Runtime Reconfigurable Memory Hierarchy
in Embedded Scalable Platforms

Davide Giri, Paolo Mantovani, Luca Carloni

Department of Computer Science
Columbia University in the City of New York

24th Asia and South Pacific Design Automation Conference (ASPDAC), January 21-24, 2019

Heterogeneous Architectures Are Emerging Everywhere

2x320

1.6GHz DDR SORAM

EyeQ4-High

s LPOOR4SS
block diagram L

LPODR4/S
PHY

lvyTown Xeon + Stratix V FPGA

Processing System

Peripheral Transport
Manager (PTM)

ARM Mali™- 400 P ek
Accelerating Workloads using Xeon and coherently attached FPGA in-socket s
UsB30
2Pl
Processars SA39
Processor el Xeon” o262 ey K ‘Wemory Management Unit PCle Gen?
FPGAModule | AlteraSwaiix V. LA FS-GIR
I QPi Speed 6.4 GT/s full width -
E5-2600v2 Memory o FPGA | 2 channels of DDR3 (natused Wik By
Product Family Module on HARP platform) Oual ARM Cortex™-RS o
Configuration Agent, Caching """"’Uz:'“"“‘ DMA, Timers, 120
Features Agent, (optional) Memory VOT, Resets, UART
Controller 1288 1o | 32K 1-Cache Clocking B0
‘Accelerator Abswraction Layer WRAECC § withEce ardDebug g SPINGR
(AAL) runtime, drivers, sample
EOIS applications [o | su’;::?m
1 1 1
3 ¥ +
Programmable Logic
Storage and Signal Processing High Speed Connectivity Video Codec

Block RAM ceneral Purpose 10 [N
UltraRAM High-Performance HPIO

! 4

[Source: “Xeon+FPGA Tutorial @ ISCA’16” |

[Source: www.xilinx.com/]

Video_in:
Pows | ox X .
uArRt | GPio SPL 3 x mipl 4Lane RCC | WiFT C5-2Far
oLs

canFD | eC | Timer

Video_out; Pt
araliel

=

1Gbs Ethernet

Masler[jsmve
[Source: www.mobileye.com/]

HARDWARE
DEVELOPMENT KIT

ARM v8
CPU

COMPLEX

(2x Denver 2 + 4x A57)
Coherent HMP

4K60
VIDEQ
DECODER

SECURITY
ENGINES

AUDIO

ENGINE 2D ENGINE

DEVELOP

ENCODER

Develop custom
GigE
Ethernet
MAC

DISPLAY Amazon FPGA Images
(AFI) using the

Hardware

128-bit
LPDDR4

BOOT and
PM PROC

IMAGE
ENGINES PROC (ISP)

Developrment Kit
(HDK) and full set of
design tools and

Safety
Engine 170

simulators.

[Source: https://blogs.nvidia.com/]

How it Works

CUSTOM

LOGIC

DEPLOY

Deploy your AFI
directly on F1
instances and take
advantage of all the
scalability, agility, and
security benefits of
ECZ2.

AMAZON
FPGA IMAGE (AFI)
[*lL")
&8
=
0 40

=
[=2)
=
=

[alaYaTs]

Attach yoor AF to

OFFER

Offer AFls you design
on the AWS
Marketplace for other
customers.

[Source:

=

https://cloudplatform.googleblog.cdm/

L2 [:J Network switch (top of rack, cluster)
~—— FPGA - switch link
AWS MARKETPLACE 5] L1
/ £ FPGAacceleration board
vvvvvvvvvv b @F Py —— NIC-FPGA link
jol Qo ~— 2-socket CPU server 2-socket server blade
Datacenter hw acceleration plane
TOR |TOR X -
........... D
s Expensive
F1 INSTANCE
B
PURCHASE i ranking. ?
5
Purchase AFls built HHH E
and listed on AWS AR g
Marketplace to quickly ! I o el
implement common

hardware

accelerations.

[Source: https://aws.amazon.com/ec2/instance-types/fl/]

©Luca Carloni — Columbia University

Traditional sw (CPU) server plane

[Source: www.m

icrosoft.com/]

A (Perhaps Easy?) Prediction:
No Single Architecture Will Emerge as the Sole Winner

e The migration from homogeneous multi-core architectures to
heterogeneous System-on-Chip architectures will accelerate,
across almost all computing domains

— from loT devices, embedded systems and mobile devices to data

centers and supercomputers specialization will be the key to realize =~
competitive systems g

e A heterogeneous SoC will combine an increasingly diverse set
of components

— different CPUs, GPUs, hardware accelerators, memory hierarchies,
|/O peripherals, sensors, reconfigurable engines, analog blocks...

e The set of heterogeneous SoCs in production in any given
year will be itself heterogeneous!

— no single SoC architecture will dominate all the markets

“m?w N 8 3
bt B v L)

o i \ % . A
A 2 (!f'b.“-'"f._

©Luca Carloni — Columbia University Page 3

Where the Key Challenges in SoC Design Are...

* The biggest challenges are (and will mcreasmgly be) found in thel_
complexity of system integration ‘ : N NG

— How to design, program and validate scalable
systems that combine a very large number of
heterogeneous components to provide a
solution that is specialized for a target class
of applications?

e How to handle this complexity? |

— raise the level of abstraction to System-Level Design
— adopt compositional design methods with the Protocol & Shell Paradigm

— promote Design Reuse

©Luca Carloni — Columbia University Page 4

Embedded Scalable Platforms (ESP)

e The flexible architecture Application Application
simplifies the integration of Specification Requirements
IP Block Development and Reuse

heterogeneous components

by Profiling & Kernel Identification System Integration

e balancing regularity and

specialization Accelerator IP
. Refinement Encapsulation
e relying on the Protocol & P

Shell paradigm and ‘ Y
scalable communication HLS & Micro-Architectural Choices
infrastructure :
. Modular
* The system-level design Interconnect & Processor IP Isnotcekr:ce
methodology promotes Tile Configuration Instancing /
HW/SW co-design and is w/ ESP Services w/ SW Sockets

supported by Physical Accelerator IP Instancing
e a mix of commercial and Constraints w/ HW Sockets
in-house CAD tools

e agrowing library of
reusable IP blocks [L. P. Carloni, The Case for Embedded Scalable Platforms, DAC 2016]

©Luca Carloni — Columbia University Page 5

The ESP Scalable Architecture Template

Template Properties
e Regularity
— tile-based design

— pre-designed on-chip
infrastructure for communication
and resource management

e Flexibility

Possible Instance of an ESP Chip — each ESP design is the result of a
configurable mix of
— each hosting at least one configurable processor programmable tileS and
core capable of running an OS accelerator tiles
— synthesized from high-level specs ® SpECiaIizaticn
* OtherTiles — with automatic high-level
— memory interfaces, 1/0, etc. hesi f | for k
e Network-on-Chip (NoC) synthesis ot acce erators tor key
— playing key roles at both design and run time com putatlonal kernels

©Luca Carloni — Columbia University

Our System-Level Design Approach: Key Ingredients

e Develop Platforms, not just Architectures
— A platform combines an architecture and a companion design methodology

e Raise the level of abstraction
— Move from RTL Design to System-Level Design
— Move from ISA simulators to Virtual Platforms
— Move from Verilog/VHDL to SystemC, also an IEEE standard

— Move from Logic Synthesis to High-Level Synthesis (both commercial and in-house tools), which is the
key to enabling rich design-space exploration

e Adopt compositional design methods

— Rely on customizable libraries of HW/SW interfaces to simplify the integration of heterogeneous
components

e Use formal metrics for design reuse
— Synthesize Pareto frontiers of optimal implementations from high-level specs
e Build real prototypes (both chips and FPGA-based full-system designs)

— Prototypes drive research in systems, architectures, software and CAD tools
©Luca Carloni — Columbia University 7

Example of an ESP Based-Design:
FPGA Prototype to Accelerate Wide-Area Motion Imagery

2. cpu

3. WAMI_APP_DEBAYER

4. WAMI_APP GRAYSCALE 5. WAMI_APP_GRADIENT 6. WAMI_APP_WARP

7. WAMI_APP SUBTRACT

B. WAMI_APP_STEEPEST DESCENT | 5 WaAS APP HESSIAN 10. WAMI_APP_SD_UPDATE

12. WAMI_APP_RESHAPE 13.

SoC Map

WAMI_APP_ADD 14 WAMI _APP CHANGE DETECTION -

Sampling Window

Power per Domain

Console Interface

Frame Buffer

NoC Planes Traffic

e
S Motion Detection from
WAMI-Application

11 WAMI_APP_MULT

©Luca Carloni — Columbia University

Stop

Power consumption relative to VF max

o QO o O

Toggle Statistics

DMA NoCs traffic

2 =

FPGA Infrastructure

Design: Complete design of WAMI-App
running on an FPGA implementation of
an ESP architecture

— featuring 1 embedded processor,
12 accelerators, 1 five-plane NoC,
and 2 DRAM controllers

— SW application running on top of
Linux while leveraging multi-
threading library to program the
accelerators and control their
concurrent, pipelined execution

— Five-plane, 2D-mesh NoC efficiently
supports multiple independent
frequency domains and a variety of
platform services

[P. Mantovani, L. P. Carloni et al., An FPGA-Based

Infrastructure for Fine-Grained DVFS Analysis in

High-Performance Embedded Systems, DAC 2016]
Page 8

How to Couple Accelerators, Processors and Memories?

e There are two main models of coupling Tightly-Coupled Accelerators (TCA)
accelerators with Processors, memories | IRFHI] M
— Tightly-Coupled Accelerators — j} D$]
e designed with the processor core — — — L
e |ocated within the processor core 1L Accelerator Logic
e execute fine-grain tasks on small datasets CPU

e typically accessed via specialized instructions
Loosely-Coupled Accelerators (LCA)

— Loosely-Coupled Accelerators

e designed independently from the processor core CPU Accelerator Logic | Scratchpad

e located outside the processor core STATUS FEq Accelerator | DMA LLC
. [/D$ Interface |controller

* execute coarse-grain tasks on large datasets / .

IRQ

o typically accessed via device drivers
On-Chip-Interconnect

[E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, An Analysis of
Accelerator Coupling in Heterogeneous Architectures, DAC’15]

©Luca Carloni — Columbia University

Modeling Loosely-Coupled Accelerators

configuration e The behavior of loosely-coupled
SC_MODULE registers Accelerator .
accelerators has 4 main phases
conf logic
e v g§ v — configuration, input, compute, output
| . . . e |/O phases transfer chunks of data
oad logic compute logic store logic

QS QD QS from DRAM to the PLM
input output — these transfers are specified with TLM
| > |

S cllliE I > primitives, implemented with DMA
bank || bank | Private Local Memory (PLM) mechanisms

e The accelerator model enables the definition of a configurable interface that
simplifies the integration of the accelerator within any ESP instance

— by decoupling the design of any accelerators from the design of the rest of the SoC

©Luca Carloni — Columbia University

Loosely-Coupled Accelerators

e Major speedups and energy

processor processor mem. ctrl <—>§

savings: : ¢ ; of
. . - - LLC &
highly parallel and customized e athe directory
datapath } ! !
— aggressively banked, multi-ported, Interconnect
private local memory (PLM) ! ! !)
2 2 2 2

e \WWhat should the cache coherence

model for accelerators be? datapath datapath datapath datapath

PLM PLM PLM PLM

accelerators

— 3 main models in literature
[D. Giri et al., IEEE Micro ‘18]

11

Accelerator Models: Fully Coherent

e Coherent with the entire cache
hierarchy

— same coherence model as the
processor

e Programming requirements
— race-free accelerator execution

e Implementation variants
— generally bus-based

— accelerators may own a cache

v IBM CAPI, [Y. Shao et al., MICRO ‘16],
[M. J. Lyons et al., TACO “12]

x ARM ACE-lite

processor processor mem. cirl (_>§

v v v a
private private LLC &
cache cache directory
!))
Interconnect fwd, ackl [req, rsp
I v i } v
< private
5 cache
% datapath datapath datapath datapath
S PLM PLM PLM PLM
fully fully
coherent coherent
(cache) (no cache)

12

Accelerator Models: Non Coherent

e Not coherent with cache hierarchy <
processor processor mem. cirl <
o

— caches are by-passed while talking with FLUSH
DRAM ==
private private LLC &
: : cache cache directory
e Programming requirements f £A £
— race-free accelerator execution Inferconnect fwd, acf _ ed, Fsp
— flush all caches prior to accelerator Pl ! Pl
execution < private DMA
' . 5 cache ctrl
e Implementation variants © datapath datapath datapath datapath
— generally NoC-based & DMA-based S| PLM PLM PLM PLM
e [Y. Chenetal., ICCD ‘13] 1;]u||y F?O” fully
[E. Cota et al., DAC ‘15] Chetent conerent e

[Y. Shao et al., MICRO ‘16]

13

Accelerator Models: LLC Coherent

e Coherent with LLC only

— processors’ private caches are
by-passed while talking with the LLC

e Programming requirements
— race-free accelerator execution

— flush processors’ private caches
prior to accelerator execution

e Implementation variants

— first proposed by
[E. Cota et al., DAC 15]

— only 1 implementation in literature
[D. Giri et al., NOCS 18]

accelerators

processor processor mem. ctrl « <
FLUSH FLUSH o<

M A
private private LLIC &
cache cache directory
l 11 ()
Interconnect fwd, ack] [red, Tsp
¢ A 4 i A 4 i A 4 \ 4 ¢
private DMA DMA

cache ctrl

datapath datapath d

PLM PLM

fully LLC
coherent coherent

(cache)

ctrl
atapath datapath

PLM PLM

non fully

coherent coherent

(no cache)

14

Motivation: Why Different Coherence Models?

e The best choice of coherence model varies at runtime with the
accelerator workload size and with the number of active accelerators

e LLC-coherent and fully-coherent models can significantly reduce the
number of off-chip memory accesses

RULE OF THUMB
BEST fully-coherent LLC-coherent non-coherent
MODEL model model model
* ~ memory
, , footprint of
private cache size LLC size

workload

[D. Giri, P. Mantovani, and L. P. Carloni, Accelerators & Coherence: An SoC Perspective.

IEEE MICRO, 2018.]

15

Heterogeneous Coherence: Experimental Setup

CHARACTERIZATION OF THE TARGET ACCELERATORS.

e FFT1D
Accelerator Memory PLM FPGA Resources _
Footprint (kB) | LUT FF BRAM — streaming memory access
FFT 1D 30kB - 256kB | 40 | 7537 4310 10
Sort 128kB - 4MB | 24 | 36,868 31,300 6 e Sort
FFT 2D 256kB - 1I6MB | 128 | 3965 2,190 48
SPMV 25kB - 10MB | 12 | 8,136 4476 24 — no temporal locality, but in-place (i.e. in
- the PLM) data processin
e The ability to have perfectly) P 5
balanced accelerator stages is * FFT2D
highly dependent on the specific — streaming memory access, but two
memory access patterns phases with sequential dependency
— as well as on the system interconnect * SPMV
and the memory hierarchy, including — asymmetric data reuse with irregular
the selected cache-coherence model access pattern

— very low compute-to-memory ratio

16

Results: Comparing the Speedup of Non-Coherent vs.

LLC-Coherent Accelerators gRunning Standalone[

<= LLC winning -

FFT-1D Sort Sparse Matrix-Vector Mult.

25 =

- 135

a
223 b

225 [

10.5

12.5

[1848a)
]

S Al
201 3K

Speedup (vs. Software)

237K
171K
400 5K

&

& 7z z a Sy Zy W Fo Sy Ti T z z - s F
U'ts %"@% o %@%’?‘é&*ﬁ% e ES S S S % % L&% Uy %ﬂr—@ Uy % gy
NC LLC NC LLC NC LLC

Fig. 4. Comparison of speedup w.r.t. software of non-coherent (NC) and LLC-coherent (LLC) accelerators. Bars are annotated with the memory access count.

e Compared to non-coherent accelerators, the relative speedup of LLC-coherent
accelerators ranges between 0.5x and 4x

— the memory access count, instead, ranges from 0 to at most 2x (in worst-case scenario)

e Confirmation of the benefits of runtime model selection based on footprint
17

Contributions

e \We propose a runtime algorithm to adaptively manage the cache
coherence of accelerators

— we show how to leverage the heterogeneity of cache-coherence models
to improve the overall system performance.

e \We evaluate the algorithm with:

— our FPGA-based platform for rapid SoC prototyping,
which is part of the Embedded Scalable Platform project

— synthetic accelerators with a wide range of communication properties
— synthetic application

e varying number of concurrently active accelerators

e variable memory footprint of the accelerators’ workload

18

Our SoC Platform

e Our design is based on an instance of
Embedded Scalable Platforms (ESP)
— socketed tiles
— multi-plane NoC

— easy integration and reuse of
heterogeneous components

— capable of running multi-processor and
multi-accelerator applications on Linux SMP

— support for all three cache-coherence
models for accelerators

proc

acc

mem

NoC

routers

[Giri et al., NOCS "18]

Processor Tile

e Main components

— single-core processor tiles,
with private L2 cache

e |n this work
— up to 2 processor tiles
— 64KB private caches

— off-the-shelf processor with L1
write-through caches: Leon3

NoC

routers

|

processor

o)
>
® ® LT cache %
ol
) 2
-~ > 5
./ IO .E
L2 cache < o
proc | |
° °® coherence IO/IRQ
planes plane
acc mem NoC
o o

20

Memory Tile

NoC
® Ma|n COmpOnentS /romers processor ‘—7>,
® ® ® ® L1 cache %
— memory controller | S
-~ > 5
— LLC and directory y y S—— L2cache - Ioflush_
: . . proc ,
e can be split over multiple tiles 1 R 4§ | cohIeJ'rence 0/IRQ
planes plane
i NoC
e |n this work N >
® ® ® \ DRAM
— 2 memory tiles At *I
mem. ctr
— 2MB aggregate LLC (1MB per tile) -l ~
LLC & -
directory <= K | é
R
coherénce DMA |10/IRQ
plar}s planes plane

NoC e fully coherent

@ | | C coherent

@ non coherent
21

Accelerator Tile

e Main components

— any accelerator complying with a

simple interface
— asmall TLB

— a DMA controller and/or a private

cache

e Support for run-time selection

of coherence model

— selection granularity: possible at
each accelerator invocation

— selection method: one I/O write
to the configuration registers

NoC

routers
processor T>,
® ® ® °® L1 cache <
ol
) 2
- 7 > 5
® ® ® L) IO £
flush

proc | |

® ® ® °® coherence IO/IRQ
planes plane

acc mem

NoC

® ° + ° \ A DR?M
accelerator PLM mem. ctrl
read /write port config port done - ¢I ! >
— DMA cf LLC & B
cache <= TLB — ctrl regs IRQ directory == I fS
- ¢ ¢ ¥ (Al Iy
coherenge DMA 10/IRQ coherence DMA |O/IRQ
planes planes plane planes planes plane
—
NoC

e fully coherent
LLC coherent

non coherent
22

The Proposed Algorithm for Adaptive Management of
Accelerator Coherence

if (footprint < PRIVATE CACHE_SIZE)
if (n_fully coherent < MAX_ FULLY_COHERENT)
coherence = FULLY_COHERENT;
else
coherence = LLC_COHERENT;

e Executed by the ;
device driver at 3
each accelerator’s g

invocation 6

7 else if ((current 1llc footprint + footprint)
8
9
90

> LLC SIZE)
coherence = NON_COHERENT;

e Selects the
cache-coherence)

model for the 11 else if (n acc on 1llc or fully coherent
= b S
accelerator >= N_MEM TILES MAX_ACC _PER LLC)

12 coherence = NON_COHERENT;
e Static inputs: 4 L2

14 else
* Dynamic inputs: 4 15 coherence

LLC_COHERENT,

Synthetic Accelerators

e An accelerator is characterized by its communication properties
— we defined 8 parameters to describe the communication properties

— we designed a “master accelerator” with parametrizable communication
properties

— we generated 12 accelerators with a wide range of communication

Accelerator ID 1 2 3 4 5 6 7 8 9 10 11 12
Access pattern | stream stride stream irreg stream stride stream irreg stream stride stream irreg
Access fraction 1 1 1 1 1 1 1 1/4 1 1 1 1/16
Burst]ength 64 4 32 4 128 8 64 4 16 4 32 4
Stride length 0 256 0 0 0 32 0 0 0 512 0 0
Compute-mem ratio 1 1 2 1 4 2 8 2 4 4 2 1
Reuse factor 2 4 1 1 4 1 1 4 1 2 4 1
In-place no no yes yes no yes no no yes no no yes
In-out ratio 1 2 4 1 2 4 1 2 4 1 2 4

24

Synthetic Application

e Application with multiple phases
— variable memory footprints of the accelerators’ workloads
— variable number of concurrently active accelerators

thread 1 App | Memory footprints Max active
phases sizes accelerators
\‘\8? /\3@* 1 variable 1
&
thread 2 2 large :
3 small 1
5 large 6
6 small 6
thread 3 7 variable 12
8 large 12
9 small 12

Sample of a possible app phase Phases in our app
25

Evaluation SoC

e ESP’s GUI

— the CAD flow from GUI
to FPGA bitstream is
fully automated

e We deployed this SoC
on FPGA and we
executed the synthetic

application on Linux
SMP

Check and Update SoC Configuration

Memory & Debugv

synth ~ | [V

5i'i

o~ | VGt || sy~ | Cae

)
‘v

26

Results

e QOur algorithm reduces: App execution

— the execution time by at least 40% (average of per-phase results)

— the off-chip accesses by at least 30% 2

2
Phase 0
o o« 1.5
(] c
w 25
g =
=y '
E
o
;:_) i 0.5
S
2 1 0
S 0 Off-chip accesses
o 0 0.5 1 1.5 2 2.5 H Our algorithm W non-coherent
Execution time (s) W LLC-coherent W fully-coherent

Conclusions

e We showed how to exploit the heterogeneity of cache-coherence
models

— We proposed a runtime algorithm to select the proper cache-coherence
model at each accelerator’s invocation

e Heterogeneity of cache-coherence models for accelerators can:
— |lead to speedups of at least 40%
— reduce the off-chip accesses by a minimum of 30%

e The algorithm is general enough to apply to any SoC

— its inputs are: number of active accelerators, caches capacity, memory
footprint of the accelerator workloads

28

Some Recent Publications

1.
2.

3.

4.

0.

Available at www.cs.columbia.edu/~luca

L. P. Carloni. The Case for Embedded Scalable Platforms DAC 2016. (Invited Paper).

L. P. Carloni. From Latency-Insensitive Design to Communication-Based System-Level Design The Proceedings
of the IEEE, Vol. 103, No. 11, November 2015.

E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. An Analysis of Accelerator Coupling in
Heterogeneous Architectures. DAC 2015.

P. Mantovani, E. Cota, K. Tien, C. Pilato, G. Di Guglielmo, K. Shepard and L. P. Carloni. An FPGA-Based
Infrastructure for Fine-Grained DVFS Analysis in High-Performance Embedded Systems. DAC 2016.

P. Mantovani, E. Cota, C. Pilato, G. Di Guglielmo and L. P. Carloni. Handling Large Data Sets for High-
Performance Embedded Applications in Heterogeneous Systems-on-Chip. CASES 2016.

L. Piccolboni, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. COSMOS: Coordination of High-Level Synthesis
and Memory Optimization for Hardware Accelerators. ACM Transactions on Embedded Computing Systemes,
2017.

C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. System-Level Optimization of Accelerator Local
Memory for Heterogeneous Systems-on-Chip. IEEE Trans. on CAD of Integrated Circuits and Systems, 2017.

D. Giri, P. Mantovani and L. P. Carloni. NoC-Based Support of Heterogeneous Cache-Coherence Models for
Accelerators, NOCS, 2018.

D. Giri, P. Mantovani, and L. P. Carloni, Accelerators & Coherence: An SoC Perspective. IEEE MICRO, 2018.

©Luca Carloni — Columbia University 29

