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ESP,ML

Open-source design flow to build and
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hlsgml

* Open-source tool developed
by Fast ML Lab

Keras
TensorFlow

* Translates ML algorithms into PyTorch

v, Co-processing kernel

HLS-able accelerator
specifications

Custom firmware

. hls 4 ml
o Targets Xilinx Vivado HLS (i.e. comprgslsed oz /
FPGA OﬂlY) Nl i conversion [
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tune configuration
* Born for high-energy physics relpielne
(small and ultra-low latency Image from
networks)
o Now has broad applicability
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https://fastmachinelearning.org/hls4ml/

ESP motivation

]

Accelerators

Heterogeneous systems are pervasive
Integrating accelerators into a SoC is hard
Doing so in a scalable way is very hard
Keeping the system simple to program while doing so is even harder

Embedded SoC

ESP makes it easy

ESP combines a scalable architecture with a flexible methodology

ESP enables several accelerator design flows
and takes care of the hardware and software integration
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ESP overview
new design flows
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ESP architecture

* Multi-Processors

* Many-Accelerator

* Distributed Memory
* Multi-Plane NoC

-

The ESP architecture implements a

modular and heterogeneous,
giving processors and accelerators
similar weight in the SoC

o

distributed system, which is scalable,
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ESP architecture: the tiles
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multi-port multi-bank
private local memory

private DMA cfg
cache TLB ctrl regs
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ESP methodology in practice
L____manual |

Accelerator Flow Y. W SoC Flow

Generate sockets o
Configure SoC

Compile bare-metal

Simulate system

Implement for FGPA

Design runtime apps

Generate accelerator

Specialize accelerator
(not required by hlsgml flow)

Compile Linux

Deploy prototype s
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ESP accelerator flow

Developers focus on the high-level specification, decoupled from
memory access, system communication, hardware/software interface
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ESP Interactive SoC Flow

SoC Integratio
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New ESP features

* New accelerator design flows (C/C++, Keras/Pytorch/ONNX)
* Accelerator-to-accelerator communication
* Accelerator invocation API
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New accelerator design flows

* Generate the accelerator skeleton with ESP
o Takes care of communication with the ESP tile socket

* Implement the computation part of the accelerator

void top(dma t *out, dma t *inl, unsigned cfg size,
dma info t *load ctrl, dma info t *store ctrl)
{

for (unsigned i = 0; 1 < cfg size; i++) {
word t _inbuff[IN BUF SIZE];
word t outbuff[OUT BUF SIZE];

load( inbuff, inl, i, load ctrl, 0);

compute ( inbuff, outbuff);
store( outbuff, out, i, store ctrl, cfg size);

Example of top level function of ESP accelerator for Vivado HLS
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ESP-generated
accelerator tile socket

ESP accelerator
for Vivado HLS
(partly automatically
generated)

° L °
acc CPU
° ° ®
° ° °



New accelerator design flows

Keras/Pytorch/ONNX accelerators with hlsgzml

Completely avtomated integration in ESP:
* Generate an accelerator with hlsgzml

* Generate the accelerator wrapper with ESP
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Accelerator-to-accelerator communication

Accelerators can exchange data with:
* Shared memory

e Other accelerators

w/o chaining w/ chaining
processor off-chip processor off-chip
tile memory tile memory
! !
R : - )| 2 |
Avoid roundtrips to shared memory NoC ——3— a/s NoC ——3— 7
* Fine-grained accelerators synchronization i i
_ accelerator accelerator  accelerator accelerator
o Higher throughput tile tile tile tile

o Lower invocation and data pre- or post-
processing overheads
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Accelerator-to-accelerator communication

* No need for additional queues or NoC

channels ESP accelerator multi-port multi-bank
HLS (C, SystemC, Tensorflow, ‘
) . ) P h). Chisel. Veril private local memory
« Communication configured at ytorch), Chisel, Verilog, ...
Invocation time read/write port config port done
 Accelerators can pull data from other l T T l
rivate DMA cf
accelerators, not push P ILB o regs IRQ
[ coherence DMA 10 IRQ NoC
planes planes plane
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Accelerator invocation API

 Exposes only 3 functions to the

programmer

s 9 Application

w O

S £ ESP Library
a4

ESP accelerator driver

kernel
mode
A

ESP core

ESP alloc

-

Linux
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* Invokes accelerators through Linux

device drivers
o ESP automatically generates the device
drivers

Enables shared memory between
processors and accelerators

o No data copies

Can be targeted by existing
applications with minimal
modifications

Can be targeted to automatically
map tasks to accelerators



Accelerator invocation API

G

PAA
/' * Example of existing C application
/7 * with ESP accelerators that replace
. 4
* Exposes only 3 functions to the s I/S°ftware kernels 2, 3 and 5
programmer / {
/7 int *buffer = (size) ;
/
S for (...) {

o % Application kernel 1 (buffer,...); // existing software
8 (o) \ (cfg k2); // run accelerator (s)
S E ESP Library 3 L

- \\\ kernel 4 (buffer,...); // existing software

. \
ESP accelerator driver \ (cfg_k5) ;
T 9 }
c \ validate (buffer) ; // existing checks
= g < | ESP core ESP alloc \ .
- \ () // memory free
\\ }
Linux '
(.

ng COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK



Accelerator API

* Invoke accelerators kz and k2

* Enable point-to-point

communication between them
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/* Example of double-accelerator config */
esp thread info t cfg k1l2[] =
{

{

.devname = “k1.0",

.type = ki1,
/* accelerator configuration */
.desc.kl desc.nbursts = 8,

/* p2p configuration */

.desc.kl desc.esp.p2p store = true,
.desc.kl desc.esp.p2p nsrcs = 0,

.desc.kl desc.esp.p2p srcs = {"","","", ""},
by
{

.devname = “k2.0",

.type = k2,
/* accelerator configuration */
.desc.k2 desc.nbursts = 8,

/* p2p configuration */

.desc.k2 desc.esp.pZ2p store = false,

.desc.k2 desc.esp.p2p nsrcs 1,

.desc.k2 desc.esp.p2p srcs = {“k1.0","","",""},

}y
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Evaluation
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Experimental setup

* We deploy two multi-accelerator
SoCs on FPGA (XilinxVCU118)

* We execute applications with
accelerator chaining and parallelism
opportunities

* We compare the our SoCs against:
o Intel i7 8700K processor
o NVIDIA Jetson TX1
= 256-core NVIDIA Maxwell GPU
= Quad-core ARM Cortex Ag7
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Featured accelerators:
(hlsgml)

o Street View House Numbers (SVHN)
dataset from Google

(hlsgml)
o Implemented as an autoencoder
(Stratus HLS)

o Noise filtering, histogram, histogram
equalization



Case studies
SoCs
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Applications

1 Denoiser + 1 Classifier

N NightVision + N Classifier

N NightVision + 1 Classifier

Classifier split in 5
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Efficiency

- Night-Vision and Denoiser and Multi-tile
Chaining 9 Classifier Classifier Classifier
accelerators é 100 100 100
brlqgs energy 5
savings. < 10 10 0
=
: s
Our SoCs achieve | { { C - ,
better energy 0
efficiency than E
Jetson and i7. L 0.1 0.1 0.1
INV+1Cl 4NV+1Cl 4NV+4Cl 1De + 1Cl 1Cl split
B memory Mp2p
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Performance
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Memory accesses

100%
80%
= 60%
Accelerator chaining (p2p)
40%
reduces the memory
accesses by 2-3 times 20% I I
0%

Multi-tile  Nightvision Denoiser +
classifier + classifier classifier

DRAM accesses
(normalized)

B memory Hp2p
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Conclusions

is a complete system-level design flow to implement many-
accelerator SoCs and to deploy embedded applications on them.

We enhanced ESP with the following features:

* Fully automatic integration in ESP of accelerators specified in (Vivado
HLS) and (hlsgml)
* Minimal to invoke accelerator for ESP

* Reconfigurable activation of accelerators pipelines through efficient
communication mechanisms
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Thank you from the ESP team!
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