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Heterogeneous Architectures Are Emerging Everywhere
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How it Works
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A (Perhaps Easy?) Prediction:
No Single Architecture Will Emerge as the Sole Winner

e The migration from homogeneous multi-core architectures to
heterogeneous System-on-Chip architectures will accelerate,
across almost all computing domains

— from loT devices, embedded systems and mobile devices to data

centers and supercomputers specialization will be the key to realize =~
competitive systems g

e A heterogeneous SoC will combine an increasingly diverse set
of components

— different CPUs, GPUs, hardware accelerators, memory hierarchies,
|/O peripherals, sensors, reconfigurable engines, analog blocks...

e The set of heterogeneous SoCs in production in any given
year will be itself heterogeneous!

— no single SoC architecture will dominate all the markets
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Where the Key Challenges in SoC Design Are...

* The biggest challenges are (and will mcreasmgly be) found in thel_
complexity of system integration ‘ : N NG

— How to design, program and validate scalable
systems that combine a very large number of
heterogeneous components to provide a
solution that is specialized for a target class
of applications?

e How to handle this complexity? |

— raise the level of abstraction to System-Level Design
— adopt compositional design methods with the Protocol & Shell Paradigm

— promote Design Reuse
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Embedded Scalable Platforms (ESP)

e The flexible architecture Application Application
simplifies the integration of Specification Requirements
IP Block Development and Reuse

heterogeneous components

by Profiling & Kernel Identification System Integration

e balancing regularity and

specialization Accelerator IP
. Refinement Encapsulation
e relying on the Protocol & P

Shell paradigm and ‘ Y
scalable communication HLS & Micro-Architectural Choices
infrastructure :
. Modular
* The system-level design Interconnect & Processor IP Isnotcekr:ce
methodology promotes Tile Configuration Instancing /
HW/SW co-design and is w/ ESP Services w/ SW Sockets

supported by Physical Accelerator IP Instancing
e a mix of commercial and Constraints w/ HW Sockets
in-house CAD tools

e agrowing library of
reusable IP blocks [L. P. Carloni, The Case for Embedded Scalable Platforms, DAC 2016 ]
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The ESP Scalable Architecture Template

Template Properties
e Regularity
— tile-based design

— pre-designed on-chip
infrastructure for communication
and resource management

e Flexibility

Possible Instance of an ESP Chip — each ESP design is the result of a
configurable mix of
— each hosting at least one configurable processor programmable tileS and
core capable of running an OS accelerator tiles
— synthesized from high-level specs ® SpECiaIizaticn
* OtherTiles — with automatic high-level
— memory interfaces, 1/0, etc. hesi f | for k
e Network-on-Chip (NoC) synthesis ot acce erators tor key
— playing key roles at both design and run time com putatlonal kernels
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Our System-Level Design Approach: Key Ingredients

e Develop Platforms, not just Architectures
— A platform combines an architecture and a companion design methodology

e Raise the level of abstraction
— Move from RTL Design to System-Level Design
— Move from ISA simulators to Virtual Platforms
— Move from Verilog/VHDL to SystemC, also an IEEE standard

— Move from Logic Synthesis to High-Level Synthesis (both commercial and in-house tools), which is the
key to enabling rich design-space exploration

e Adopt compositional design methods

— Rely on customizable libraries of HW/SW interfaces to simplify the integration of heterogeneous
components

e Use formal metrics for design reuse
— Synthesize Pareto frontiers of optimal implementations from high-level specs
e Build real prototypes (both chips and FPGA-based full-system designs)

— Prototypes drive research in systems, architectures, software and CAD tools
©Luca Carloni — Columbia University 7



Example of an ESP Based-Design:
FPGA Prototype to Accelerate Wide-Area Motion Imagery

2. cpu

3. WAMI_APP_DEBAYER

4. WAMI_APP GRAYSCALE 5. WAMI_APP_GRADIENT 6. WAMI_APP_WARP

7. WAMI_APP SUBTRACT

B. WAMI_APP_STEEPEST DESCENT | 5 WaAS APP HESSIAN 10. WAMI_APP_SD_UPDATE

12. WAMI_APP_RESHAPE 13.

SoC Map

WAMI_APP_ADD 14 WAMI _APP CHANGE DETECTION -

Sampling Window

Power per Domain

Console Interface

Frame Buffer

NoC Planes Traffic

e
S Motion Detection from
WAMI-Application

11 WAMI_APP_MULT
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Stop

Power consumption relative to VF max

o QO o O

Toggle Statistics

DMA NoCs traffic

2 =

FPGA Infrastructure

Design: Complete design of WAMI-App
running on an FPGA implementation of
an ESP architecture

— featuring 1 embedded processor,
12 accelerators, 1 five-plane NoC,
and 2 DRAM controllers

— SW application running on top of
Linux while leveraging multi-
threading library to program the
accelerators and control their
concurrent, pipelined execution

— Five-plane, 2D-mesh NoC efficiently
supports multiple independent
frequency domains and a variety of
platform services

[P. Mantovani, L. P. Carloni et al., An FPGA-Based

Infrastructure for Fine-Grained DVFS Analysis in

High-Performance Embedded Systems, DAC 2016 ]
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How to Couple Accelerators, Processors and Memories?

e There are two main models of coupling Tightly-Coupled Accelerators (TCA)
accelerators with Processors, memories | IRFHI ] M
— Tightly-Coupled Accelerators — j} D$ ]
e designed with the processor core — — — L
e |ocated within the processor core 1L Accelerator Logic
e execute fine-grain tasks on small datasets CPU

e typically accessed via specialized instructions
Loosely-Coupled Accelerators (LCA)

— Loosely-Coupled Accelerators

e designed independently from the processor core CPU Accelerator Logic | Scratchpad

e located outside the processor core STATUS FEq Accelerator | DMA LLC
. [/D$ Interface |controller

* execute coarse-grain tasks on large datasets / .

IRQ

o typically accessed via device drivers
On-Chip-Interconnect

[ E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, An Analysis of
Accelerator Coupling in Heterogeneous Architectures, DAC’15]

©Luca Carloni — Columbia University



Modeling Loosely-Coupled Accelerators

configuration e The behavior of loosely-coupled
SC_MODULE registers Accelerator .
accelerators has 4 main phases
conf logic
e v g§ v — configuration, input, compute, output
| . . . e |/O phases transfer chunks of data
oad logic compute logic store logic

QS QD QS from DRAM to the PLM
input output — these transfers are specified with TLM
| > |

S cllliE I > primitives, implemented with DMA
bank || bank | Private Local Memory (PLM) mechanisms

e The accelerator model enables the definition of a configurable interface that
simplifies the integration of the accelerator within any ESP instance

— by decoupling the design of any accelerators from the design of the rest of the SoC

©Luca Carloni — Columbia University



Loosely-Coupled Accelerators

e Major speedups and energy

processor processor mem. ctrl <—>§

savings: : ¢ ; of
. . - - LLC &
highly parallel and customized e athe directory
datapath } ! !
— aggressively banked, multi-ported, Interconnect
private local memory (PLM) ! ! ! )
2 2 2 2

e \WWhat should the cache coherence

model for accelerators be? datapath  datapath  datapath  datapath

PLM PLM PLM PLM

accelerators

— 3 main models in literature
[D. Giri et al., IEEE Micro ‘18]
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Accelerator Models: Fully Coherent

e Coherent with the entire cache
hierarchy

— same coherence model as the
processor

e Programming requirements
— race-free accelerator execution

e Implementation variants
— generally bus-based

— accelerators may own a cache

v IBM CAPI, [Y. Shao et al., MICRO ‘16],
[M. J. Lyons et al., TACO “12]

x ARM ACE-lite

processor processor mem. cirl (_>§

v v v a
private  private LLC &
cache cache directory
! ) )
Interconnect fwd, ackl  [req, rsp
I v i } v
< private
5 cache
% datapath  datapath  datapath  datapath
S PLM PLM PLM PLM
fully fully
coherent coherent
(cache) (no cache)
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Accelerator Models: Non Coherent

e Not coherent with cache hierarchy <
processor processor mem. cirl <
o

— caches are by-passed while talking with FLUSH
DRAM ==
private  private LLC &
: : cache cache directory
e Programming requirements f £A £
— race-free accelerator execution Inferconnect fwd, acf _ ed, Fsp
— flush all caches prior to accelerator Pl ! Pl
execution < private DMA
' . 5 cache ctrl
e Implementation variants © datapath  datapath  datapath  datapath
— generally NoC-based & DMA-based S| PLM PLM PLM PLM
e [Y. Chenetal., ICCD ‘13] 1;]u||y F?O” fully
[E. Cota et al., DAC ‘15] Chetent conerent e

[Y. Shao et al., MICRO ‘16]
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Accelerator Models: LLC Coherent

e Coherent with LLC only

— processors’ private caches are
by-passed while talking with the LLC

e Programming requirements
— race-free accelerator execution

— flush processors’ private caches
prior to accelerator execution

e Implementation variants

— first proposed by
[E. Cota et al., DAC 15]

— only 1 implementation in literature
[D. Giri et al., NOCS 18]

accelerators

processor processor mem. ctrl « <
FLUSH FLUSH o<

M A
private  private LLIC &
cache cache directory
l 11 ()
Interconnect fwd, ack]  [red, Tsp
¢ A 4 i A 4 i A 4 \ 4 ¢
private DMA DMA

cache ctrl

datapath  datapath d

PLM PLM

fully LLC
coherent coherent

(cache)

ctrl
atapath  datapath

PLM PLM

non fully

coherent coherent

(no cache)
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Motivation: Why Different Coherence Models?

e The best choice of coherence model varies at runtime with the
accelerator workload size and with the number of active accelerators

e LLC-coherent and fully-coherent models can significantly reduce the
number of off-chip memory accesses

RULE OF THUMB
BEST fully-coherent LLC-coherent non-coherent
MODEL model model model
* ~ memory
, , footprint of
private cache size LLC size

workload

[D. Giri, P. Mantovani, and L. P. Carloni, Accelerators & Coherence: An SoC Perspective.

IEEE MICRO, 2018. ]
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Heterogeneous Coherence: Experimental Setup

CHARACTERIZATION OF THE TARGET ACCELERATORS.

e FFT1D
Accelerator Memory PLM FPGA Resources _
Footprint (kB) | LUT FF  BRAM — streaming memory access
FFT 1D 30kB - 256kB | 40 | 7537 4310 10
Sort 128kB - 4MB | 24 | 36,868 31,300 6 e Sort
FFT 2D 256kB - 1I6MB | 128 | 3965 2,190 48
SPMV 25kB - 10MB | 12 | 8,136 4476 24 — no temporal locality, but in-place (i.e. in
- the PLM) data processin
e The ability to have perfectly ) P 5
balanced accelerator stages is * FFT2D
highly dependent on the specific — streaming memory access, but two
memory access patterns phases with sequential dependency
— as well as on the system interconnect * SPMV
and the memory hierarchy, including — asymmetric data reuse with irregular
the selected cache-coherence model access pattern

— very low compute-to-memory ratio
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Results: Comparing the Speedup of Non-Coherent vs.

LLC-Coherent Accelerators gRunning Standalone[
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Fig. 4. Comparison of speedup w.r.t. software of non-coherent (NC) and LLC-coherent (LLC) accelerators. Bars are annotated with the memory access count.

e Compared to non-coherent accelerators, the relative speedup of LLC-coherent
accelerators ranges between 0.5x and 4x

— the memory access count, instead, ranges from 0 to at most 2x (in worst-case scenario)

e Confirmation of the benefits of runtime model selection based on footprint
17



Contributions

e \We propose a runtime algorithm to adaptively manage the cache
coherence of accelerators

— we show how to leverage the heterogeneity of cache-coherence models
to improve the overall system performance.

e \We evaluate the algorithm with:

— our FPGA-based platform for rapid SoC prototyping,
which is part of the Embedded Scalable Platform project

— synthetic accelerators with a wide range of communication properties
— synthetic application

e varying number of concurrently active accelerators

e variable memory footprint of the accelerators’ workload

18



Our SoC Platform

e Our design is based on an instance of
Embedded Scalable Platforms (ESP)
— socketed tiles
— multi-plane NoC

— easy integration and reuse of
heterogeneous components

— capable of running multi-processor and
multi-accelerator applications on Linux SMP

— support for all three cache-coherence
models for accelerators

proc

acc

mem

NoC

routers

[Giri et al., NOCS "18]



Processor Tile

e Main components

— single-core processor tiles,
with private L2 cache

e |n this work
— up to 2 processor tiles
— 64KB private caches

— off-the-shelf processor with L1
write-through caches: Leon3

NoC

routers

|

processor

o)
>
® ® LT cache %
ol
) 2
-~ > 5
./ IO .E
L2 cache < o
proc | |
° °® coherence IO/IRQ
planes plane
acc mem NoC
o o
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Memory Tile

NoC
® Ma|n COmpOnentS /romers processor ‘—7>,
® ® ® ® L1 cache %
— memory controller | S
-~ > 5
— LLC and directory y y S—— L2cache - Ioflush_
: . . proc ,
e can be split over multiple tiles 1 R 4§ | cohIeJ'rence 0/IRQ
planes plane
i NoC
e |n this work N >
® ® ® \ DRAM
— 2 memory tiles At *I
mem. ctr
— 2MB aggregate LLC (1MB per tile) -l ~
LLC & -
directory <= K | é
R
coherénce DMA |10/IRQ
plar}s planes plane

NoC e fully coherent

@ | | C coherent

@ non coherent
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Accelerator Tile

e Main components

— any accelerator complying with a

simple interface
— asmall TLB

— a DMA controller and/or a private

cache

e Support for run-time selection

of coherence model

— selection granularity: possible at
each accelerator invocation

— selection method: one I/O write
to the configuration registers

NoC

routers
processor T>,
® ® ® °® L1 cache <
ol
) 2
- 7 > 5
® ® ® L) IO £
flush

proc | |

® ® ® °® coherence IO/IRQ
planes plane

acc mem

NoC

® ° + ° \ A DR?M
accelerator PLM mem. ctrl
read /write port config port done - ¢I ! >
— DMA cf LLC & B
cache <= TLB — ctrl regs IRQ directory == I fS
- ¢ ¢ ¥ (Al Iy
coherenge DMA 10/IRQ coherence  DMA |O/IRQ
planes planes plane planes planes  plane
—
NoC

e fully coherent
LLC coherent

non coherent
22



The Proposed Algorithm for Adaptive Management of
Accelerator Coherence

if (footprint < PRIVATE CACHE_SIZE)
if (n_fully coherent < MAX_ FULLY_COHERENT)
coherence = FULLY_COHERENT;
else
coherence = LLC_COHERENT;

e Executed by the ;
device driver at 3
each accelerator’s g

invocation 6

7 else if ((current 1llc footprint + footprint)
8
9
90

> LLC SIZE)
coherence = NON_COHERENT;

e Selects the
cache-coherence )

model for the 11 else if (n acc on 1llc or fully coherent
= b S
accelerator >= N_MEM TILES MAX_ACC _PER LLC)

12 coherence = NON_COHERENT;
e Static inputs: 4 L2

14 else
* Dynamic inputs: 4 15 coherence

LLC_COHERENT,




Synthetic Accelerators

e An accelerator is characterized by its communication properties
— we defined 8 parameters to describe the communication properties

— we designed a “master accelerator” with parametrizable communication
properties

— we generated 12 accelerators with a wide range of communication

Accelerator ID 1 2 3 4 5 6 7 8 9 10 11 12
Access pattern | stream stride stream irreg stream stride stream irreg stream stride stream irreg
Access fraction 1 1 1 1 1 1 1 1/4 1 1 1 1/16
Burst ]ength 64 4 32 4 128 8 64 4 16 4 32 4
Stride length 0 256 0 0 0 32 0 0 0 512 0 0
Compute-mem ratio 1 1 2 1 4 2 8 2 4 4 2 1
Reuse factor 2 4 1 1 4 1 1 4 1 2 4 1
In-place no no yes yes no yes no no yes no no yes
In-out ratio 1 2 4 1 2 4 1 2 4 1 2 4
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Synthetic Application

e Application with multiple phases
— variable memory footprints of the accelerators’ workloads
— variable number of concurrently active accelerators

thread 1 App | Memory footprints Max active
phases sizes accelerators
\‘\8? /\3@* 1 variable 1
&
thread 2 2 large :
3 small 1
5 large 6
6 small 6
thread 3 7 variable 12
8 large 12
9 small 12

Sample of a possible app phase Phases in our app
25



Evaluation SoC

e ESP’s GUI

— the CAD flow from GUI
to FPGA bitstream is
fully automated

e We deployed this SoC
on FPGA and we
executed the synthetic

application on Linux
SMP

Check and Update SoC Configuration

Memory & Debugv

synth ~ | [V

5i'i

o~ | VGt || sy~ | Cae

)
‘v
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Results

e QOur algorithm reduces: App execution

— the execution time by at least 40% (average of per-phase results)

— the off-chip accesses by at least 30% 2

2
Phase 0
o o« 1.5
(] c
w 25
g =
=y '
E
o
;:_) i 0.5
S
2 1 0
S 0 Off-chip accesses
o 0 0.5 1 1.5 2 2.5 H Our algorithm W non-coherent
Execution time (s) W LLC-coherent W fully-coherent




Conclusions

e We showed how to exploit the heterogeneity of cache-coherence
models

— We proposed a runtime algorithm to select the proper cache-coherence
model at each accelerator’s invocation

e Heterogeneity of cache-coherence models for accelerators can:
— |lead to speedups of at least 40%
— reduce the off-chip accesses by a minimum of 30%

e The algorithm is general enough to apply to any SoC

— its inputs are: number of active accelerators, caches capacity, memory
footprint of the accelerator workloads
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