Platform-Based Design of System-on-Chip for
Embedded Machine Learning

Kuan-Lin Chiu
Giuseppe di Guglielmo
Paolo Mantovani

Luca P. Carloni

@2 COLUMBIA UNIVERSITY CSs2
IN THE CITY OF NEW YORK eCU COMPUTER SCIENCE

ESP,ML

Open-source design flow to build and

SW Application

program SoCs for ML applications. / I‘(Qm\
Vision
. l:! kernel = —0]
Combines £l and hls 4 ml N Vidon el MLkernel
* ESPis a platform for heterogeneous SW
SoC design D?vhelE%rlgmrL)
. wit
¢ hlsgml automatically generates
accelerators from ML models . l
L J °®
Main contributions to ESP: eep— ace .
 Automated integration of hlsgml accelerator wrapper '
accelerators
o R App invoking
» Accelerator-accelerator communication accelerators
L] ®

» Accelerator invocation API

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

hlsgml

* Open-source tool developed
by Fast ML Lab

Keras
TensorFlow

* Translates ML algorithms into PyTorch

v, Co-processing kernel

HLS-able accelerator
specifications

Custom firmware

. hls 4 ml
o Targets Xilinx Vivado HLS (i.e. comprgslsed oz /
FPGA OﬂlY) Nl i conversion [
/t

.. ; ; design
Usual hine | i
o ASIC supportis in the works Sl i o ot
tune configuration
* Born for high-energy physics relpielne
(small and ultra-low latency Image from
networks)
o Now has broad applicability
2 COLUMBIA UNIVERSITY A=4 3

https://fastmachinelearning.org/hls4ml/

ESP motivation

]

Accelerators

Heterogeneous systems are pervasive
Integrating accelerators into a SoC is hard
Doing so in a scalable way is very hard
Keeping the system simple to program while doing so is even harder

Embedded SoC

ESP makes it easy

ESP combines a scalable architecture with a flexible methodology

ESP enables several accelerator design flows
and takes care of the hardware and software integration

PFP=N
AN

&2 COLUMBIA UNIVERSITY
N A=d

IN THE CITY OF NEW YORK

ESP overview
new design flows

¢ @| AT
S Bl l——| ¢ hsamdbiGa)
Z O PyTorch nSS
> |2 By
a
< HLS
))
ye Flows
§ III —
| E=N _55 accelerator
ystenc A=4

J

Rapid

o E==d) em
I SystemVerilog DESign {" RISC‘V®

J

Hardware
Designers

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

** By lewing@isc.tamu.edu Larry Ewing and The GIMP

* By Nvidia Corporation

ESP architecture

* Multi-Processors

* Many-Accelerator

* Distributed Memory
* Multi-Plane NoC

-

The ESP architecture implements a

modular and heterogeneous,
giving processors and accelerators
similar weight in the SoC

o

distributed system, which is scalable,

/

&2 COLUMBIA UNIVERSITY
N

IN THE CITY OF NEW YORK

PaN

A4

.

multi-plane NoC

)

ESP architecture: the tiles

LLC &
directory
w w

1 2 3 456}

coherence DMA 10/IRQ
planes planes plane

ec|

1 2 3 6
NoC| coherence 10/IRQ
planes plane

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

multi-port multi-bank
private local memory

private DMA cfg
cache TLB ctrl regs

1 2 3 4 5 6
coherence DMA 10/IRQ NoC
planes planes plane

multi-plane NoC

4 5 6
DMA I0/RQ |NoC
planes plane

7

ESP methodology in practice
L____manual |

Accelerator Flow Y. W SoC Flow

Generate sockets o
Configure SoC

Compile bare-metal

Simulate system

Implement for FGPA

Design runtime apps

Generate accelerator

Specialize accelerator
(not required by hlsgml flow)

Compile Linux

Deploy prototype s

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

ESP accelerator flow

Developers focus on the high-level specification, decoupled from
memory access, system communication, hardware/software interface

-
-
-
_____—
—
-
e

g hls 4 ml SR E5E)
- OPyTorch
:
5 HLS
2 Design
=2) Flows
o .
& Iil __GQ-J Design Space
23
Corne| [n24 ’
Sae 5 5 Code Transformation =)
~ . %
[V \\\ g K 1”. H H
v 2 igh-Level Synthesis ‘
g cHISEL | RTL } N R 9 y
(®)] ~. 0 = 0 e .
Kg 3 Design \\ 9
e L/JW Flows ' N 2
: Performance

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

ESP Interactive SoC Flow

SoC Integratio

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Soc Data cache cPU
virtexup * Bigphysical area | Cache En.:] e =
ETH FPrew & ScatterfGather %
L2 SETS: 512
No JTAG
Eth (192.168.1.2) L2 WAYS: 4 —
Use SGMII o
No SVGA LLC SETS: 1024 —
With synchronizers e o=
ACCE2 SETS: 512 —
ACC L2 WAYS: 4

NocC configuration
Rows: 2 Cols:[2
Config

[Monitor DDR bandwidth
I Monitor memory access.
I~ Monitor injection rate

I~ Monitor router ports

I Monitor accelerator status
[Monitor L2 Hit/Miss

" Monitor LLC Hit/Miss

I Monitor DYFS

Num CPUs: 1

Noc Tile Configuration

Fiitias o | ClicReg: 0718 i as AL T LUK BUF

clkReg: (0. 8] HasPil T CLKBUF

(1,0
empty

empty

I Has L2 | OicReg: [0 3] M Has PEL [Cik BUF

(1.1)
0 =

ClkReg: [0 2 Fipas ALL T Clk BUF

Num memory 1
Num 1O tiles: 1
Num accelerators: 0

Num CLK regions: 1

Num CLKBUF: 0

VFpoints: [

‘Generate SoC config

10

New ESP features

* New accelerator design flows (C/C++, Keras/Pytorch/ONNX)
* Accelerator-to-accelerator communication
* Accelerator invocation API

PN
A4

&2 COLUMBIA UNIVERSITY 11
N

IN THE CITY OF NEW YORK

New accelerator design flows

* Generate the accelerator skeleton with ESP
o Takes care of communication with the ESP tile socket

* Implement the computation part of the accelerator

void top(dma t *out, dma t *inl, unsigned cfg size,
dma info t *load ctrl, dma info t *store ctrl)
{

for (unsigned i = 0; 1 < cfg size; i++) {
word t _inbuff[IN BUF SIZE];
word t outbuff[OUT BUF SIZE];

load(inbuff, inl, i, load ctrl, 0);

compute (inbuff, outbuff);
store(outbuff, out, i, store ctrl, cfg size);

Example of top level function of ESP accelerator for Vivado HLS

ng COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

ESP-generated
accelerator tile socket

ESP accelerator
for Vivado HLS
(partly automatically
generated)

° L °
acc CPU
° ° ®
° ° °

New accelerator design flows

Keras/Pytorch/ONNX accelerators with hlsgzml

Completely avtomated integration in ESP:
* Generate an accelerator with hlsgzml

* Generate the accelerator wrapper with ESP

PLN

[)

AC4
[
w

&2 COLUMBIA UNIVERSITY
N

IN THE CITY OF NEW YORK

Accelerator-to-accelerator communication

Accelerators can exchange data with:
* Shared memory

e Other accelerators

w/o chaining w/ chaining
processor off-chip processor off-chip
tile memory tile memory
! !
R : -)| 2 |
Avoid roundtrips to shared memory NoC ——3— a/s NoC ——3— 7
* Fine-grained accelerators synchronization i i
_ accelerator accelerator accelerator accelerator
o Higher throughput tile tile tile tile

o Lower invocation and data pre- or post-
processing overheads

ng COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Accelerator-to-accelerator communication

* No need for additional queues or NoC

channels ESP accelerator multi-port multi-bank
HLS (C, SystemC, Tensorflow, ‘
) .) P h). Chisel. Veril private local memory
« Communication configured at ytorch), Chisel, Verilog, ...
Invocation time read/write port config port done
 Accelerators can pull data from other l T T l
rivate DMA cf
accelerators, not push P ILB o regs IRQ
[coherence DMA 10 IRQ NoC
planes planes plane

ng COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

Accelerator invocation API

 Exposes only 3 functions to the

programmer

s 9 Application

w O

S £ ESP Library
a4

ESP accelerator driver

kernel
mode
A

ESP core

ESP alloc

-

Linux

ng COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

* Invokes accelerators through Linux

device drivers
o ESP automatically generates the device
drivers

Enables shared memory between
processors and accelerators

o No data copies

Can be targeted by existing
applications with minimal
modifications

Can be targeted to automatically
map tasks to accelerators

Accelerator invocation API

G

PAA
/' * Example of existing C application
/7 * with ESP accelerators that replace
. 4
* Exposes only 3 functions to the s I/S°ftware kernels 2, 3 and 5
programmer / {
/7 int *buffer = (size) ;
/
S for (...) {

o % Application kernel 1 (buffer,...); // existing software
8 (o) \ (cfg k2); // run accelerator (s)
S E ESP Library 3 L

- \\\ kernel 4 (buffer,...); // existing software

. \
ESP accelerator driver \ (cfg_k5) ;
T 9 }
c \ validate (buffer) ; // existing checks
= g < | ESP core ESP alloc \ .
- \ () // memory free
\\ }
Linux '
(.

ng COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

Accelerator API

* Invoke accelerators kz and k2

* Enable point-to-point

communication between them

ng COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

/* Example of double-accelerator config */
esp thread info t cfg k1l2[] =
{

{

.devname = “k1.0",

.type = ki1,
/* accelerator configuration */
.desc.kl desc.nbursts = 8,

/* p2p configuration */

.desc.kl desc.esp.p2p store = true,
.desc.kl desc.esp.p2p nsrcs = 0,

.desc.kl desc.esp.p2p srcs = {"","","", ""},
by
{

.devname = “k2.0",

.type = k2,
/* accelerator configuration */
.desc.k2 desc.nbursts = 8,

/* p2p configuration */

.desc.k2 desc.esp.pZ2p store = false,

.desc.k2 desc.esp.p2p nsrcs 1,

.desc.k2 desc.esp.p2p srcs = {“k1.0","","",""},

}y

b g

Evaluation

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

PaN

A4

19

Experimental setup

* We deploy two multi-accelerator
SoCs on FPGA (XilinxVCU118)

* We execute applications with
accelerator chaining and parallelism
opportunities

* We compare the our SoCs against:
o Intel i7 8700K processor
o NVIDIA Jetson TX1
= 256-core NVIDIA Maxwell GPU
= Quad-core ARM Cortex Ag7

ng COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

Featured accelerators:
(hlsgml)

o Street View House Numbers (SVHN)
dataset from Google

(hlsgml)
o Implemented as an autoencoder
(Stratus HLS)

o Noise filtering, histogram, histogram
equalization

Case studies
SoCs

[T [FT [F [z
[FF foz7] [[T
(B BT [T [
(F7 [(F (FT [T

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Applications

1 Denoiser + 1 Classifier

N NightVision + N Classifier

N NightVision + 1 Classifier

Classifier split in 5

B i

PN
A4

21

Efficiency

- Night-Vision and Denoiser and Multi-tile
Chaining 9 Classifier Classifier Classifier
accelerators é 100 100 100
brlqgs energy 5
savings. < 10 10 0
=
: s
Our SoCs achieve | { { C - ,
better energy 0
efficiency than E
Jetson and i7. L 0.1 0.1 0.1
INV+1Cl 4NV+1Cl 4NV+4Cl 1De + 1Cl 1Cl split
B memory Mp2p

[A
&2 COLUMBIA UNIVERSITY EEE 22

IN THE CITY OF NEW YORK

Performance
—~ 5
o)
S 4
g
Performance 5 3
increases to up to)
4.5times thanksto: | ©
- Parallelization i 1 I I I I
- Chaining (p2p) é 0
© Cl splitin INV+1Cl 2NV+1Cl 4NV+1Cl 2NV+2Cl 4NV+4Cl
L 5
® memory M p2p

PN
A4

23

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Memory accesses

100%
80%
= 60%
Accelerator chaining (p2p)
40%
reduces the memory
accesses by 2-3 times 20% I I
0%

Multi-tile Nightvision Denoiser +
classifier + classifier classifier

DRAM accesses
(normalized)

B memory Hp2p

PN
A4

24

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Conclusions

is a complete system-level design flow to implement many-
accelerator SoCs and to deploy embedded applications on them.

We enhanced ESP with the following features:

* Fully automatic integration in ESP of accelerators specified in (Vivado
HLS) and (hlsgml)
* Minimal to invoke accelerator for ESP

* Reconfigurable activation of accelerators pipelines through efficient
communication mechanisms

ng COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

Thank you from the ESP team!

1Y) P=N _ _
\E® sld.cs.columbia.edu EEE esp.cs.columbia.edu sld-columbia/esp

4)

ESP,ML

Platform-Based Design of System-on-Chip
for Embedded Machine Learning

Davide Giri (www.cs.columbia.edu/~davide_giri)
Kuan-Lin Chiu

Giuseppe di Guglielmo

Paolo Mantovani

Luca P. Carloni DATE 2020
. g
P=N
& Corumais Uy S C8% Comrumin scitnc

