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Abstract— With the explosive growth of network techniques, in
particular wireless communications, the traditional centralized,
fixed networks can no longer satisfy the enormous demands on
network connectivity, data storage and information exchanges.
New types of networks, such as pervasive computing networks,
mobile ad hoc networks and P2P networks, emerged in recent
years in order to provide solutions for the increasing require-
ments on networked services. All those networks are autonomous
networks, because they are distributed and self-organized. As
a case study, we employ a specific application – distributed
trust management – to understand and analyze the behavior
and properties of these “anarchical” autonomous networks. We
propose a statistical trust evaluation rule, prove its convergence
and investigate its characteristics when the system is at the steady
state. Our investigation results in several conclusions for the
design of trust evaluation rules, some of which are unexpected
if we do not have the stationary distribution at hand. Our
study shows the importance and necessity of applying theoretical
analyses to understand the complex characteristics of distributed,
self-organized, autonomous networks.

I. INTRODUCTION

With the explosive growth of network techniques in the last
decade, connecting to the world from any place, at any time
and for any body is no longer just a dream. In the meanwhile,
the fast proliferation of networked devices and applications,
such as sensor networks and pervasive computing, integrates
information technology into our environments. These dramatic
changes create unique challenges for network management
and control. Innovative solutions are required for managing
network mobility and dynamics, astronomical number of data
and enormous information exchanges.

The traditional centralized server-based management can no
longer satisfy the requirements of next generation networks, so
people started to propose new concepts of network infrastruc-
ture and management. For instance, mobile ad hoc networks
(MANETs) [1] aim to provide wireless network services with-
out relying on any infrastructure. The wireless mesh network,
which has been implemented by a number of wireless network
groups [2], [3], is essentially a MANET over a 802.11 wireless
LAN, which can be set up with almost “zero-cost” in highly
mobile environments. Another example is peer-to-peer (P2P)
networks [4], [5], where a large number of data are shared
among millions of network users. All the aforementioned
new types of networks share a common characteristic: they

are distributed and self-organized, thus they are sometimes
called autonomous/autonomic networks [6] in the literature.
In this paper, our focus is on the fundamental principles
and properties of these networks, rather than narrowing on
a particular network prototype.

An autonomous network is one that is decentralized, self-
configuring and self-protecting. Such a network requires min-
imal administration, which mostly only involves policy-level
management. Entities in autonomous networks all participate
in network control through individual interactions. To achieve
desired network management goals under such “anarchy” is
not an easy job. A small misbehavior by an individual might
lead to a network-wise “avalanche”. The goal of our paper is
to understand and analyze the behavior and properties of these
“anarchical” autonomous networks.

Autonomous systems have been studied in various scien-
tific fields: in biological systems, swarms of bacteria, insects
and animals yield sophisticated collective behaviors based on
simple individual interactions; in physics, a group of particles
interacting with their neighbors to form a magnet; even in
human society, economists have modeled human individual
interactions using iterated games, etc. Our work is inspired
from those studies, in particular the Ising model and spin
glasses model in statistical physics, which will be discussed
in more detail in Sec. V. The Ising model was originally
developed to explain the physical alignment of particles within
a magnetically-charged material, such as iron. Recently, the
Ising model has been applied to a diverse range of applications
where individuals interact with others in their vicinity, such
as the associative memory model in neural networks (e.g.
Hopfield networks) and cooperation in social networks [7].

As a case study, we employ a specific application in
autonomous networks – distributed trust management – for
our study. Trust is important and critical for network security.
It integrates with several components of network management,
such as risk management, access control and authentication.
Trust management is to collect, analyze and present trust-
related evidence and to make assessments and decisions re-
garding trust relationships between entities in a network [8].
In this paper, we will study the evaluation of entity trust based
on trust information provided by its neighbors in the network.
In Sec. II, we will specify the properties of trust management
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– in particular for autonomous networks.
Our focus for distributed trust management is on its theoreti-

cal analysis rather than providing a strict definition, or a system
model for trust management. By defining a trust evaluation
rule based on local voting, we study how the trustworthiness
of the whole network evolves with time. The trust evaluation is
identified as an iterated stochastic process. The convergence of
this process and the stationary distribution at the steady state is
provided. We further investigate the resulting trust values at the
steady state. Our investigation gives several important conclu-
sions, some of which are even surprising, such as the choice
of threshold and phase transition phenomena. Those results
provide a way to properly design a feasible evaluation rule.
Furthermore, we extend the local voting rule to a general local
evaluation rule and discuss their relation. The fast emergence
of autonomous networks has led to a tremendous amount of
related publications, while few have solid theoretical analyses.
This paper is the starting point of our effort to theoretically
understand the complex characteristics of distributed, self-
organized, autonomous networks.

This paper is organized as the follows. Section II discusses
the unique properties of trust management in autonomous
networks as opposed to traditional Internet. A general trust
evaluation rule based on local voting is provided in Sec. III.
This general rule is further specified as an iterated stochastic
rule in Sec. IV, and the Markov chain interpretation and
convergence of the stochastic rule is presented. Based on
the derived stationary distribution in Sec. IV, we study the
properties of the resulting trust values at the steady state in
Sec. V, where the analyses from the Ising model and the
spin glasses model are applied, and also the effect of network
topology is discussed. Section VI extends the local voting rule
to a more general rule and studies their relation. Section VII
reviews related work in the literature and Sec. VIII concludes
this paper and discusses the future work.

II. DISTRIBUTED TRUST MANAGEMENT

Trust is interpreted as a set of relations among entities
participating in network activities [9]. In traditional networks,
such as Internet, sources of trust evidence are centralized
control servers, such as trusted third parties (TTPs) and authen-
tication servers (ASs). Those servers are trusted and available
all the time. Most prior research efforts in this framework [10],
[11], [12] assume an underlying hierarchical structure within
which trust relationships between ASs are constrained.

In contrast, autonomous networks have neither fixed in-
frastructures, nor centralized control servers. In these net-
works, the sources of trust evidence are peers, i.e. the entities
that form the network. We summarize the essential and unique
properties of distributed trust management in autonomous
networks as opposed to traditional centralized approaches:

• uncertainty and incompleteness: Trust evidence is pro-
vided by peers, which can be incomplete and even
incorrect.

• locality: Trust information is exchanged locally through
individual interactions.

• distributed computation: Trust evaluation is performed
in a distributed manner.

To manage trust in such a distributed way has several
advantages. Because of locality, it saves network resources
(power, bandwidth, computation, etc.). It avoids the single
point of failure problem as well. Moreover, the networks we
are interested in are dynamic with frequent topology and
membership changes, and distributed trust has the desired
emergent property [13] as entities only contact a few other
entities that are easy-to-reach.

However, because of its distributed nature, the control of
such distributed trust systems is much more difficult, which
includes trust evidence collection, policy specifications, eval-
uation rules, etc.. In this paper, we are not concened with the
problems of how peers obtain the necessary pieces of trust
evidence on others. We rather analyse what kind of procedure
entities in the network could use for deriving conclusions, once
they have obtained the necessary information. Our objective
is to design an evaluation rule that has desired performance
even under “anarchy”.

III. PROBLEM FORMULATION

A. Network Model

We model an autonomous network as a directed graph
G(V,E), in which nodes are the entities/peers in the network
and links represent trust relations. Graph G is called the trust
graph, in order to distinguish the physical graph, in which
nodes are connected if they are one hop away in terms of
physical transmissions. Suppose that the number of nodes in
the network is N , i.e. |V | = N and nodes are labeled with
indices V = {1, . . . , N}.

In a distributed environment, there is no centralized system
to manage trustworthiness of entities. However, entities may
still rate each other based on their previous interactions. For
example, when node i requests files from node j, i may rate
j based on whether j replies to his requests and the quality of
these files. A directed link from node i to node j in G, denoted
as (i, j), corresponds to the direct trust relation that entity i has
on entity j1 and the weight on the link represents the degree
of confidence i has on j, denoted as cij : V × V → [−1, 1].
cij = 1 represents completely positive confidence i has on
j, and cij = −1 represents completely negative confidence.
cij = 0 means totally uncertain, so if i and j have no
interactions, i.e. (i, j) /∈ E, cij may set to be 0. Trust relations
are asymmetric, so generally cij �= cji. Throughout the paper,
we assume nodes’ opinions are fixed for the sake of analyses.
We define the neighbor set of node i as

Ni = {j|(i, j) or (j, i) ∈ E} ⊆ V \ {i},
which is the set of nodes that are directly connected to i. Fig. 1
is an example of a trust graph, where N1 = {2, 4}.

1Trust relations based on recommendation are not direct relations. A trust
relation from i to j does not necessarily mean that i trusts j. Trust relations
include distrust (i.e. negative opinions) as well.
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Fig. 1. A trust graph

B. Trust and Confidence Values

Nodes in the network are assumed to be either GOOD or
BAD, denoted by ti = 1 or −1 for node i. The vector T =
[t1, . . . , tN ] is called the real trust vector in order to distinguish
it from the estimated trust vector below. Mathematically
speaking, trust evaluation is to estimate the trustworthiness
of nodes. Let si be the estimated trust value of node i and
vector S = [s1, . . . , sN ] be the estimated trust vector or simply
called trust vector. If si = 1, we call node i trusted, which is a
subjective concept, while ti = 1 means node i is a good node,
which is an existing but unknown fact. The evaluation result
is the estimate si rather than the real trust value ti, which is
the value to be estimated.

The confidence value cij , also called the c-value, is the de-
gree of confidence node i has on node j, where cij ∈ [−1, 1].
Without centralized trusted authority, confidence values may
not be able to represent true states of the target even from good
nodes. For example, in the network with active attackers, the
target node that used to be good may be compromised by
bad nodes, or because of communication constraints, the past
experience may not completely represent the current behaviors
of the target. So cij is modeled as a random variable depending
on the real trust values of i and j. The conditional probability
Pr[cij |ti, tj ] represents the probability of the c-value equal to
cij given ti and tj . Trivially, if (i, j) /∈ E, Pr[cij = 0|ti, tj ] =
1. We assume that all c-values are independent with each other,
i.e.,

Pr[cij , ckl|ti, tj , tk, tl] = Pr[cij |ti, tj ] · Pr[ckl|tk, tl],

where i, j, k, l may not be distinct.

C. Local Voting Rule

For a homogeneous distributed network, all nodes are equal.
There is no reason to specialize any particular node. Therefore,
trust evaluation should take all available trust information into
account. Suppose node i is the target of trust evaluation. The
natural approach is to aggregate all its neighbors’ opinions.
This approach is called a local voting rule, in which votes are
neighbors’ c-values on the target. However, a rule using naı̈ve
summation is not a good estimate, because of the following
reasons:

1) Trustworthiness of voters: Opinions from nodes with
high (estimated) trust values are more credible, so they
should carry larger weights. On the other hand, a vote
from a distrusted voter should not be valid or even has
negative effects. Suppose node i gets positive votes from
a couple of distrusted voters, it is reasonable for others
to doubt on the trustworthiness of i. So the voting rule
should be a weighted sum.

2) Conflicting opinions between the target and voters:
Suppose j is one of the voters of target i and their
opinions on each other are conflicting, say cij = 1, while
cji = −1. Then with high probability, either one of them
has made a wrong decision or one of them is a bad node.
Therefore, votes from conflicting pairs are less credible.
In order to mitigate the effect of such conflicting votes,
our solution is to use effective votes, which are defined
as

ĉji = cji + αcij (1)

where α is a constant. To simplify our analyses, from
now on α is set to be 1. Our discussion in Sec. VI also
confirms that it is reasonable to take α = 1. By applying
effective votes, the absolute values of conflicting votes
are reduced, i.e. the conflicting votes are mitigated, while
votes from pairs in consistency are strengthened.

Based on the above arguments, we define the local voting
rule as the following

si = f(ĉjisj |j ∈ Ni) (2)

where f : R → [−1, 1]. Apparently, the trust value sj depends
on trust values of j’s neighbors and their votes on j. Notice
that sj is also evaluated at the same time, and so are j’s
neighbors. The whole evaluation therefore evolves as the local
interactions iterate throughout the network and Eqn. (2) can
be written as

si(k + 1) = f (ĉjisj(k)|j ∈ Ni) . (3)

Thus the trust evaluation can be considered as a dynamic
process which evolves with time.

Our interest is to study the evolution of the estimated trust
vector S and its values at the equilibrium. The motivation of
trust management is, of course, to be able to detect bad nodes
and trust good nodes. It is important to investigate whether S
can correctly estimate the trust vector T at the steady state.

IV. A STOCHASTIC THRESHOLD RULE

Guided by the voting rule in Eqn. (3), we design a specific
evaluation rule for analysis. At each iteration, assume that the
voting result is binary, i.e. si(k) ∈ {1,−1}. So the target node
is either trusted or distrusted and the voting result is decided
by the following threshold rule

si(k + 1) =
{

1, if mi(k) ≥ η
−1, if mi(k) < η

, (4)

where
mi(k) =

∑
j∈Ni

ĉjisj(k) (5)
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is the weighted sum of the votes from i’s neighbors.
However, as we have discussed, uncertainty of opinions

by peers is inevitable for autonomous networks. Thus we
introduce randomness into our rule. Obviously, if the weighted
sum mi is large, si will take value 1 with high probability and
vice versa. If mi is right on the threshold η, it should choose
1 or −1 with equal probability. So our stochastic threshold
rule is defined as:

Pr [si(k + 1) = 1|mi(k)] =
eb(mi(k)−η)

Zi(k)
(6)

Pr [si(k + 1) = −1|mi(k)] =
e−b(mi(k)−η)

Zi(k)
(7)

where Zi(k) is the normalization factor

Zi(k) = eb(mi(k)−η) + e−b(mi(k)−η), (8)

and b > 0 is a constant representing the degree of certainty. A
small b represents a highly uncertain scenario. By placing the
value of si(k + 1) into the right hand sides of both Eqn. (6)
and Eqn. (7), the stochastic voting rule can be combined into
one formula

Pr [si(k + 1)|mi(k)] =
ebsi(k+1)(mi(k)−η)

Zi(k)
. (9)

A. Update Sequence

Our evaluation rule is essentially an updating rule. Another
component of an updating rule is the update sequence. We list
three possible types of update sequences

• Synchronous updates: Trust values of all nodes are up-
dated at the same time.

• Ordered asynchronous updates: Trust values are updated
one at a time in a predefined order.

• Random asynchronous updates: Trust values are updated
one at a time. The updated node is randomly chosen
following a distribution.

In the autonomous environment, it is very difficult to
achieve synchronicity, which involves complicated algorithms
and substantial control messages. Thus the system should
only use asynchronous updates. The ordered updates require
extra control as well, so we only study random asynchronous
updates, but the analyses in the following are also valid for the
ordered asynchronous updates with only a few modifications.
In random asynchronous updates, the probability that node i
is chosen as the target is defined as qi, and

∑
i∈V qi = 1.

B. Markov Chain Interpretation

Our trust evaluation rule in the form of Eqn. (9) has the
obvious Markov property: the value of si at time k + 1 only
depends on mi at time k and is independent of all the rest
history. Furthermore, according to the local voting rule, si(k+
1) is independent of sh(k),∀h /∈ Ni. Thus we have

Pr [si(k + 1)|mi(k)] = Pr [si(k + 1)|S(k)] (10)

Notice that Eqn (10) exhibits the Markov type property in the
spatial situation. The distribution with such property is called

[1, 1, 1, 1]

s1 s2 s3 s4

k

[−1, −1, 1, 1] [1, −1, −1, 1] [1, −1, 1, −1]k + 1

[1, −1, 1, 1]

Fig. 2. Part of the Markov Chain. Suppose S(k) = [1,−1, 1, 1], then
S(k+1) either flips one of the element in S(k) or stays at the state of S(k).

a Markov random field (MRF), whose detailed definition will
be given in Sec. IV-D. At present, only properties related to
Markov chains are going to be discussed.

From Eqn. (10), the state of the Markov chain at time
k is a configuration of S, and at time k + 1, si changes
while all other nodes keep unchanged. Combining Eqn. (10)
and the random asynchronous updates, our iterated voting
rule can be considered as a Markov chain, where the states
are composed of all the possible configurations of vector S.
Suppose at time k, we are at state S = [s1, . . . , si, . . . , sN ].
Denote the transition probability from state S to state S̄i =
[s1, . . . , s̄i, . . . , sN ] as pS,S̄i , where s̄i = −si, then we have

pS,S̄i = qi Pr [s̄i|S] = qi Pr [s̄i|mi] . (11)

Then the probability of staying still at S at time k + 1 is

pS,S = 1 −
∑
i∈V

pS,S̄i . (12)

Fig. 2 is an example of the Markov chain for a network
with four nodes, such as the one in Fig. 1. We only depict
one state transition due to space constraints. Suppose at time
k, S(k) = [1,−1, 1, 1], i.e. the state at the top of Fig. 2. Each
outgoing edge represents a state transition. The one with si

on the edge means transition from S to S̄i. For instance, the
leftmost transition is to flip the value of s1. In Fig. 1, node 2
and 4 are the neighbors of 1. By Eqn. (5), we get

m4(k) = (c12 + c21)s2(k) + c41s4(k) (13)

If we substitute c12 = c21 = 1, c41 = −1 and s2(k) =
−1, s4(k) = 1, we have m1(k) = −3. Then the transition
probability

pS,S̄4 = q1 Pr [s1 = −1|m1 = −3] =
e3b

4(e3b + e−3b)
, (14)

where we assumed qi = 1/N = 1/4.
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C. Convergence

Having developed the probabilistic interpretation of our
local voting rule in terms of a Markov chain, in this subsection,
we study convergence of the Markov chain. We will show that
the Markov chain converges and give the explicit formula for
the stationary distribution. First is a lemma used for the proof
of convergence.

Lemma 1: The Markov chain with transition probability
defined as in Eqns. (11) and (12) is irreducible and aperiodic,
given b ∈ (0,∞) and qi > 0,∀i ∈ V .
This lemma is easy to verify by proving that all states have a
self-loop with nonzero probability and all are connected with
each other under the conditions for b and qi.

Furthermore, the Markov chain is finite with dimension
2N , so it is a regular Markov chain. It is known that there
is a unique stationary distribution π for a regular Markov
chain. Therefore, our voting rule does converge under the
trivial conditions b ∈ (0,∞) and qi > 0,∀i ∈ V . In order
to derive the stationary distribution, we introduce the notion
of a reversible Markov chain.

Definition 1: A Markov chain is reversible if

πSpS,R = πRpR,S for all R,S, (15)

where R,S are the states and πS is the probability of being
in state S at the steady state.

In other words, for a reversible Markov chain at the steady
state, the process looks the same forward as well as backward.
Hence it is said to be reversible2. Furthermore, the following
theorem which is the reverse of Definition 1 provides a way
to compute the stationary distribution [14].

Lemma 2: Suppose that π is a probability distribution sat-
isfying Eqn. (15), then π is the unique stationary distribution
and the chain is reversible.

Proof: This is true because Eqn. (15), sometimes called
the detailed balance equation, implies∑

S

πSpS,R = πR

∑
S

pR,S = πR for all R (16)

and therefore π satisfies the balance equation of the stationary
distribution.

Inspired from [15], we define the energy of configuration
S as U(S) =

∑
(i,j)∈E(cij + cji)sisj − η

∑
i∈V si and a

distribution π on the states of the Markov chain as following

πS =
ebU(S)

Z
(17)

where Z is the normalization constant, also called the partition
function with

Z =
∑
S

ebU(S) (18)

Then we have the following theorem.
Theorem 3: For the stochastic voting rule defined by

Eqn. (9) and using random asynchronous updates, if b ∈
(0,∞) and qi > 0,∀i ∈ V , we have that

2Notice that not all regular Markov chains are reversible.

qi
ebsimi

Zi

RS

qi
ebs̄imi

Zi

Fig. 3. Transitions between S and R. pS,R = qi
ebs̄imi

Zi
and pR,S =

qi
ebsimi

Zi
.

1) the voting rule converges to the steady state with a
unique stationary distribution;

2) the distribution πS = ebU(S)

Z is the unique stationary
distribution.

Proof: The convergence has been verified based on
Lemma 1. To prove π is the stationary distribution, we just
need to check if π satisfies Eqn. (15) according to Lemma 2.

Consider now two adjacent states S and R in the Markov
chain. S = [s1, . . . , si, . . . , sN ] and R = [s1, . . . , s̄i, . . . , sN ].
So the transitions between R and S are just flipping si. Since
all the other nodes are the same, mi of both R and S is the
same, which is

mi =
∑
j∈Ni

(cji + cij)sj .

Fig. 3 shows the transitions between R and S. We need only
verify Eqn. (15), i.e.

ebU(S)

Z
pS,R =

ebU(R)

Z
pR,S (19)

or
pS,R

pR,S
=

ebU(R)

ebU(S)
(20)

We know that
pS,R

pR,S
= eb(s̄i−si)mi

= eb
∑

j∈Ni
((Jji+Jij)s̄isj−(Jji+Jij)sisj)

= eb(U(R)−U(S))

Thus, Eqn. (15) is satisfied and π is the stationary distribution
of our voting rule.

Having derived the stationary distribution, we are able to
compute the probability of correct estimation. Let vector SS
be equal to the trust vector S at the steady state. Then the
probability of correct estimation, including trusting good nodes
and detecting bad nodes, is

Pcorrect = { Expected # of SSi = Ti}
= E

[
1 − ‖SS − T‖1

2N

]
.

where ‖SS − T‖1 =
∑

i∈V |SSi − Ti|. The last equation is
true because SS, T ∈ {1,−1}.

The stationary distribution

πS =
ebU(S)

Z
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is called Gibbs distribution. The Gibbs distribution is closely
related to local interactions of our voting rule, as explained in
the next subsection.

D. Markov Random Field

Recall Eqn.(10) in Sec. IV-B with a small modification:
replacing mi with sj(k), j ∈ Ni.

Pr [si(k + 1)|S(k)] = Pr [si(k + 1)|sj(k), j ∈ Ni] . (21)

Equation (21) in fact presents a Markov type property, i.e.,
the probability of the estimated trust value for a certain node
i, si, given the estimated trust values of all the other nodes
in the network, is the same as the probability of si, given
only the estimated trust values of the neighbors of i. As
opposed to the Markov chain, which has the Markov property
with respect to time, Eqn. (21) shows Markov property in the
space dimension. A distribution with such property is called
a Markov random field (MRF).

The well-known Hammersley-Clifford theorem [15] proves
the equivalence between a MRF on a graph and the Gibbs
distribution. So our voting rule at the steady state is a MRF,
and the essential reason is because our rule only depends on
local interactions.

V. TRUST AT THE STEADY STATE

In this section, we investigate properties of the estimated
trust values when the voting rule reaches the steady state.
At first, we introduce an important model that models local
interactions of magnets in physics – the Ising model.

A. Ising Model and Spin Glasses

For those familiar with statistical physics, it is very easy
to link the Gibbs distribution of π with the Ising model [16]
in statistical physics. The Ising model describes interaction
of magnetic moments or “spins” of particles, where some
particles seek to align with one another (ferromagnetism),
while others try to anti-align (antiferromagnetism). In the
Ising model, si is the orientation of the spin at particle i.
si = 1 or − 1 indicates the spin at i is “up” or “down”
respectively. A Hamiltonian, or energy, for a configuration S
is given by

H(S) = −
∑
(i,j)

Jijsisj − mH
∑

i

si. (22)

The first term represents the interaction between spins. The
second term represents the effect of the external (applied)
magnetic field. Then the probability of configuration S is given
by

Pr[S] =
e−

1
kT H(S)

Z
, (23)

where T is the temperature and k is the Boltzmann constant. In
the Ising model, the local interaction “strengths” Jij’s are all
equal to a constant J , which is either 1 or −1. The Ising model
has been extensively studied ever since Ernst Ising published
his results on this model in 1920s. In recent years, an extension
of the Ising model called the Edwards-Anderson model of spin

glasses is used to study local interactions with independently
random Jij [17], which corresponds to cij in our voting rule.
The rich literature in statistical physics will no doubt help us
to understand our voting model at the steady state.

B. Virtuous Network

Now go back to our discussion on trust at the steady state.
We start with the simplest case: a virtuous network, where all
nodes are good and they always have full confidence on their
neighbors, so ti = 1,∀i ∈ V and cij = 1,∀(i, j) ∈ E. Then
the stationary distribution π is exactly the same as the one in
the Ising model with

b =
1

2kT
and η = −mH

kT
. (24)

Since all nodes are good with ti = 1 and SSi is either 1 or
−1, the probability of correct estimation can also be written
as

Pcorrect =
E [〈SS〉] + N

2N
,

where 〈SS〉 =
∑

i∈V SSi. In the terminology of physics,
〈SS〉 is called the total magnetization. It is known that when
the external field H > 0, E [〈SS〉] is positive and when
H < 0, it is negative. According to (24), the threshold η > 0
corresponds to H < 0, thus E [〈SS〉] < 0 and Pcorrect < 0.5.
Similarly when η is negative, Pcorrect > 0.5.

We use simulations to study the value of Pcorrect with
respect to parameters η and b. In this section, the network
topology for all the simulations is a two-dimensional lattice
with periodic boundary. The number of nodes is 100 and each
takes four nearest nodes as their neighbors. We chose the
lattice because most theoretical results for the Ising model
are for the 2-D lattice. In Sec. V-D, we will discuss the effect
of network topology.

Fig. 4 and Fig. 5 represent the probability of correct
estimation as a function of b for η being negative, positive
or zero. While η > 0, which means that the rule is chosen to
be conservative, the probability of correct estimation is less
than half. Such a result is obviously undesired, since it is
even worse than randomly choosing the trust values, which
can achieve the mean 0.5. Therefore, it is infeasible to use a
positive threshold. This conclusion is rather surprising given
the natural thought of setting a threshold when using a voting
rule. On the other hand, for η = 0 or η < 0, if the value b is
properly chosen (b > 0.6), Pcorrect is close to 1. Therefore,
the threshold η must be non-positive.

Without our effort of deriving the stationary distribution π,
the conclusion that η cannot be greater than zero is not an
obvious fact if we only look at the local voting rule. This
simple result elucidates the power and necessity of conducting
analytical studies.

The other interesting property is the phase transition phe-
nomenon observed in Fig. 5 when b is in [0.4, 0.5]. Phase
transition has been extensively studied by physicists in the
Ising model. For the Ising model on a two-dimensional lattice
with H = 0, there exists a so-called critical temperature Tc.
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Fig. 4. Pc vs. b with η < 0 and η > 0.
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When the temperature T is above Tc, all the spins behave
nearly independently (no long-range correlation), whereas
when temperature is below Tc, all the spins tend to stay the
same (i.e., cooperative performance). The above observation is
expressed in the following in terms of the total magnetization
〈SS〉,

E [〈SS〉]
{

= 0, if T > Tc

�= 0, if T < Tc
. (25)

For a 2-D lattice, the value of the critical temperature can
be accurately calculated as 2kTc = 2

1+
√

2
= 2.269, which is

consistent with our simulation result where the critical value
of b, denoted as bc, is in [0.4, 0.5], given the relation of b and
T in Eqn. (24).

If we look closer into the interval when b < 0.4, the
estimated trust value of each node is changing all the time
and looks like random jumping. While when b is above the
critical value, all values converge steadily to 1. So we call
the first interval the random phase, while the second is the
deterministic phase.

The discovery of phase transition in our voting rule is
quite surprising given that the rule itself is very simple. More
importantly, the fact that a small change in the parameter might
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Fig. 6. Pc vs. b with link errors pe. η = 0.

result in a totally opposite performance of our voting rule
proves the necessity of doing more analyses before applying
any distributed algorithms. A rule with arbitrary or unverified
parameters may ruin performance of the whole system.

As we have discussed, due to uncertainty and incomplete-
ness of trust evidence, cij should be modeled as a random
variable rather than being always 1. Let’s assume cij ∈
{−1, 0, 1} and define the probability that a good node has
an incorrect opinion on its neighbors as pe, then we have

pe = Pr [cij �= tj |ti = 1] for all i good.

Thus in a virtuous network, the distribution of cij is

Pr(cij = 1) = 1 − pe; Pr(cij = −1) = pe, (26)

which is simplified as c ∼ (1−pe, pe). This model corresponds
to the ±J model in spin glasses, where J ∼ (p, 1 − p).

We again investigate the phase transition. As shown in
Fig. 6, the phase transition still happens when η = 0. However,
as pe increases, the wrong votes with value −1 gradually
destabilize the votes of value 1. Thus it is harder to keep
si’s equal to 1, which means that bc becomes larger and the
system more probably stays in the random phase given a high
link error pe. When pe is large enough, as shown in the figure,
where pe = 0.15, the system always stays in the random phase.

In [17], the authors theoretically studied phase transitions
between random and deterministic phases, and introduced the
replica symmetry method to solve them analytically. Based
on this method, very good approximations of values, such
as E[〈SS〉] and E[SS2

i ], can be derived. The mathematical
manipulation of the replica symmetry method is beyond the
scope of this paper, but it is definitely a very good direction for
our future work. Given explicit expressions for these values,
they will provide even better guide for network management
and control design.

C. Adversary Model

The motivation of trust evaluation is to be able to identify
good nodes and detect bad nodes. In this section, we study a
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Fig. 7. Pc vs. the percentage of adversaries Pm. The link error pe = 0.05
and the degree of certainty b = 1.

network in the presence of adversaries, i.e., bad nodes. Three
types of adversaries are considered:

• Independent: adversaries do not collude with each other
and have normal power. We assume their probabilities of
wrongly identifying whether a node is good or bad are
pe the same as good nodes. Once they identity a node
as their friend, i.e. a bad node as well, they rate it with
value 1 and vice versa.

• Collusive: adversaries know each other. They always vote
for their friends with value 1 and vote for good nodes with
value −1.

• Random: to confuse the evaluation rule, they randomly
assign confidence values on others.

The voting rule used here is the one with threshold η = 0,
while the following results can be extended to the case where
η < 0. First consider independent adversaries. Define a new
network G∗ which has the same topology as the current
network G and same probability of link error pe, but with
all nodes being good. Suppose the probability of correct
estimation for G∗ is P ∗

correct, we have the following theorem:
Theorem 4: The probability of correct estimation in the

presence of independent adversaries Pcorrect is equal to the
probability of correct estimation P ∗

correct for the network G∗

with all good nodes. Pcorrect is independent of the number of
adversaries.

Proof: Please see the Appendix
Therefore, the performance of our voting rule is independent

of the number of adversaries in the case where all adversaries
are independent. This is a very valuable property for a trust
evaluation rule, and we can apply all the analyses in the last
two subsections to the network with independent adversaries.

We use simulations to compare the three types of adver-
saries. In each simulation, the only difference is the behavior
of bad nodes. Fig. 7 shows the simulation results. In order to
verify Theorem 4, the curve for all good nodes is plotted as
well. The curves of all good nodes and independent adversaries
nearly overlap except for some small random perturbations,
and the performance of independent adversaries does not

change with respect to the percentage of adversaries in the
network. Both verify the conclusion of Theorem 4. Further-
more, these two curves have quite high Pcorrect because we
are able to carefully choose parameters based on the above
analyses.

Surprisingly, the curve of collusive adversaries performs
better than the ones for all good nodes and independent
adversaries. This is because the voting rule has considered
distrusted voters and conflicting votes. In the independent case,
because of link errors, some adversaries gain trust from good
nodes. While in the collusive case, bad nodes always vote good
ones negatively, then they are much easier to be detected. The
worst performance is the one of random adversaries, because
our voting rule does not capture such malicious behavior. We
leave as future work to study which adversary strategy leads
to the worst performance of the local voting rule.

D. Network Topology

So far the network topology being used is the two-
dimensional lattice. While in reality, a trust graph is not
just a lattice. In this section we further investigate our trust
evaluation rule with respect to network topology. We will
show the significant influences of network topology on trust
evaluation.

The network model we use is the small-world model,
which has its roots in social systems. The first experiment
on small-world networks was studied in [18], where mails
were delivered using acquaintances. This experiment resulted
in ”six degree of separation”. In the past five years, there has
been substantial research on the small-world model in various
complex networks, such as Internet and biological systems. As
a social concept, distributed trust networks exhibit small-world
properties too. In [19], it was shown that the PGP certificate
graph has the small-world property. Therefore, the study of
network topology using the small-world model will help us to
understand practical trust systems.

Several small-world models have been proposed in order to
resemble actual networks. In this paper, we use the small-
world model proposed by Watts and Strogatz in [20](WS
model), because it is relatively simple but retains the funda-
mental properties of practical networks. In the WS model, we
start from a ring lattice with the number of nodes N = 100 and
degree of each node k = 4. Each edge is rewired at random so
as to create shortcuts with the percentage of shortcuts being the
parameter Prw. This construction models the graph transition
between regular lattices (Prw = 0) and chaotic random graphs
(Prw = 1).

Our simulation results are shown in Fig. 8, where dif-
ferent curves represent different shortcut percentages Prw.
We observe that the performance improves as the model
changes from regular lattices to random graphs. For instance,
as b = 0.4, Pcorrect = 0.55 for regular laatices, while
Pcorrect = 0.85 for random graphs. This is because a more
random network has shorter average distance between any two
nodes in the network. Therefore, the number of hops which
trust information takes to reach any node in the network is
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Fig. 8. The effect of network topology. Prw is the percentage of shortcuts
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world property. pe = 0.1.
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Fig. 9. The effect of average degree with pe = 0.1.

small. The accuracy of trust information degenerates over the
path length, so short spreading paths have more accurate infor-
mation and lead to good results. In particular, the most obvious
improvement happens when Prw increase from 0.01 to 0.1,
which corresponds to the small-world topology. Therefore, a
few shortcuts in the network will greatly improve performance
of the trust evaluation rule.

We also investigated the effect of node degree, as shown
in Fig. 9. The network is a 100-node ring lattice without
shortcuts. The neighbors of a node are those within k hopes
distance, where degree k varies. The simulations show that the
performance improves as the degree increases. One reason is
still that the path length reduces between any two nodes by
increasing the number of their neighbors.

From the above discussion, clearly the network topology
has great influence on the system performance. As our future
work, it is interesting to study our trust evaluation rule under
real trust network topologies, and to investigate what kind of
network topology has the best performance in terms of trust
evaluation.

VI. GENERAL LOCAL EVALUATION RULE

We have shown that our evaluation rule based on local
voting can achieve reasonably good results. In this section,
we extend the local voting rule, which is specially designed,
to a generalized local evaluation rule. Then we will show that
the general rule is in fact a local voting rule under certain
conditions.

A. Global and Local Evaluation

Before introducing the general evaluation rule based on
local interactions, we first consider the optimal estimation of
T without the constraint on locality, so-called global trust
evaluation. In the case of global trust evaluation, all c-values
are collected in one place and serve as the observations for
the estimation of T . Therefore, we have the posterior of T
given c-values as follows

Pr[T |C] =
Pr[C|T ] Pr[T ]∑
T Pr[C|T ] Pr[T ]

, (27)

where C = {cij ,∀(i, j) ∈ E} is the set of all c-values and
Pr[T ] is the prior probability of nodes being good or bad,
which is assumed to be independent of each other. Due to the
independence of c-values and true trust values, we have

Pr[C|T ] = Π(i,j)∈E Pr[cij |ti, tj ], (28)

and
Pr[T ] = Πi∈V Pr[ti]. (29)

Therefore, substituting Eqn. (28) and (29) into Eqn. (27), the
distribution of the estimated trust vector S

Pr[S] = Pr[T = S|C]

=
Π(i,j)∈E Pr[cij |si, sj ]Πi∈V Pr[si]

Z
, (30)

where Z =
∑

T Π(i,j)∈E Pr[cij |si, sj ]Πi∈V Pr[si] is the nor-
malization factor. Next, we present an important property of
Pr[S].

Lemma 5: The distribution of the random vector S is a
Markov random field, that is

Pr[si|S/{si}] = Pr[si|sj ,∀j ∈ Ni]. (31)
Proof: According to the definition of conditional proba-

bility

Pr[si|S/{si}] =
Pr[S]

Pr[S/{si}] .

Substitute from Eqn. (30) to get

Pr[si|S/{si}] =
Π(k,l)∈E Pr[ckl|sk, sl]Πk∈V Pr[sk]∑
si

Π(k,l)∈E Pr[ckl|sk, sl]Πk∈V Pr[sk]

=
Πj∈Ni

Pr[cij , cji|si, sj ] Pr[si]
Zi

, (32)

where Zi =
∑

si
Πj∈Ni

Pr[cij , cji|si, sj ] Pr[si]. The last
equation shows that the conditional probability only depends
on trust values of nodes that are neighbors of node i.
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From the conditional probability of si in Eqn. (32), we can
design a local evaluation rule as follows:

Pr [si(k + 1)|sj(k), j ∈ Ni]

=
Πj∈Ni

Pr[cij , cji|si, sj ] Pr[si]
Zi(k)

, (33)

for all nodes in the network. Apparently, this rule only
requires that each node knows its own c-values and those
of its neighbors. Similarly to the local voting rule, it iterates
throughout the network.

Following the same arguments on convergence of the local
voting rule in Sec. IV-C, we are able to prove that the
stationary distribution πS of Eqn. (33) is equivalent to the
posterior probability Pr[S] in Eqn. (30). This is a significant
result, because by using the local information, we are able to
obtain the same result as in the case where global information
is available. Apparently, there are some disadvantages if we
only use local information. The local evaluation rule requires
long convergence time. Furthermore, the global rule directly
calculates the distribution of S, but the local rule only gives
a sampling value of the random variable S following the
distribution Pr[S] at each iteration, and the distribution can
only be calculated by averaging over time after the evaluation
reaches the steady state.

B. General Rule and Voting Rule

Now assume the error probability for a node to make
a wrong decision is fixed as pe and the adversaries are
independent, then the iterated evaluation rule can be written
in the following form

Pr[si(k + 1)|sj(k), j ∈ Ni]

=
e
∑

j∈Ni
b[(cij+cji)si(k+1)sj(k)−ηsi(k+1)]

Z ′
i(k)

(34)

where b and η′ are constants with values b = 1
2 ln[(1 −

pe)/pe] and η = 1
2b ln[(1 − pG)/pG], and Z ′

i is the modified
normalization factor which is equal to a constant times Zi.
Obviously, Eqn. (34) has the same form as the local voting
rule in Eqn. (9). The derivation of Eqn. (34) is given in the
Appendix.

Since the iterated local rule converges to the global evalua-
tion result, the local voting rule defined in Eqn. (34) is optimal
given pe and pG. However, in practice, it is difficult to derive
this optimal rule, because pe and pG are usually unknown,
and the value of pe may vary among different users. Thus it
is important to have a good estimate of these two values.

In this section, we extended the local voting rule to a more
general rule. In future work, we plan to study the properties
of the general rule and thus to be able to design evaluation
rules that are feasible for different scenarios.

VII. RELATED WORK

Some of the work on trust we will mention is put into the
framework of public key certificates. However they can also
be viewed as trust evaluation, in the sense that a certificate

represents the trust opinion of the issuer on the target. Blaze et
al. [21] is commonly acknowledged as the first to coin the term
“trust management”, and identify it as a separate component of
security services in network management. They designed and
implemented the PolicyMaker [21] and subsequent KeyNote
[8] to provide a unified framework for describing trust policies,
credentials and trust relationships. Their main concerns are on
the assertion language for credentials and policies, and the
compliance-checking algorithms.

PGP [22] is the most widely used trust management system.
In PGP, a distinction is made between the validity of a public
key and its trust level. Any user can issue a certificate on
another user’s key if he/she believes the validity of this key.
The trust levels of keys are assigned in any way users want.
PGP only determines the validity of a key according to how
many keys have signed it based on a set of simple rules. For
instance, a key is valid if it is signed by two marginally trusted
keys.

In the literature, most of distributed trust evaluation is
formulated as a path problem on a weighted, directed graph. In
this graph, nodes represent agents (entities or keys), and edges
represent trust relations, weighted by the amount of trust that
the first agent has on the second. The direct trust relations
can be direct trust or recommendation depending on trust
policies. The aim is to establish an indirect relation between
two agents that have not previously linked. [23], [24], [25]
fall into this approach, where one or multiple trust paths are
identified between two agents and the trust value is combined
by aggregating along and across paths.

There have been several works on trust evaluation based on
local interactions as well. In [26], first-hand observations are
exchanged between neighboring nodes. Assume Alice receives
her neighbors’ opinions about a particular node in the network.
Alice merges her neighbors’ opinions if they are close to her
opinion on that node. This work provides an innovative model
to link nodes’ trustworthiness with the quality of the evidence
they provide.

In this paper, we study the inference of trust value given
necessary trust evidence rather than generation of direct trust.
In this sense, the EigenTrust by Kamvar et al. [27] is similar
with our solution. In EigenTrust, in order to aggregate local
trust values, a node, say i, asks its neighbors of their opinions
about other peers. Neighbors’ opinions are weighted by the
trust i places on them:

tik =
∑

j

cijcjk, (35)

where cij is i’s local trust value for node j and trust values
are normalized: ∀i :

∑
j cij = 1. To address the adversary

collusion problem, they assume there are peers in the network
that can be pre-trusted. [28], [29] proposed similar algorithms
that evaluate trust by combining opinions from a selected
group of users. One possible selection for the selected users is
the neighbors. All these algorithms showed promising results
against a variety of threat models by simulations.
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VIII. CONLUSIONS AND FUTURE WORK

The management of distributed and self-organized networks
has gained increasing attention because of their wide ap-
plications and control difficulties. The interactions in such
network management can only be local. Without the global
management and control on the network, a small change in
local domain may result in dramatic behavior changes on the
whole network. Therefore, it is essential to understand the
behavior of such autonomous networks before conducting any
network management and control. In this work, we study the
characteristics of autonomous networks under the context of
distributed trust management. Even though the trust evaluation
rule we used is very simple, our analyses show extraordinary
complexity in terms of the system performance. The analytic
results enable us to design the evaluation rule that achieves
desired performance.

Our work is just the first step on the exploration of un-
derstanding autonomous networks. The simple local voting is
not necessarily the best scheme; however it performs well in
certain scenarios and presents amazingly complex results. We
also proposed a more general evaluation rule based on the
global estimation result. This general rule can help to design
rules that are feasible for different situations. Evaluation rules
based on local interactions have the desired emergent property,
which makes the evaluation adaptive to trust dynamics. In this
paper, we assume the confidence values are fixed. However
trust dynamics is one of the main issues in autonomous
networks. So it is necessary to integrate more trust contents
into the evaluation rule, such as the worth of each transaction
and decay of trust values in time. For the measurement of
performance, another metric we are particularly interested is
the connectivity of trusted graph [30], which measures the
probability of two non-neighbors being able to communicate
with each other through a trusted path.

One of our interesting observations is the phase transition
phenomenon. Phase transition is very common in any com-
binatorial structure, where a large combinatorial structure can
be modeled as a system consisting of many locally interacting
components. Many research fields are mainly studying the
phase transitions, such as Ising model, random graph [31] and
percolation theory[32]. The phase transition phenomenon is
also studied within the networking community, For example,
Franceschetti et al. [33] work on phase transitions of wireless
network capacity, and Goel et al. [34] proved that all properties
in random geometric graphs, which are used in MANETs and
sensor networks, undergo sharp phase transitions as long as
they are monotone. We believe that study of phase transitions
will become more and more popular for autonomous networks.

APPENDIX I
DERIVATION OF EQUATION (34)

Given cij ∈ {1, 0,−1} and the confidence value node i has
on j is correct, we have cijtitj = 1. For instance, ti = 1, tj =
−1, then the correct confidence value should be cij = −1.

Inversely, i makes wrong decision if cijtitj = −1. Thus

Pr[cijtitj = 1] = 1 − pe,Pr[cijtitj = −1] = pe,

where pe is the error probability. Therefore the conditional
probability of cij is a function of cijtitj and can be written
in the following form

Pr[cij |ti, tj ] = eb1cijtitj+d1 ,

where b1 = 1
2 ln[(1 − pe)/pe] and d1 = 1

2 ln[(1 − pe)pe].
Similarly, the prior probability can be written as

Pr[ti] = eb2ti+d2 ,

where b2 = 1
2 ln[pG/(1 − pG)] and d2 = 1

2 ln[pG(1 − pG)].
Then substituting the above two equations into Eqn. (9), we
have that

Pr[si|sj , j ∈ Ni] =
e
∑

j∈Ni
b1(cij+cji)titj+b2ti+d1+d2

Zi
.

Therefore, by replacing b1 = b, b2 = −b1η and Z ′
i =

Zie
−d1−d2 , we get Eqn. (34).

APPENDIX II
PROOF OF THEOREM 4

Theorem 4: The probability of correct estimation in the
presence of independent adversaries Pcorrect is equal to the
probability of correct estimation P ∗

correct for the network G∗

with all good nodes. Pcorrect is independent of the number of
adversaries.

Proof: We know that the distribution of J∗
ij is J∗

ij ∼
(1 − pe, pe), while the distribution of Jij is

Jij ∼
{

(1 − pe, pe) if ti · tj = 1
(pe, 1 − pe) if ti · tj = −1 .

Therefore we have
J∗

ij ∼ Jijtitj . (36)

By the definition,

Pcorrect = E [1 − ‖S − T‖1/(2N)] .

In probability theory, we know that

E[X] = E [E[X|Y ]] .

Now let’s set X = ‖S−T‖1, Y = {Jijtitj}(i,j)∈E and X∗ =
‖S∗ − T ∗‖1, Y ∗ = {J∗

ij}(i,j)∈E . So we are trying to prove

E [E[X|Y ]] = E [E[X∗|Y ∗]] (37)

From Eqn. (36), we have Y ∼ Y ∗, so if we can prove

E[X|Y ] = E[X∗|Y ∗],

given Y = Y ∗, then Eqn. (37) is true. First consider the left
hand side,

E[X|Y ] =
∑
S

‖S − T‖1e
b

∑
Jijsisj

=
∑
S

∑
i

|si − ti|eb
∑

(Jijtitj)(siti)(sjtj)
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The last equation is because t2i = 1,∀i. Notice that

|si − ti| = |ti||si − ti| = |siti − t∗i |
because |ti| = 1 and t∗i = 1. If for all i, we take s∗i = siti,
and Jijtitj = J∗

ij (which is the assumption), we have

E[X|Y ] =
∑
S∗

∑
i

|s∗i − t∗i |eb
∑

J∗
ijs∗

i s∗
j = E[X∗|Y ∗].
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