},

},

{

.devname = “k2.0",

.type = k2,

/* accelerator configuration */

.desc.k2_desc.nbursts = 8,

/* p2p configuration */

.desc.k2_desc.esp.p2p_store = false,

.desc.k2_desc.esp.p2p_nsrcs = 1,

.desc.k2_desc.esp.p2p_srcs = {“k1.0","","",""},

},

};

Configuration example:

• Invoke accelerators k1 and k2

• Enable point-to-point

communication between them

19

Evaluation

• We deploy two multi-accelerator
SoCs on FPGA (Xilinx VCU118)

• We execute applications with
accelerator chaining and parallelism
opportunities

• We compare the our SoCs against:

o Intel i7 8700K processor

o NVIDIA Jetson TX1

▪ 256-core NVIDIA Maxwell GPU

▪ Quad-core ARM Cortex A57

Featured accelerators:

• Image classifier (hls4ml)

o Street View House Numbers (SVHN)
dataset from Google

• Denoiser (hls4ml)

o Implemented as an autoencoder

• Night-vision (Stratus HLS)

o Noise filtering, histogram, histogram
equalization

20

Experimental setup

21

Case studies

Chaining
accelerators
brings energy
savings.

Our SoCs achieve
better energy
efficiency than
Jetson and i7.

22

Efficiency

0.1

1

10

100

1NV+1Cl 4NV+1Cl 4NV+4Cl

F
ra

m
e
s

/
Jo

u
le

 (
n
o
rm

a
liz

e
d
) Night-Vision and

Classifier

memory p2p

i7 8700k

Jetson TX1

0.1

1

10

100

1De + 1Cl

Denoiser and
Classifier

0.1

1

10

100

1Cl split

Multi-tile
Classifier

Performance
increases to up to
4.5 times thanks to:

- Parallelization

- Chaining (p2p)

23

Performance

0

1

2

3

4

5

Cl split in
5

1NV+1Cl 2NV+1Cl 4NV+1Cl 2NV+2Cl 4NV+4Cl

F
ra

m
e
s

/
se

c
(n

o
rm

a
liz

e
d
)

memory p2p

Accelerator chaining (p2p)
reduces the memory
accesses by 2-3 times

24

Memory accesses

0%

20%

40%

60%

80%

100%

Multi-tile
classifier

Nightvision
+ classifier

Denoiser +
classifier

D
R
A
M

 a
cc

e
ss

e
s

(n
o
rm

a
liz

e
d
)

memory p2p

Conclusions

ESP4ML is a complete system-level design flow to implement many-
accelerator SoCs and to deploy embedded applications on them.

We enhanced ESP with the following features:
• Fully automatic integration in ESP of accelerators specified in C/C++ (Vivado

HLS) and Keras/Pytorch/ONNX (hls4ml)

• Minimal API to invoke accelerator for ESP

• Reconfigurable activation of accelerators pipelines through efficient point-to-
point communication mechanisms

25

ESP4ML
Platform-Based Design of System-on-Chip

for Embedded Machine Learning

Davide Giri (www.cs.columbia.edu/~davide_giri)
Kuan-Lin Chiu
Giuseppe di Guglielmo
Paolo Mantovani
Luca P. Carloni DATE 2020

Thank you from the ESP team!

sld.cs.columbia.edu esp.cs.columbia.edu sld-columbia/esp

