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Abstract—We address the problem of using replication to ity, the system must constantly repair replicas lost due to
reliably maintain state in a distributed system for time spas node departure. Thus, there is a notion of repair rate, which
that far exceed the lifetimes of individual replicas. This senario captures how proactive the system is in replacing lostcepli

is relevant for any system comprised of a potentially large ad
selectable number of replicated components, each of which ag Thus, the two parameters the systems uses to ensure long-ter

be highly unreliable, where the goal is to have enough replas to  availability of state are the number of replicas, and theairep
keep the system “alive” (meaning at least one replica is woikg rate. The metric the system tries to optimize is the lifetime

or available) for a certain expected period of time, i.e., te of the state, i.e., how long the system is able to preserve the
system’s lifetime. In particular, this applies to recent eforts to state in the system before all replicas are lost. How theesyst

build highly available storage systems based on the peer-faeer L s .
paradigm. We model notions of replica loss and replica repai tunes these parameters to maximize lifetime is the subject o

in such systems by a simple Markov chain model, and derive this paper, in which we address the following questions:
an expression for the lifetime of the replicated state. We tan « What is the lifetime of a replicated system, given a certain
apply this model to study the impact of practical consideraions degree of replication and a certain rate of repair?

like storage and bandwidth limits on the system, and describ ) . .
methods to optimally choose system parameters so as to maiira « What is the effect of resource constraints on a replicated

lifetime. Our analysis sheds light on the efficacy of various system, i.e., what happens to the lifetime when storage
replication strategies. is limited, repair bandwidth is limited, or both?
« Given the above constraints, what is the optimal way to

S ] o choose system parameters like the number of replicas and
Replication is a cornerstone of reliable distributed syste the rate of repair?

design. By replicating functionality across multiple nede
applications can tolerate the loss of individual nodes i@ tqo
system, thereby achieving some level of reliability in ateys ¢
consisting of unreliable components. As the scope and sc
of such systems continues to grow, it is of crucial impor&n
to develop sound design principles for problems that al

of fundamental importance to reliability engineering. st removed/killed by its owner) long before the computation is

paper, we are concerned .W'th one such probléfow do complete. Other application domains include wireless @ens
we reliably maintain state in a replicated system, where tmeetworks [7] and amorphous computing systems [3]. In sum-
lifetime of the state is required to significantly exceed thfa

individual nodes in the system? mary, maximizing the lifetime of state stored in a replicate

; . system is a fundamental problem that occurs in several con-
We are motivated to study this problem by several rece[rgéds

efforts [10], [17], [6], [14] to build highly available stage o (oot of the paper is organized as follows. In Section I,

systems based on the peer-to-peer paradigm. These SySt\?v Sdevelop a simple Markov model for a replicated system;

use replication as a key mechanism to build reliable storagﬁd obtain an expression for its lifetime. We then analyse

in what is a highly unreliable and failure-prone environten he impact of resource constraints on replication strategi

Storage systems based on the peer-to-peer model mustadé show how to optimally choose system parameters. In

what happens when participating nodes leave the system, YiLtion 111, we use availability numbers from a real digitéxd

then_ _e|th¢r subsequently rgturn, or pe_rma_nen_tly cease tt%ey'stem - Planetlab - to validate the model, and apply outtsesu
participation. When a node is not participating in the syste .

: . in a realistic setting. In Section IV, we survey related work
state stored on that node is not available, and the systerh mus g y W

ensure that it is available on other nodes that are partinipa and in Section V, we present conclusions.
Achieving availability in the face of a dynamically changin 1. ANALYSIS
set of participating peers is one of the main challengeséreh
systems [8].

Replication ensures that the system is able to guard againsthe system consists of some universe of nodes on which
individual failures. However, to maintain long-term awediil- replicas can be created. A node participates in the system fo

|I. INTRODUCTION

Although we have motivated the problem in terms of peer-
-peer storage, this problem of maximizing lifetime isexednt
other distributed systems as well. A good example are
cl)ei\'nputc'zltion<'sll grid applications, which execute long-ingn
omputations over a peer-to-peer system of user PCs, each
¥ which may “fail” (be turned off or have its processes

A. A basic model
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Fig. 1. Markov chain model where each state represents thmbeuof currently available replicas

some duration of time,; we assume that, is an exponentially reliability theory [15] to model the failure of components
distributed random variable with me%n where) is the rate of by an exponential distribution; node participation is aikEm
departure, and thu€r{t, > t} = e~*'. (Below, we comment concept. In Section Ill, we present data that suggests that
on the appropriateness of this assumption). We assume,thatiptime of nodes in a real system is exponentially distridute
is independent and identically distributed for all nodeghia thus providing some evidence that our assumption is gradinde
system. in reality. Modeling the repair time by an exponential dis-
Any state replicated on a node is available for the duratigribution is somewhat harder to substantiate. We note that
of its participation in the system. When a node leaves thepair time may depend on factors such as timeliness of
system, we assume that its state is lost. Suppose we neeéhilare detection and available bandwidth, and is generall
reliably maintain some staté in this system. For reasons ofsubject to some randomness. Again, in Section Ill, we ptesen
availability, this state is replicated on multiple nodest; the data that suggests the downtime of nodes in a real system
number of replicas of ben. We note that: is a parameter is exponentially distributed, implying that modeling répay
that the system can choose, although it may be subjectaio exponential is not altogether unrealistic. Last but eas,
constraints such as resource capacities. For examplegstorthe memoryless property of the exponential distributicsuls
limitations may impose a practical upper boundrann any in our replicated system model being Markovian, and hence
case, the system starts out with exaectlyeplicas ofS. mathematically tractable.
Replication alone is insufficient to reliably maintaisi.
Over a period of time, node departures decrease the numBerMarkov chain
of replicas of S present in the system. To compensate for To analyze the above model, we reduce it to a Markov
this attrition, the system must also use a repair mechanisimin. At any point of time, the system has(0 < k < n)
that creates new replicas to account for lost ones. Themrepfainctioning replicas; the remaining — k are being repaired.
mechanism must first detect the loss of a replica, and th€hus the system can be modeled by a Markov chain with
create a new one by copyin§ to another node from ann + 1 possible states; the system is in staté there arek
existing replica. This whole process may take the systemesofanctioning replicas. In staté, any one of thek functioning
duration of timet,. To model repair, we assume thgtis replicas can fail, in which case the system goes to tatke or
also an exponentially distributed random variable with meane of then — k non-functioning replicas is repaired, in which
1" where is the rate of repair. As before, this means thatase the system goes to statel. This is a continuous Markov
Pr{t, >t} = e M. model; in statek, the system moves to state- 1 with rate k)
Finally, we define theepair ratio of the system, denoted byand to statek + 1 with rate (n — k)u. Note that state 0 is an
~, as the normalized repair rate, relative to the rate of dapar absorbing state; the system can no longer rec6wehen there

of nodes, i.e., are no more functioning replicas left. The model is illutdth
_ M 1) in Figure 1. In the appendix, we derive an expression for the
T expected time to failure by considering the discrete eminedd

Intuitively, v represents the balance between how fast tloé this model.
system is losing replicas and how fast it is able to create
new ones to compensate. We note that, in additiom,tey
is also a configurable parameter in thats tunable, i.e., the  Given this basic model, we now address the questions posed
system can choose how fast it responds to lost replicas.ilASection |. Specifically, we quantify how long a replicated
large~y implies the system aggressively replaces lost replicay,stem can maintain some statdefore it is lost permanently
and vice versa. Again, there may be constraints on the choifige to the dynamics of the underlying population of nodes. In
of ~; for example, the repair timg. must be at least the timeterms of the above model, the relevant metric is the time to
it takes to detect a lost replica ¢f and copyS across the failure, i.e., the time it takes for the system, startinghwit
network. replicas ofS, to reach a state where there are no replica$ of
Regarding the use of exponentials to model both nodkft. We denote this quantity, tHéetime of S, by ¢.. Clearly,
participation and replica repair, it is common practice in; is a random variable whose distribution depends on the

. Mean time to failure
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Fig. 2. Pn(v) as a function of (a) repair ratig and (b) number of replicas. Note that the Y-axis is log scale.
n Pn(V) on the Gambler’'s Ruin Problem [12], [11], is simpler and more
3 .1 intuitive, and we provide it for the sake of completenéss
2 37 Recall that the average time a node participates in the
system is%. Therefore P, (y) represents the expected lifetime
3 oy 7.4 1.2 of the replicated system in terms of the average lifetime of a
6 "6/ T 37

single replica. Note that this is purely a function of theaiep
ratio v = § We note here that sincg is a constant times
4 % %7 + %72 + iy?’ P,(v) 2, it is sufficient to study the behavior d#,(v) with
respect ton and~.
Equation 3 shows that the mean lifetime varies polynomially
S % %7 + 16%772 + %73 + %74 with the repair ratioy and exponentially with the number of
replicasn. This is further illustrated in Figure 2. Figure 2(a)
shows the behavior oP, () with respect toy for different
values ofn. Likewise Figure 2(b) shows the behavior Bf
with respect ton for different values ofy. Finally, Table |
recordsP, (v) for a few small values of.. As expected, the
mean lifetime increases with bothand~. We note that when

system parameters, \ and . In terms of the above Markov 7 iS large, P, (7) is large even for a relatively smail. On the

chain, , is the time to absorption, and state 0 is an absorbif¢er hand, whery is small, even a large results only in
a modestP, (). In the limiting case, when eithey — oo

TABLE |
Py, () FOR SOME SMALL VALUES OFn

state.
We derive the expected value &f to be orn — oo, P, — oo as well. The former corresponds
to instantaneous repair while the latter corresponds to an
Elt,] = lpn ) 2) ynbounded number of replica;. In this case, evemfes 0,
/1\ i.e., the system does not repair lost replicas,
_ 0 1 n—1
= 3 (@’ ey oA e 3) P.(0) = con (5)
where the coefficient of’ is given by 1The Gambler's Ruin Problem is related to ours as follows:oitsiders
—ic1 /m what is the probability that a gambler (the system) with atader stake
1" (7) (the number of replicas) playing repeated games in whichetiga certain
Cin = — p— (4) probability of winning (probability a new replica is gentd before another
n =0 7;+j) replica fails) will ultimately be ruined (the state disappedue to no replicas

) o ) ) ) surviving), and what is the average playing time (averafetiie of the
A detailed derivation is presented in the appendix. We nat@te). Our problem is more complicated in that the “proliighdf winning

that general techniques exist to compute time to absorptirf. single game” in our formulation is not a constant, butnges with
the “current stake,” i.e., the number of existing replicH®wever, we use a

in matrix form for finite Markov chains; see [13] for exam-amework similar to that of deriving classical results foe Gambler's Ruin,
ple. Also, the mean time to failure of a parallel system aésulting in a closed-form analytical result that is verffedent in form but

components with repair has been derived in [9]; aIthoug@ tHrnctionaIIy equivalent to that of [9]. The adyant‘age of <_nlﬂari_v_ation is that
it does not rely on transform methods, making it more intaiti

expression '_S d'ﬁ_erent in form from E_qua_‘tlon 3'_ it _Can be 2) is a property of the nodes in the system and cannot be tunetheby t
shown to be identical. However, our derivation, which isdzhs system.
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Fig. 3. Mean lifetime P, (+)) under constrained repair bandwidth for different valués\ailable repair bandwidti,,q. = 3.0 and 5.0
-1 . . .
1 "z: n ©6) with some average latency. This has a direct effect on the
on —n—j replica repair timet,., and may result in a constraint of the
= form
i=ny
- 3 (7) Y S Ymaz (10)
J=1 . . .
- 8) where~,,.. IS an upper bound on the normalized repair rate.
- n

3) Repair bandwidth:Finally there could be a constraint
Since the harmonic sutif,, diverges to infinity (albeit slowly), on the bandwidth used by the system in creating new replicas.
in theory, mean lifetime can be made arbitrarily Iarge byor examp|e' the System may be required to used no more
creating a sufficiently large number of replicas, even thoughan a bandwidth of on average for the repair process. The
there is no repair. We note that, in most scenarios, neith&fect of this onn and~ is as follows.
instantaneous repair nor an unbounded number of replicas i\ replica exists on a node for a tintg after which the node
likely to be a viable replication strategy, as there are fizat |eaves the system. The repair mechanism then creates a new
considerations that limit the repair rate or the number (Péphca after a time,.. Therefore, on average, a new rep]ica is
replicas. We elaborate on this in the following section. created after a timé[t, + t,] = E[t,] + E[t,] = + + % If
the size ofS is b (bytes), this incurs an overhead®in terms
of repair traffic. If the system started out with replicas of

S, the average rate of repair trafficis given by
nb

D. Choosing system parameters

It is clear from Figure 2 that the mean lifetinig increases
with both n and~. Therefore, in order to maximizg,, the

system should be designed with both as large as possible, ¢ = (11)
although how they should be increased relative to each @ther (% 4 1)

an interesting question. In this section, we consider tfecef a

of some such factors that arise out of practical considmrafi nbA (12)

and show how to choose and~ so as to maximizeé;. These (1 + %)
factors include the following: ) ) ] ]
1) Storage:The number of replicas of that can be created APPlying a constraint ot.,..,. on the repair bandwidth,

may be limited by the total storage capacity of the systens Th nbA

. . —— < Cnae (13)
results in the constraint (1 4 l)

v
n < Nnaz © o
wheren,,, ., IS an upper bound on the number of replicas due Coma 1
to storage limits. nos (1 + ;) (14)
2) Management overheadReplica repair must include a

mechanism to detect the loss of individual replicas. Onéasuc = dmaz <1 + —) (15)

mechanism is a group membership protocol that maintains the

current set of replicas df through constant probing. Overheadvhered, ... = “5=. Intuitively, d,,... is @ normalized notion

considerations may limit the frequency of these probesclwhiof repair bandwidth. Whilec,,,, expresses the bandwidth
implies that detecting the loss of a replica may be assatiateonstraint in terms of bytes per seconll,,, expresses the



same constraint in terms of replicas per node lifetime. Fogpair diminishes and the increasei(v) is essentially the
example,d..... = 5.0 represents a repair bandwidth that iflarmonic growth that occurs in the absence of any repair.
equivalent to creating 5 replicas over an interval%ofwhich The shape of the graph provides a straightforward way of
is the average lifetime of a node. It is easy to verify that fletermining the optimal values of and . The absence of
the system creates$,, .. replicas of sizeb during an interval any local maxima implies that, in the interv@l,,;,,, nmaz),
of % this translates to a bandwidth éf,..b\, which is equal P, (v) is maximum at one of the endpoints. Therefore the
t0 Crmaz- optimal value ofn is eithern,,;, oOr n,,q..; Which one can be
Unlike the other constraints, Equation 15 involves bottietermined by evaluating it at both points using Equation 3.
n and . When equality holds, as is the case when repaihe corresponding value of is obtained from Equation 15.
bandwidth is the limiting factor in the systefnn cannot be Thus, given a constraint on repair bandwidth, the optimal
increased without decreasing and vice versa. Thus, therereplication strategy that maximizes is either max-repair or
exists a tradeoff between and v in maximizing ¢,. If a max-replicas; all intermediate strategies are sub-optima
max-repair policy is used,y is large as possible and is
correspondingly small. Alternatively, if max-replicaspolicy
is used,n is as large as possible andis correspondingly In this section, we study availability data from a real
small. Of course, these are two extreme points in the pasamd@rge-scale distributed system - Planetlab [2]. Our object
space;n and~ could take on a range values in between 48 two-fold: (1) to validate our model, especially one of the
well. key assumptions that node participation can be modeled by
Given the above constraints, we now show how to choo8 €xponential distribution, and (2) to apply the resuits of
n and~ optimally. Let n,.;, denote the maximum numberSection Il to a realistic setting. Planetlab is an experitalen
of replicas that can be created while using max-repair, afgptbed consisting of roughly 500 nodes distributed adtuss
without violating the constraint on repair bandwidth. Fron¥orld. It is representative of a node population consistig

IIl. CASE STUDY

Equation 15, moderately powerful desktop machines with, by and large,
good network connectivity.
1
Nmin = [dmaa (1 + 5 )1 (16) A. Availability data

o . . To generate availability numbers for Planetlab, we use the

If Nnaz < Mimin, the limiting factor in the system is storageq| pairs ping dataset [1], which consists of each Planetlab
The optimal choice of parameters is trivial: = 14, and  pode pinging the others roughly 4 times an hour, over a period
7 = 7Ymas- This is because botm and v are at their 4 21 months (October 2003 - June 2005). Each data point in
maximum possible values, and it is straightforward to see thje gata set consists of a time stamp, and the result of a#l pai
Equation 15 is satisfied. o wise pings between the nodes. A ping consists of 10 probes;
_ On the other hand, ifyax > 7min, the limiting factor jt js successful if at least one probe response was received,
in the system is repair bandwidth. The optimal value ofng unsuccessful otherwise. In certain cases, presumably d
n lies betweenn,,i, and nma., and also satisfies equalityiy gata collection issues, no data is available for certainsp
in Equation 15. At this point, ideally, an analytic solution oyr methodology is as follows. At every time for which data
can be obtained by substituting for in P,.(7), and then g ayailable, we classify each node as being eitieor down
optimization techniques can be used to derive the value gfhode is up if at least one other node succeeded in pinging
n that maximizest,. However, the expression faf,.(v) is jt: a node is down if no other node was able to pinguitd
not tractable; hence, we present numerical results inst@d there were at least 5 unsuccessful ping attempts to that Aode
a given value ofn, we can compute the corresponding valugyccessful ping attempt indicates that a node is up. However
of  from Equation 15, and computfé, (7). For a givend,naz,  an unsuccessful ping attempt does not necessarily imply tha
Pn(y) is computed for all values > dina.; Figure 3 plots 5 node is down; network connectivity issues may result in
this for dye; = 3.0 @nd djne, = 5.0. The results for two 4 fajled ping. Therefore, we require a minimum number of
values 0fdy,q, (3.0 and 5.0) are plotted in Figure 3(a) anginsuccessful ping attempts to classify a node as down, to
Figure 3(b) respectively. Recall thal,,. is the normalized fjjter out the small number of cases where the sparsity of data
constraint on repair bandwidth. may erroneously result in a node being classified as down. By

The following trends can be observed from Figureé’3(7)  identifying contiguous intervals of time during which a ®od
is first decreasing, reaches a minimum and then is increasiggs either up or down, we compute uptime and downtime
(to infinity). The minima occurs at = 14 for d,,q, = 3.0 and  numbers for that node.
n = 242 for dpq. = 5.0. As the value ofd,... increases, the e plot the cumulative distribution function of uptimes
minima shifts more and more to the right. The slow growthnd downtimes obtained in the manner; Figure 4(a) shows
of P.(y) after it reaches the minima can be attributed tQptimes while Figure 4(b) shows downtimes. This is done
the fact that as the repair rate becomes smaller, the effecttgy the Planetlab node population as a whole, as the data is

3We note that increasing either and~y increaseg. So in the absence of 4A majority of the Planetlab nodes are hosted by academidtiitishs
other constraints, equality will hold for the optimal cheiof n and~y. around the world.
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Fig. 4. Cumulative distribution of uptime and downtime fdafetlab nodes

too sparse for this to be done for each individual node. As  le+07 x x
can be seen from Figure 4, the shape of the curves indicates max-replicas -
that an exponential distribution is a reasonable fit for both  1e+06 |- 1
uptime and downtime. We identify the best fitting expondntia —

distributions using maximum likelihood estimation; these

shown as well. The mean uptime is 181 hours while the me

downtime is 61 hours.

B. Discussion

(5]
We now develop a simple example to illustrate our results

in the context of a real system; we consider the problem
using replication to reliably maintain state on Planetlab.

Assume the total amount of state to be maintained is 100 | | } 1
GB. From Section IlI-A, the mean uptime is 181 hours and 2 4 6 8

T
max-repair

100000

T

10000 [ k

an lifetime %ays)

1000 F § 1

of 100 f 1

10 m

the mean downtime is 61 hours. Therefore, out of roughly Repair bandwidth (Mbps)
500 nodes, the mean number of Planetlab nodes up at any  Fig. 5. Mean lifetime as a function of repair bandwidth

point of time is 53 * 500 ~ 374. To be conservative, we

assume the number of nodes participating is 300. If each node _ o
contributes 5 GB of stora§ethe total amount of storage islifetime of 306 d_ays._ while the latter r_la_s a mean I|fet_|n_1e of
5 % 300 = 1500 GB. Therefore, the constraint on storage i$02 days. Thus, in this case, max-repair is the better @i

1500

given by n,,., = 5 = 15. If we assume that the systemstrategy.
requires a minimum of half an hour on average to detect andFigure 5 shows the mean lifetime of the system for varying

repair a lost replica, then the constraint on repair ratigiien
BY Ymae == 181 % 2 = 362.

repair bandwidths - 2, 4, 6 and 8 Mbps respectively. As can
be seen, max-repair is better than max-replicas in all cases

Finally, assume that the constraint on repair bandwidtit one. In addition, a system-wide repair bandwidth of 6-8
cmaz = 4 Mbps. Since the size of the replicated state is 10@bps is sufficient to reliably maintain 100 GB of a state for
GB and the mean node lifetime is 181 hours, the normaliz&@dvery long time; this will scale proportionally as the side o

constraint is then

4Mbpsx 181hours
dmaz = 100GB =3.18 a7)

Now

1

From Section II-D, we know that the optimal value ofis
eithern,,;,, = 4 or or n,,.: = 15. The former has a mean

55 GB is the per-slice disk quota on Planetlab nodes

the system increases.

To conclude this section, we consider the question of when
max-repair is better than max-replicas, and vice versa.-Max
replicas relies on a large number of replicas to overcome
a small rate of repair; therefore, one case where it would
potentially be better in systems where massive replicagon
possible, i.e.n.q. is large. Recall from Section II-D that
for low rates of repair, mean lifetime grows very slowly with
increasingn. Therefore, this is unlikely to be a viable scenario
for the networked systems we are most interested in - peer-
to-peer systems and computational grids - where the degree



of replication would be limited to a few tens or hundreds at V. CONCLUSION

most. The other regime where max-replicas could be useful

is when the available repair bandwidth is small; this can beln. this paper, we have addressed the qu_est|_on of hO.W to
. . engineer a distributed system that uses replication tabli
seen from Figure 5 where fat,,,.. = 2 Mbps, max-replicas e . S :
: - . maintain state that far outlives the individual nodes onclutii
out-performs max-repair. Even so, the mean lifetime is bmal . . .
. resides. For example, such state could be either data, be in t
becauser,,,,, is small.

case of peer-to-peer storage, or computation, as in theafase

Qltlmately, max-rgphcas is likely to.be usefu] only in acomputational grids. Towards this objective, our conttitms
regime wheren,,.,. is large and c¢,,,, is small, i.e., mas-

: ) L ... are as follows:
sively replicated systems where communication/coorédinat
between nodes is at a premium. Of particular interest are®
wireless sensor networks [7], where large numbers of cheap,
unreliable wireless devices operate under constrainimiteld
communication due to issues of radio range and power man-
agement. A more tantalizing example is that of massively dis °
tributed applications such asnorphous computing mediums
which are systems of irregularly placed, asynchronousiipc
interacting computational particles that may be sprinkded  °
a surface or mixed throughout a volume [3]. For more tradi-
tional distributed systems, the bottom line is that agavess
repairing a smaller number of replicas is the optimal apginoa
to achieving large system lifetimes.

IV. RELATED WORK

Our work is closely related to two distinct bodies of[1
research: availability research as considered in the mgste [
and networking community, and system reliability theory ag3]
considered in the performance and modeling community.

We developed a simple Markov model that expresses the
essential features of a replicated system, including netio
of replica loss and replica repair, in terms of a few key
parameters.

We provided an analysis of the above model, including
an expression for the mean lifetime of replicated state in
terms of those parameters.

We developed an analysis of the effect of resource con-
straints on the system, including a method to optimally
choose system parameters so as to maximize lifetime.
Our analysis reveals that, for most practical scenarios,
it is better to invest the available repair bandwidth in
aggressively maintaining a small number of replicas than
spreading it thin across a large number of replicas.
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APPENDIX wherey = 2. The quantity of interest iQ,_1, i.e., the

In this section, we derive an expression for the expect@febability that the system reaches ;t@tebeiore staten
lifetime ¢, i.., the average time it takes for the system to reaéfrting in statex — 1. Denote this quantity by)*. Therefore
state O, starting m_stabe. We analyze the C(_)ntlr_luou_s Ma_\rkov Ont—Qn = Q(Qn=0)
model presented in Section 1I-B by considering its discrete _ .
embedding. In the discrete case, the transitions betwéatess Repeatedly applying the above recurrence equation,

are labeled with probabilities instead of rates. From skate 1
there are two possible transitions: to statel with probability Qn-2=Qn-1 = n—1/ (@n-1— Q)
pr and to statek + 1 with probability ¢,. The transition 1 1 s
probabilitiesp;, and g, are functions of\, ;1 andk. - ﬁ’y Q

The derivation uses the concept of apoch which is as %
follows. At the start of an epoch, the system is in stateAt Qn-3—Qn2 = 37 (Qn—2—Qn-1)
the end of an epoch, the system either returns to staia n; 1
which case the next epoch starts, or the system reaches state = SR 7'Q*
0. The system goes through a number of epochs, and in each " ( 1 )
epoch except for the last one, returns to statdn the last - L,y?Q*
epoch, the system goes to state 0. The derivation proceeds (”;1)

in two steps: computing the expectadmberof epochsn,,
and computing the expecteturation ¢, of each epoch. The and so on. Therefore, proceeding inductively,

expected lifetimée, is then obtained as the productf and 1

te. Qn—k-1— Qn—k ﬁWkQ*
We note that each epoch is essentially an instance of the ( k )

Gambler's Ruin Problem. Starting in statg the system Now

always makes the transition to state- 1 upon the first failure. Qo—0Qn=1-0=1

After this, the behavior of a system in the epoch is similar to
that of a gambler starting with a fortune of- 1 and playing and

till he makes a fortune of, or alternatively, is ruined. The key k=n—1
difference is that the transition probabilities are not stant Qo—Qn, = (Qn-t—1— Qn-k)
but state dependent. k=0
k=n—1
A. Number of epochs _ o 1 o
- n—1
Let Q. be the probability that the system reaches state k=0 ( k )
before staten starting in staté:. Clearly@, = 1 and@,, = 0.
For 0 < k < n, Qy satisfies the recurrence which implies
Qr = prQr—1+ GQr+1 0 — <Z::g—1 (n11)7k>1
where
5 The probability that an epoch will result in the number of
Pk = m replicas going down to O, i.e., the probability that it wile b
(n—k)p) the last epoch, i€)*. Therefore, the expected value of the
e = _ TR number of epochs is given by
EX4+ (n—k)p )
where p;, and ¢, are the transition probabilities in state Ne = @
Applying pi + qx = 1,

B. Duration of epoch

(P + )@k = PeQr-1+ Qi Let T}, be the expectetime that elapses before the system
and rearranging terms, reaches either state or staten starting in statek. Clearly
Ty = 0andT,, = 0. For0 < k < n, T}, satisfies the recurrence
pe(Qr-1— Q) = a(Qr — Qr+1)

which yields Ty = prTe—1+ qpThsr + 1tk
QK where
Qr-1—Qr = p_k(Qk — Qkt1) 1

tk e —

n—Fk EX+(n—K)p

- (B @ :
X Applying p + g1 = 1,
n—

= i 7 (@r — Q1) (e +a)T = peTi-1+ @Thi1 +tk



and rearranging terms, The expected value of the epoch length is given by

te = th+T"
PE(Th—1—Tk) = qu(Te — Thy1) — ti + ek m
B P B S () -
. : - N Y n—1
which yields nA A == (M)
(Tho1 ~T) = Ty~ Tpr) — = _ Q1 w G ey
Dk Dk = i pro rt
n—k /u 1 k=0 j=1 \ k
= (—) (T = Th1) — 7 ;
k A kX w [k=n-1 k=n—1j=k (")
n—k (T — Tora) 1 _ Q 1 Ak 4 J N
— — R — n—1 n—1
k Mok ht kA nA k=0 ( k ) k=0 j=1 ( k )
The quantity of interest i§},_1, i.e., the expected time that Q* k=n_—1j=k (’;) L
elapses before the system reaches either $tabe staten S (n_l)V !
starting in state: — 1. Denote this quantity b{™*. Therefore k=0 j=0 % k
C. Expected lifetime
T =T = TH(Tn=0) The expected value of the lifetime is given by
Repeatedly applying the above recurrence equation, ls = MNete
k=n—1j=k (n)
T N - 11 _ 1 2 ki
ne2 T el T n—17("_1_ ")_n—ﬁ (s j:O(k)
_ 1 ST — 1 (?) ~0 Rearranging terms to write, as a polynomial iny gives us
" nA ("7 our final expression
2 1 1 1
Tos=Toz = —57(Th2=Ta) = —57 ts = 1Pa(7)
1 .1 1 (2 1 .
= a7 T -5 ) T &)y = J(n’ +enay +d i)
("2") nA (") A ()

o ) where the coefficient of’ is given by
and so on. Therefore, proceeding inductively,

1j n—i—1 (n)
1 1 () Ky )

Thk—1—Thok T’ykT* — P 'yk_j j=0 i+J
(") n = (%)
Now
To-T,=0-0=0
and
k=n—1
To =T, = (Tnfkfl - Tnfk)
k=0
- <k_n1 1 7k> _ik:n—lg:k (1;) Vk_g
n—1 n—1
= (%) nd =m0
o 1 EE ) -
Q* nA k=0 j=1 (n;l)
which implies
k=n—1j=k n
" k=0 j=1 ( k )



