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Abstract— We address the problem of using replication to
reliably maintain state in a distributed system for time spans
that far exceed the lifetimes of individual replicas. This scenario
is relevant for any system comprised of a potentially large and
selectable number of replicated components, each of which may
be highly unreliable, where the goal is to have enough replicas to
keep the system “alive” (meaning at least one replica is working
or available) for a certain expected period of time, i.e., the
system’s lifetime. In particular, this applies to recent efforts to
build highly available storage systems based on the peer-to-peer
paradigm. We model notions of replica loss and replica repair
in such systems by a simple Markov chain model, and derive
an expression for the lifetime of the replicated state. We then
apply this model to study the impact of practical considerations
like storage and bandwidth limits on the system, and describe
methods to optimally choose system parameters so as to maximize
lifetime. Our analysis sheds light on the efficacy of various
replication strategies.

I. I NTRODUCTION

Replication is a cornerstone of reliable distributed system
design. By replicating functionality across multiple nodes,
applications can tolerate the loss of individual nodes in the
system, thereby achieving some level of reliability in a system
consisting of unreliable components. As the scope and scale
of such systems continues to grow, it is of crucial importance
to develop sound design principles for problems that are
of fundamental importance to reliability engineering. In this
paper, we are concerned with one such problem:How do
we reliably maintain state in a replicated system, where the
lifetime of the state is required to significantly exceed that of
individual nodes in the system?

We are motivated to study this problem by several recent
efforts [10], [17], [6], [14] to build highly available storage
systems based on the peer-to-peer paradigm. These systems
use replication as a key mechanism to build reliable storage
in what is a highly unreliable and failure-prone environment.
Storage systems based on the peer-to-peer model must address
what happens when participating nodes leave the system, and
then either subsequently return, or permanently cease their
participation. When a node is not participating in the system,
state stored on that node is not available, and the system must
ensure that it is available on other nodes that are participating.
Achieving availability in the face of a dynamically changing
set of participating peers is one of the main challenges in these
systems [8].

Replication ensures that the system is able to guard against
individual failures. However, to maintain long-term availabil-

ity, the system must constantly repair replicas lost due to
node departure. Thus, there is a notion of repair rate, which
captures how proactive the system is in replacing lost replicas.
Thus, the two parameters the systems uses to ensure long-term
availability of state are the number of replicas, and the repair
rate. The metric the system tries to optimize is the lifetime
of the state, i.e., how long the system is able to preserve the
state in the system before all replicas are lost. How the system
tunes these parameters to maximize lifetime is the subject of
this paper, in which we address the following questions:

• What is the lifetime of a replicated system, given a certain
degree of replication and a certain rate of repair?

• What is the effect of resource constraints on a replicated
system, i.e., what happens to the lifetime when storage
is limited, repair bandwidth is limited, or both?

• Given the above constraints, what is the optimal way to
choose system parameters like the number of replicas and
the rate of repair?

Although we have motivated the problem in terms of peer-
to-peer storage, this problem of maximizing lifetime is relevent
to other distributed systems as well. A good example are
computational grid applications, which execute long-running
computations over a peer-to-peer system of user PCs, each
of which may “fail” (be turned off or have its processes
removed/killed by its owner) long before the computation is
complete. Other application domains include wireless sensor
networks [7] and amorphous computing systems [3]. In sum-
mary, maximizing the lifetime of state stored in a replicated
system is a fundamental problem that occurs in several con-
texts.

The rest of the paper is organized as follows. In Section II,
we develop a simple Markov model for a replicated system;
and obtain an expression for its lifetime. We then analyse
the impact of resource constraints on replication strategies,
and show how to optimally choose system parameters. In
Section III, we use availability numbers from a real distributed
system - Planetlab - to validate the model, and apply our results
in a realistic setting. In Section IV, we survey related work,
and in Section V, we present conclusions.

II. A NALYSIS

A. A basic model

The system consists of some universe of nodes on which
replicas can be created. A node participates in the system for
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Fig. 1. Markov chain model where each state represents the number of currently available replicas

some duration of timetp; we assume thattp is an exponentially
distributed random variable with mean1

λ
, whereλ is the rate of

departure, and thus,Pr{tp > t} = e−λt. (Below, we comment
on the appropriateness of this assumption). We assume thattp
is independent and identically distributed for all nodes inthe
system.

Any state replicated on a node is available for the duration
of its participation in the system. When a node leaves the
system, we assume that its state is lost. Suppose we need to
reliably maintain some stateS in this system. For reasons of
availability, this state is replicated on multiple nodes; let the
number of replicas ofS be n. We note thatn is a parameter
that the system can choose, although it may be subject to
constraints such as resource capacities. For example, storage
limitations may impose a practical upper bound onn. In any
case, the system starts out with exactlyn replicas ofS.

Replication alone is insufficient to reliably maintainS.
Over a period of time, node departures decrease the number
of replicas ofS present in the system. To compensate for
this attrition, the system must also use a repair mechanism
that creates new replicas to account for lost ones. The repair
mechanism must first detect the loss of a replica, and then
create a new one by copyingS to another node from an
existing replica. This whole process may take the system some
duration of timetr. To model repair, we assume thattr is
also an exponentially distributed random variable with mean
1

µ
, whereµ is the rate of repair. As before, this means that

Pr{tr > t} = e−µt.
Finally, we define therepair ratio of the system, denoted by

γ, as the normalized repair rate, relative to the rate of departure
of nodes, i.e.,

γ =
µ

λ
(1)

Intuitively, γ represents the balance between how fast the
system is losing replicas and how fast it is able to create
new ones to compensate. We note that, in addition ton, γ

is also a configurable parameter in thatµ is tunable, i.e., the
system can choose how fast it responds to lost replicas. A
largeγ implies the system aggressively replaces lost replicas,
and vice versa. Again, there may be constraints on the choice
of γ; for example, the repair timetr must be at least the time
it takes to detect a lost replica ofS and copyS across the
network.

Regarding the use of exponentials to model both node
participation and replica repair, it is common practice in

reliability theory [15] to model the failure of components
by an exponential distribution; node participation is a similar
concept. In Section III, we present data that suggests that
uptime of nodes in a real system is exponentially distributed,
thus providing some evidence that our assumption is grounded
in reality. Modeling the repair time by an exponential dis-
tribution is somewhat harder to substantiate. We note that
repair time may depend on factors such as timeliness of
failure detection and available bandwidth, and is generally
subject to some randomness. Again, in Section III, we present
data that suggests the downtime of nodes in a real system
is exponentially distributed, implying that modeling repair by
an exponential is not altogether unrealistic. Last but not least,
the memoryless property of the exponential distribution results
in our replicated system model being Markovian, and hence
mathematically tractable.

B. Markov chain

To analyze the above model, we reduce it to a Markov
chain. At any point of time, the system hask (0 ≤ k ≤ n)
functioning replicas; the remainingn − k are being repaired.
Thus the system can be modeled by a Markov chain with
n + 1 possible states; the system is in statek if there arek

functioning replicas. In statek, any one of thek functioning
replicas can fail, in which case the system goes to statek−1, or
one of then−k non-functioning replicas is repaired, in which
case the system goes to statek+1. This is a continuous Markov
model; in statek, the system moves to statek−1 with ratekλ

and to statek + 1 with rate (n − k)µ. Note that state 0 is an
absorbing state; the system can no longer recoverS when there
are no more functioning replicas left. The model is illustrated
in Figure 1. In the appendix, we derive an expression for the
expected time to failure by considering the discrete embedding
of this model.

C. Mean time to failure

Given this basic model, we now address the questions posed
in Section I. Specifically, we quantify how long a replicated
system can maintain some stateS before it is lost permanently
due to the dynamics of the underlying population of nodes. In
terms of the above model, the relevant metric is the time to
failure, i.e., the time it takes for the system, starting with n

replicas ofS, to reach a state where there are no replicas ofS

left. We denote this quantity, thelifetime of S, by ts. Clearly,
ts is a random variable whose distribution depends on the
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Fig. 2. Pn(γ) as a function of (a) repair ratioγ and (b) number of replicasn. Note that the Y-axis is log scale.

n Pn(γ)

2 3
2

+ 1
2
γ

3 11
6

+ 7
6
γ + 1

3
γ2

4 25
12

+ 23
12

γ + 13
12

γ2 + 1
4
γ3

5 137
60

+ 163
60

γ + 137
60

γ2 + 21
20

γ3 + 1
5
γ4

TABLE I

Pn(γ) FOR SOME SMALL VALUES OFn

system parametersn, λ andµ. In terms of the above Markov
chain,ts is the time to absorption, and state 0 is an absorbing
state.

We derive the expected value ofts to be

E[ts] =
1

λ
Pn (γ) (2)

=
1

λ

(

c0,nγ0 + c1,nγ1 + . . . + cn−1,nγn−1
)

(3)

where the coefficient ofγi is given by

ci,n =
1

n

n−i−1
∑

j=0

(

n
j

)

(

n−1

i+j

) (4)

A detailed derivation is presented in the appendix. We note
that general techniques exist to compute time to absorption
in matrix form for finite Markov chains; see [13] for exam-
ple. Also, the mean time to failure of a parallel system of
components with repair has been derived in [9]; although this
expression is different in form from Equation 3, it can be
shown to be identical. However, our derivation, which is based

on the Gambler’s Ruin Problem [12], [11], is simpler and more
intuitive, and we provide it for the sake of completeness1.

Recall that the average time a node participates in the
system is1

λ
. Therefore,Pn (γ) represents the expected lifetime

of the replicated system in terms of the average lifetime of a
single replica. Note that this is purely a function of the repair
ratio γ = µ

λ
. We note here that sincets is a constant times

Pn(γ) 2, it is sufficient to study the behavior ofPn(γ) with
respect ton andγ.

Equation 3 shows that the mean lifetime varies polynomially
with the repair ratioγ and exponentially with the number of
replicasn. This is further illustrated in Figure 2. Figure 2(a)
shows the behavior ofPn(γ) with respect toγ for different
values ofn. Likewise Figure 2(b) shows the behavior ofPn

with respect ton for different values ofγ. Finally, Table I
recordsPn(γ) for a few small values ofn. As expected, the
mean lifetime increases with bothn andγ. We note that when
γ is large,Pn(γ) is large even for a relatively smalln. On the
other hand, whenγ is small, even a largen results only in
a modestPn(γ). In the limiting case, when eitherγ −→ ∞
or n −→ ∞, Pn −→ ∞ as well. The former corresponds
to instantaneous repair while the latter corresponds to an
unbounded number of replicas. In this case, even forγ = 0,
i.e., the system does not repair lost replicas,

Pn(0) = c0,n (5)

1The Gambler’s Ruin Problem is related to ours as follows: it considers
what is the probability that a gambler (the system) with a certain stake
(the number of replicas) playing repeated games in which there is a certain
probability of winning (probability a new replica is generated before another
replica fails) will ultimately be ruined (the state disappears due to no replicas
surviving), and what is the average playing time (average lifetime of the
state). Our problem is more complicated in that the “probability of winning
in a single game” in our formulation is not a constant, but changes with
the “current stake,” i.e., the number of existing replicas.However, we use a
framework similar to that of deriving classical results forthe Gambler’s Ruin,
resulting in a closed-form analytical result that is very different in form but
functionally equivalent to that of [9]. The advantage of ourderivation is that
it does not rely on transform methods, making it more intuitive.

2λ is a property of the nodes in the system and cannot be tuned by the
system.
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Fig. 3. Mean lifetime (Pn(γ)) under constrained repair bandwidth for different values of available repair bandwidthnmax = 3.0 and 5.0

=
1

n

n−1
∑

j=0

n

n − j
(6)

=

j=n
∑

j=1

1

j
(7)

= Hn (8)

Since the harmonic sumHn diverges to infinity (albeit slowly),
in theory, mean lifetime can be made arbitrarily large by
creating a sufficiently large number of replicas, even though
there is no repair. We note that, in most scenarios, neither
instantaneous repair nor an unbounded number of replicas is
likely to be a viable replication strategy, as there are practical
considerations that limit the repair rate or the number of
replicas. We elaborate on this in the following section.

D. Choosing system parameters

It is clear from Figure 2 that the mean lifetimets increases
with both n and γ. Therefore, in order to maximizets, the
system should be designed with both as large as possible,
although how they should be increased relative to each otheris
an interesting question. In this section, we consider the effect
of some such factors that arise out of practical considerations,
and show how to choosen andγ so as to maximizets. These
factors include the following:

1) Storage:The number of replicas ofS that can be created
may be limited by the total storage capacity of the system. This
results in the constraint

n ≤ nmax (9)

wherenmax is an upper bound on the number of replicas due
to storage limits.

2) Management overhead:Replica repair must include a
mechanism to detect the loss of individual replicas. One such
mechanism is a group membership protocol that maintains the
current set of replicas ofS through constant probing. Overhead
considerations may limit the frequency of these probes, which
implies that detecting the loss of a replica may be associated

with some average latency. This has a direct effect on the
replica repair timetr, and may result in a constraint of the
form

γ ≤ γmax (10)

whereγmax is an upper bound on the normalized repair rate.
3) Repair bandwidth:Finally there could be a constraint

on the bandwidth used by the system in creating new replicas.
For example, the system may be required to used no more
than a bandwidth of̄c on average for the repair process. The
effect of this onn andγ is as follows.

A replica exists on a node for a timetp after which the node
leaves the system. The repair mechanism then creates a new
replica after a timetr. Therefore, on average, a new replica is
created after a timeE[tp + tr] = E[tp] + E[tr] = 1

λ
+ 1

µ
. If

the size ofS is b (bytes), this incurs an overhead ofb in terms
of repair traffic. If the system started out withn replicas of
S, the average rate of repair trafficc is given by

c =
nb

(

1

λ
+ 1

µ

) (11)

=
nbλ

(

1 + 1

γ

) (12)

Applying a constraint ofcmax on the repair bandwidth,

nbλ
(

1 + 1

γ

) ≤ cmax (13)

or

n ≤
cmax

bλ

(

1 +
1

γ

)

(14)

= dmax

(

1 +
1

γ

)

(15)

wheredmax = cmax

bλ
. Intuitively, dmax is a normalized notion

of repair bandwidth. Whilecmax expresses the bandwidth
constraint in terms of bytes per second,dmax expresses the



same constraint in terms of replicas per node lifetime. For
example,dmax = 5.0 represents a repair bandwidth that is
equivalent to creating 5 replicas over an interval of1

λ
, which

is the average lifetime of a node. It is easy to verify that if
the system createsdmax replicas of sizeb during an interval
of 1

λ
, this translates to a bandwidth ofdmaxbλ, which is equal

to cmax.
Unlike the other constraints, Equation 15 involves both

n and γ. When equality holds, as is the case when repair
bandwidth is the limiting factor in the system3, n cannot be
increased without decreasingγ, and vice versa. Thus, there
exists a tradeoff betweenn and γ in maximizing ts. If a
max-repair policy is used,γ is large as possible andn is
correspondingly small. Alternatively, if amax-replicaspolicy
is used,n is as large as possible andγ is correspondingly
small. Of course, these are two extreme points in the parameter
space;n and γ could take on a range values in between as
well.

Given the above constraints, we now show how to choose
n and γ optimally. Let nmin denote the maximum number
of replicas that can be created while using max-repair, and
without violating the constraint on repair bandwidth. From
Equation 15,

nmin = ⌈dmax

(

1 +
1

γmax

)

⌉ (16)

If nmax ≤ nmin, the limiting factor in the system is storage.
The optimal choice of parameters is trivial:n = nmax and
γ = γmax. This is because bothn and γ are at their
maximum possible values, and it is straightforward to see that
Equation 15 is satisfied.

On the other hand, ifnmax > nmin, the limiting factor
in the system is repair bandwidth. The optimal value of
n lies betweennmin and nmax, and also satisfies equality
in Equation 15. At this point, ideally, an analytic solution
can be obtained by substituting forγ in Pn(γ), and then
optimization techniques can be used to derive the value of
n that maximizests. However, the expression forPn(γ) is
not tractable; hence, we present numerical results instead. For
a given value ofn, we can compute the corresponding value
of γ from Equation 15, and computePn(γ). For a givendmax,
Pn(γ) is computed for all valuesn > dmax; Figure 3 plots
this for dmax = 3.0 and dmax = 5.0. The results for two
values ofdmax (3.0 and 5.0) are plotted in Figure 3(a) and
Figure 3(b) respectively. Recall thatdmax is the normalized
constraint on repair bandwidth.

The following trends can be observed from Figure 3.Pn(γ)
is first decreasing, reaches a minimum and then is increasing
(to infinity). The minima occurs atn = 14 for dmax = 3.0 and
n = 242 for dmax = 5.0. As the value ofdmax increases, the
minima shifts more and more to the right. The slow growth
of Pn(γ) after it reaches the minima can be attributed to
the fact that as the repair rate becomes smaller, the effect of

3We note that increasing eithern andγ increasests. So in the absence of
other constraints, equality will hold for the optimal choice of n andγ.

repair diminishes and the increase inPn(γ) is essentially the
harmonic growth that occurs in the absence of any repair.

The shape of the graph provides a straightforward way of
determining the optimal values ofn and γ. The absence of
any local maxima implies that, in the interval[nmin, nmax],
Pn(γ) is maximum at one of the endpoints. Therefore the
optimal value ofn is eithernmin or nmax; which one can be
determined by evaluating it at both points using Equation 3.
The corresponding value ofγ is obtained from Equation 15.
Thus, given a constraint on repair bandwidth, the optimal
replication strategy that maximizests is either max-repair or
max-replicas; all intermediate strategies are sub-optimal.

III. C ASE STUDY

In this section, we study availability data from a real
large-scale distributed system - Planetlab [2]. Our objective
is two-fold: (1) to validate our model, especially one of the
key assumptions that node participation can be modeled by
an exponential distribution, and (2) to apply the results of
Section II to a realistic setting. Planetlab is an experimental
testbed consisting of roughly 500 nodes distributed acrossthe
world. It is representative of a node population consistingof
moderately powerful desktop machines with, by and large,
good network connectivity4.

A. Availability data

To generate availability numbers for Planetlab, we use the
all pairs ping dataset [1], which consists of each Planetlab
node pinging the others roughly 4 times an hour, over a period
of 21 months (October 2003 - June 2005). Each data point in
the data set consists of a time stamp, and the result of all pair-
wise pings between the nodes. A ping consists of 10 probes;
it is successful if at least one probe response was received,
and unsuccessful otherwise. In certain cases, presumably due
to data collection issues, no data is available for certain pairs.

Our methodology is as follows. At every time for which data
is available, we classify each node as being eitherup or down.
A node is up if at least one other node succeeded in pinging
it; a node is down if no other node was able to ping itand
there were at least 5 unsuccessful ping attempts to that node. A
successful ping attempt indicates that a node is up. However,
an unsuccessful ping attempt does not necessarily imply that
a node is down; network connectivity issues may result in
a failed ping. Therefore, we require a minimum number of
unsuccessful ping attempts to classify a node as down, to
filter out the small number of cases where the sparsity of data
may erroneously result in a node being classified as down. By
identifying contiguous intervals of time during which a node
was either up or down, we compute uptime and downtime
numbers for that node.

We plot the cumulative distribution function of uptimes
and downtimes obtained in the manner; Figure 4(a) shows
uptimes while Figure 4(b) shows downtimes. This is done
for the Planetlab node population as a whole, as the data is

4A majority of the Planetlab nodes are hosted by academic institutions
around the world.
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Fig. 4. Cumulative distribution of uptime and downtime for Planetlab nodes

too sparse for this to be done for each individual node. As
can be seen from Figure 4, the shape of the curves indicates
that an exponential distribution is a reasonable fit for both
uptime and downtime. We identify the best fitting exponential
distributions using maximum likelihood estimation; theseare
shown as well. The mean uptime is 181 hours while the mean
downtime is 61 hours.

B. Discussion

We now develop a simple example to illustrate our results
in the context of a real system; we consider the problem of
using replication to reliably maintain state on Planetlab.

Assume the total amount of state to be maintained is 100
GB. From Section III-A, the mean uptime is 181 hours and
the mean downtime is 61 hours. Therefore, out of roughly
500 nodes, the mean number of Planetlab nodes up at any
point of time is 181

181+61
∗ 500 ≈ 374. To be conservative, we

assume the number of nodes participating is 300. If each node
contributes 5 GB of storage5, the total amount of storage is
5 ∗ 300 = 1500 GB. Therefore, the constraint on storage is
given by nmax = 1500

100
= 15. If we assume that the system

requires a minimum of half an hour on average to detect and
repair a lost replica, then the constraint on repair ratio isgiven
by γmax == 181 ∗ 2 = 362.

Finally, assume that the constraint on repair bandwidth
cmax = 4 Mbps. Since the size of the replicated state is 100
GB and the mean node lifetime is 181 hours, the normalized
constraint is then

dmax =
4Mbps∗ 181hours

100GB
= 3.18 (17)

Now

nmin = ⌈3.18

(

1 +
1

362

)

⌉ = 4 (18)

From Section II-D, we know that the optimal value ofn is
either nmin = 4 or or nmax = 15. The former has a mean

55 GB is the per-slice disk quota on Planetlab nodes
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lifetime of 306 days. while the latter has a mean lifetime of
102 days. Thus, in this case, max-repair is the better replication
strategy.

Figure 5 shows the mean lifetime of the system for varying
repair bandwidths - 2, 4, 6 and 8 Mbps respectively. As can
be seen, max-repair is better than max-replicas in all cases
but one. In addition, a system-wide repair bandwidth of 6-8
Mbps is sufficient to reliably maintain 100 GB of a state for
a very long time; this will scale proportionally as the size of
the system increases.

To conclude this section, we consider the question of when
max-repair is better than max-replicas, and vice versa. Max-
replicas relies on a large number of replicas to overcome
a small rate of repair; therefore, one case where it would
potentially be better in systems where massive replicationis
possible, i.e.,nmax is large. Recall from Section II-D that
for low rates of repair, mean lifetime grows very slowly with
increasingn. Therefore, this is unlikely to be a viable scenario
for the networked systems we are most interested in - peer-
to-peer systems and computational grids - where the degree



of replication would be limited to a few tens or hundreds at
most. The other regime where max-replicas could be useful
is when the available repair bandwidth is small; this can be
seen from Figure 5 where forcmax = 2 Mbps, max-replicas
out-performs max-repair. Even so, the mean lifetime is small
becausenmax is small.

Ultimately, max-replicas is likely to be useful only in a
regime wherenmax is large and cmax is small, i.e., mas-
sively replicated systems where communication/coordination
between nodes is at a premium. Of particular interest are
wireless sensor networks [7], where large numbers of cheap,
unreliable wireless devices operate under constraints of limited
communication due to issues of radio range and power man-
agement. A more tantalizing example is that of massively dis-
tributed applications such asamorphous computing mediums,
which are systems of irregularly placed, asynchronous, locally
interacting computational particles that may be sprinkledon
a surface or mixed throughout a volume [3]. For more tradi-
tional distributed systems, the bottom line is that aggressively
repairing a smaller number of replicas is the optimal approach
to achieving large system lifetimes.

IV. RELATED WORK

Our work is closely related to two distinct bodies of
research: availability research as considered in the systems
and networking community, and system reliability theory as
considered in the performance and modeling community.

In recent years, the peer-to-peer model has emerged as a
paradigm for building large-scale self-managing distributed
systems. This has led to several efforts to build highly available
distributed storage systems based on this paradigm; promi-
nent among these are CFS [10], PAST [17], TRFS [5], [6],
Oceanstore [14], [16] and Farsite [4]. These systems use repli-
cation and/or erasure coding to ensure that data is available
despite the failure or unavailability of individual nodes in the
system. While certainly similar in spirit, our work differson
the following counts. First, as mentioned in Section I, the
metric we are interested in is the lifetime of the state in the
system, as opposed to its fractional availability. Second,we
incorporate notions of resource limitations like storage and
bandwidth constraints in our model, and study their impact
on the choice of system parameters. Previous studies largely
ignore this, focusing instead on choosing parameters solely
based on the target level of availability. In this respect, the
analysis in [8] is closest to our work; however it uses fractional
availability as the metric.

This work is also inspired by work in system reliability
theory [15], which attempts to model the failure properties
of multi-component systems. In particular our model of Sec-
tion II-A is similar to that in [9], which deals with analyzing
the time-to-failure of a parallel system of components with
repair. However, the key difference is that we also attempt to
model the effect of practical considerations that are specific to
the domain in question, namely large-scale distributed systems.

V. CONCLUSION

In this paper, we have addressed the question of how to
engineer a distributed system that uses replication to reliably
maintain state that far outlives the individual nodes on which it
resides. For example, such state could be either data, as in the
case of peer-to-peer storage, or computation, as in the caseof
computational grids. Towards this objective, our contributions
are as follows:

• We developed a simple Markov model that expresses the
essential features of a replicated system, including notions
of replica loss and replica repair, in terms of a few key
parameters.

• We provided an analysis of the above model, including
an expression for the mean lifetime of replicated state in
terms of those parameters.

• We developed an analysis of the effect of resource con-
straints on the system, including a method to optimally
choose system parameters so as to maximize lifetime.
Our analysis reveals that, for most practical scenarios,
it is better to invest the available repair bandwidth in
aggressively maintaining a small number of replicas than
spreading it thin across a large number of replicas.
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APPENDIX

In this section, we derive an expression for the expected
lifetime ts, i.e., the average time it takes for the system to reach
state 0, starting in staten. We analyze the continuous Markov
model presented in Section II-B by considering its discrete
embedding. In the discrete case, the transitions betweens states
are labeled with probabilities instead of rates. From statek,
there are two possible transitions: to statek−1 with probability
pk and to statek + 1 with probability qk. The transition
probabilitiespk andqk are functions ofλ, µ andk.

The derivation uses the concept of anepoch, which is as
follows. At the start of an epoch, the system is in staten. At
the end of an epoch, the system either returns to staten, in
which case the next epoch starts, or the system reaches state
0. The system goes through a number of epochs, and in each
epoch except for the last one, returns to staten. In the last
epoch, the system goes to state 0. The derivation proceeds
in two steps: computing the expectednumberof epochsne,
and computing the expectedduration te of each epoch. The
expected lifetimets is then obtained as the product ofne and
te.

We note that each epoch is essentially an instance of the
Gambler’s Ruin Problem. Starting in staten, the system
always makes the transition to staten−1 upon the first failure.
After this, the behavior of a system in the epoch is similar to
that of a gambler starting with a fortune ofn− 1 and playing
till he makes a fortune ofn, or alternatively, is ruined. The key
difference is that the transition probabilities are not constant
but state dependent.

A. Number of epochs

Let Qk be the probability that the system reaches state0
before staten starting in statek. ClearlyQ0 = 1 andQn = 0.
For 0 < k < n, Qk satisfies the recurrence

Qk = pkQk−1 + qkQk+1

where

pk =
kλ

kλ + (n − k)µ

qk =
(n − k)µ)

kλ + (n − k)µ

where pk and qk are the transition probabilities in statek.
Applying pk + qk = 1,

(pk + qk)Qk = pkQk−1 + qkQk+1

and rearranging terms,

pk(Qk−1 − Qk) = qk(Qk − Qk+1)

which yields

Qk−1 − Qk =
qk

pk

(Qk − Qk+1)

=
n − k

k

(µ

λ

)

(Qk − Qk+1)

=
n − k

k
γ (Qk − Qk+1)

where γ = λ
µ

. The quantity of interest isQn−1, i.e., the
probability that the system reaches state0 before staten

starting in staten− 1. Denote this quantity byQ∗. Therefore

Qn−1 − Qn = Q∗(Qn = 0)

Repeatedly applying the above recurrence equation,

Qn−2 − Qn−1 =
1

n − 1
γ (Qn−1 − Qn)

=
1

(

n−1

1

)γ1Q∗

Qn−3 − Qn−2 =
2

n − 2
γ (Qn−2 − Qn−1)

=
2

n − 2
γ

1
(

n−1

1

)γ1Q∗

=
1

(

n−1

2

)γ2Q∗

and so on. Therefore, proceeding inductively,

Qn−k−1 − Qn−k =
1

(

n−1

k

)γkQ∗

Now

Q0 − Qn = 1 − 0 = 1

and

Q0 − Qn =

k=n−1
∑

k=0

(Qn−k−1 − Qn−k)

= Q∗

k=n−1
∑

k=0

1
(

n−1

k

)γk

which implies

Q∗ =

(

∑k=n−1

k=0

1

(n−1

k )
γk

)

−1

The probability that an epoch will result in the number of
replicas going down to 0, i.e., the probability that it will be
the last epoch, isQ∗. Therefore, the expected value of the
number of epochs is given by

ne =
1

Q∗

B. Duration of epoch

Let Tk be the expectedtime that elapses before the system
reaches either state0 or staten starting in statek. Clearly
T0 = 0 andTn = 0. For0 < k < n, Tk satisfies the recurrence

Tk = pkTk−1 + qkTk+1 + tk

where

tk =
1

kλ + (n − k)µ

Applying pk + qk = 1,

(pk + qk)Tk = pkTk−1 + qkTk+1 + tk



and rearranging terms,

pk(Tk−1 − Tk) = qk(Tk − Tk+1) − tk

which yields

(Tk−1 − Tk) =
qk

pk

(Tk − Tk+1) −
tk

pk

=
n − k

k

(µ

λ

)

(Tk − Tk+1) −
1

kλ

=
n − k

k
γ(Tk − Tk+1) −

1

kλ

The quantity of interest isTn−1, i.e., the expected time that
elapses before the system reaches either state0 or staten

starting in staten− 1. Denote this quantity byT ∗. Therefore

Tn−1 − Tn = T ∗(Tn = 0)

Repeatedly applying the above recurrence equation,

Tn−2 − Tn−1 =
1

n − 1
γ (Tn−1 − Tn) −

1

n − 1

1

λ

=
1

(

n−1

1

)γ1T ∗ −
1

nλ

(

n

1

)

(

n−1

1

)γ0

Tn−3 − Tn−2 =
2

n − 2
γ (Tn−2 − Tn−1) −

1

n − 2

1

λ

=
1

(

n−1

2

)γ2T ∗ −
1

nλ

(

n
1

)

(

n−1

2

)γ1 −
1

nλ

(

n
2

)

(

n−1

2

)γ0

and so on. Therefore, proceeding inductively,

Tn−k−1 − Tn−k =
1

(

n−1

k

)γkT ∗ −
1

nλ

j=k
∑

j=1

(

n
j

)

(

n−1

k

)γk−j

Now

T0 − Tn = 0 − 0 = 0

and

T0 − Tn =
k=n−1
∑

k=0

(Tn−k−1 − Tn−k)

= T ∗

(

k=n−1
∑

k=0

1
(

n−1

k

)γk

)

−
1

nλ

k=n−1
∑

k=0

j=k
∑

j=1

(

n
j

)

(

n−1

k

)γk−j

=
T ∗

Q∗
−

1

nλ

k=n−1
∑

k=0

j=k
∑

j=1

(

n

j

)

(

n−1

k

)γk−j

which implies

T ∗ = Q∗





1

nλ

k=n−1
∑

k=0

j=k
∑

j=1

(

n

j

)

(

n−1

k

)γk−j





The expected value of the epoch length is given by

te = tn + T ∗

=
1

nλ
+ Q∗





1

nλ

k=n−1
∑

k=0

j=k
∑

j=1

(

n
j

)

(

n−1

k

)γk−j





=
Q∗

nλ





1

Q∗
+

k=n−1
∑

k=0

j=k
∑

j=1

(

n

j

)

(

n−1

k

)γk−j





=
Q∗

nλ





k=n−1
∑

k=0

1
(

n−1

k

)γk +
k=n−1
∑

k=0

j=k
∑

j=1

(

n

j

)

(

n−1

k

)γk−j





=
Q∗

nλ





k=n−1
∑

k=0

j=k
∑

j=0

(

n

j

)

(

n−1

k

)γk−j





C. Expected lifetime

The expected value of the lifetime is given by

ts = ne te

=
1

nλ

k=n−1
∑

k=0

j=k
∑

j=0

(

n
j

)

(

n−1

k

)γk−j

Rearranging terms to writets as a polynomial inγ gives us
our final expression

ts =
1

λ
Pn (γ)

=
1

λ

(

c0,nγ0 + c1,nγ1 + . . . + cn−1,nγn−1
)

where the coefficient ofγi is given by

ci,n =
1

n

j=n−i−1
∑

j=0

(

n
j

)

(

n−1

i+j

)


