Patching : A Multicast Technique for True Video-on-Demand Services*

Kien A. Hua

Ying Cait

Simon Sheu

School of Computer Science
University of Central Florida
Orlando, FL 32816-2362
U.S. A.

E-mail: {kienhua, cai, sheu}@cs.ucf.edu

Abstract

TUntil now, true video-on-demand can only be achieved using
a dedicated data flow for each service request. This brute-
force approach is prohibitively expensive. Using multicast
can significantly reduce the system cost. This solution, how-
ever, must delay services in order to serve many requests as a
batch. In this paper, we consider a third alternative called
Poiching. In our technique, an existing multicast can ex-
pand dynamically to serve new clients. Allowing new clients
to join an existing multicast improves the efficiency of the
multicast. Furthermore, since all requests can be served im-
mediately, the clients experience no service delay and true
video-on-demand can be achieved. A significant contribu-
tion of this work, is making multicast work for true video-
on-demand services. In fact, we are able to eliminate the
service latency and improve the efficiency of multicast at the
same time. To assess the benefit of this scheme, we perform
simulations to compare its performance with that of stan-
dard multicast. Our simulation results indicate convincingly
that Patching offers substantially better performance.

1 Iatroduction

Video on Demand (VOD) is a critical technology for many
important multimedia applications, such as home entertain-
ment, digital video libraries, distance learning, electronic
commerce, just to name afew. A fypical VOD service allows
rerote users to playback any video from a large collection
of videos stored on one or more video servers. In response
t0 a service request, a video server delivers the video to
the user in an isochronous video stream. Each video stream
can be viewed as a concatenation of a storage-I/O stream
and a communication stream. That is, sufficient storage-
I/0 bandwidth must be available to continuously transfer
the data from the storage subsystem to the network inter-
Jace card (NIC); and the NIC in turn must have enough
free bandwidth to forward the data to the user. Obviously,

*This research is partially supported by the National Science Foun-
dation gront ANI-9714591.
t Also, nStor Corporation, Inc., Lake Mary, FL 32746.

Permission 1o make dig1tal or hard copies of all or part of
this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first
page. To copy otherv.ise, 10 republish, to post on servers
or to redistribute to lists, requires prior specific
permission and’or a fee.

ACM Multimedia’98. Bristol, UK

© 1998 ACM 1-58113-036-8/98/0008 $5.00

191

the smaller of the I/O bandwidth and the interconnection
bandwidth determines the maximum number of concurrent
video streams the server can support simultaneously (i.e.,
server bandwidth). In today’s server designs we find that
NIC is usually the impediment. This is referred to as the
network-I/0 bottleneck [1]. As an example, the forthcom-
ing PCI bus sends 64 bits of data at 100 MHz, thus moving
more than 6 Gbps. A storage subsystem designed around
this bus will be able to take full advantage of the 6-Gbps
data rate. On the other hand, the performance of the NIC
is constrained by the external networking environment. If
an OC-12 NIC is used, the video delivery capability of this
system will be limited to only 622 Mbps, a 10-times differ-
ence in performance. This impedance mismatch will con-
tinue to be a problem in the foreseeable future due to the
inherent differences between networking and bus technolo-
gles - improving the performance of a “very short network”
(i.e., system bus) that interconnects only a handful of ex-
pansion cards in a box is a lot easier than trying to improve
the performance of a huge communication network desigred
for millions of boxes.

It first seems that the network-I/O bottleneck can be ad-
dressed by using a larger number of NICs for each server.
Bus designs, however, must limit the number of expansion
cards to maintain their good performance. As an example,
the 16 IRQs (interrupt request levels) in today’s Pentium-
based servers constrain them to a very small number of
expansion slots. To address this problem, new-generation
high-end servers, such as nCUBE Media Cube and SGI Ori-
gin 2000, are designed with crossbar or hypercube intercon-
nects to allow incremental growth in both I/O bandwidth
and interconnection bandwidth. These modern servers can
accommodate a large number of NICs. Their storage-I/O
capacity, however, also increases accordingly. Taking SGI
Origin 2000 as an example, it has a sustained storage-I/0O
bandwidth of 640 Gbps [2]. Taking full advantage of this
bandwidth would require 533 OC-24 NICs. Even if this is
feasible, concentrating that many NICs to one server will
most likely cause severe congestions in the network. A more
practical design would have to sacrifice some of the storage-
1/0 capability by employing a large number of servers which
are geographically separated from each other and intercon-
nected in some hierarchy. This approach, however, is ex-
pensive due to the increase in the hardware and networking
costs. This is aggravated by the high cost of managing a dis-
tributed system. A good design should control the degree
of distribution as much as possible to minimize the hard-
ware and operating costs. This is achieved in this paper by
reducing the demand on the service bandwidth.

RS DA

The most direct solution to the network-I/O bottleneck
is to improve the performance of NICs. This requires ad-

vexnces in the networking technology. Several high-performance

technologies are emerging. ATM has been shown to surpass
its commercial limit of 622 Mbps, experimentally reaching
2.438 Gbps. By the year 2000, HIPPI (High Performance
Parallel Interface) speed is expected to grow to 25.6 Gbps.
‘With all this power, it seems that the bottlenecks will disap-
pear. Unfortunately, bringing these networking technologies
to the desktop is generally not feasible because of the high
cost of the NICs and port costs in the switches. For in-
stance, a HIPPI-6400 switch would cost about $20,000 per
port. It is also unrealistic to assume that companies can af-
ford to revamp their network infrastructure as frequently as
they upgrade their computing systems. With these practical
constraints, the network-1/0 performance of most systems
will still be limited by traffic congestions in the network.

A good solution to the network-I/0 problem, therefore,
must also include innovations in the software design. A well-
Iknown technique to reduce communication traffic is to allow
the clients to share multicast data. Several such techniques
have been proposed for VOD systems [3, 4]. These schemes
delay requests and hope that more requests for the same
video will arrive during the batching interval, and the entire
group is served in one multicast. This approach significantly
improves the system throughput. It, however, has to deal
with the following dilemma:

e Users making the early requests are likely to renege if
they are kept waiting too long.

o On the other hand, if we keep the waiting times short
then the benefit of multicast diminishes.

To overcome these problems, the challenge is to achieve the
following two goals:

1. The waits must be very short for all requests indepen-
dent of their arriving order.

2. Each multicast must still be able to serve a large num-
ber of users.

In this paper, we present a novel multicast technique which
achieves these two seemingly conflicting goals. Under the
new scheme, a new service request can exploit an existing
multicast by buffering the future stream from the multicast
while playing the new start-up flow from the start. Once the
new flow has been played back to the skew point, the catch-
up flow can be terminated and the original multicast can
be shared (the skew is absorbed by the new client’s buffer).
We note that the multicast paths are built at the applica-
tion level rather than by routers. Since clients can join an
existing multicast, this approach significantly improves the
efficiency of the multicast. Furthermore, since requests can
receive the service immediately without delay, true VOD can
be achieved. In this paper, a technique is said to be able to
offer true VOD if it can service requests without a delay.
A significant contribution of our work is making multicast
work for true VOD services. In fact, we are able to eliminate
the service latency and improve the efficiency of multicast
at the same time. We will discuss this scheme in more detail
in Section 3.

We note that once we have determined the portion of
storage-1/O bandwidth that can be utilized for each server
in the system, the video files must be carefully laid out to
minimize the storage cost. Since videos are not accessed
with the same frequency, how to replicate, stripe, and place

192

the files over a minimum number of storage devices to sup-
port the access pattern is a nontrivial problem. This issue
have been studied intensively; and some recent techniques
are presented in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. The
interested reader is referred to those papers for many excel-
lent ideas. In this paper, we focus on techniques to reduce
the demand on the network-I/O bandwidth.

The remainder of this paper is organized as follows. We
describe the conventional multicast techniques in more de-
tail in Section 2 to make the paper self-contained. The pro-
posed method is introduced in Section 3. In Section 4, we
present our simulation study. Some related works are dis-
cussed in Section 5. Finally, we give our concluding remarks
in Section 6.

2 Conventional Multicast Techniques

In conventional multicast techniques, service requests for
the same video arriving within a short time duration are
bunched together and served in a batch by a single data
stream. Since requests are generally made for different videos,
a server can have a number of pending batches at any one
time. Different batching policies have been proposed. They
are primarily different in the criterion used to select the
next batch to receive service. We briefly discuss some of
these techniques in the following.

o First Come First Served (FCFS) [16]:

When sufficient bandwidth becomes free, this policy
selects the batch with the oldest request (which has
been waiting for the longest time) to serve next. The
advantage of this scheme is its fairness - every video
is treated equally regardless of its popularity. Obvi-
ously, the drawback of this strategy is the lower system
throughput.

o Moazimum Queue Length First (MQL) [16}:
Unlike FCFS, this policy is designed to maximize the
system throughput by selecting the batch with the
largest number of pending requests to serve first. This
strategy, however, is unfair since it favors more popu-
lar videos.

o Magzimum Factored Queue length first (MFQ) [4]:
This scheme improves on the FCFS and MQL policies
by taking into account both the waiting times of the
requests and the popularity of the videos. When suf-
ficient bandwidth becomes available, MFQ selects the
pending batch with the largest size weightedlby the

best factor, (the associated access frequency)™ 2, to
serve next. This scheme can achieve throughput close
to that of MQL with little compromise of its fairness.

It will be clear shortly that our technique can be used to
boost the performance of all batching schemes. We, how-
ever, used MFQ in our performance study since it has been
shown to provide better performance than those of the other
techniques [4].

The above multicast techniques are referred to as Sched-
uled Multicast because the sever selects the next batch to
multicast according to some dynamic sckeduling policy. An-
other approach is called Periodic Broadcast [16, 17, 18, 19].
These schemes divide the server bandwidth into a large num-
ber of logical channels with equal bandwidth. To broadcast
a video over its, say K, dedicated channels, the video file
is partitioned into K fragments of increasing sizes, each is

repeatedly broadcast on its own channel. To play back a
desired video, a client tunes into the appropriate channel to
download the first data fragment of this video at the first oc-
currence. As these data are arriving at the client, they are
tendered onto the screen. For the subsequent fragments,
the client downloads the next fragment at the earliest possi-
ble time after beginning to play back the current fragment.
Thus, at any point, the client downloads from at most two
channels and consumes the data fragment from one of them
in parallel. To ensure the continucus playback, the size of
the data fragments must be chosen such that the playback
duration of any fragment is longer than the worst latency
in downloading the next fragment. To achieve low service
latencies, the size of the first fragments can be made very
small to allow them to be broadcast more frequently. Al-
though this approach is very efficient, it can only be used
for very popular videos. In this paper, we focus on the more
general scheduled multicast approach.

3 Patching

In this section, we introduce a novel multicast technique
called Paiching. In this scheme, most of the communication
bandwidth of the server is organized into a set of logical
channels, each is capable of transmitting a video at the play-

ack rate. The remaining bandwidth of the server is used
for control messages such as service requests and service no-
tifications.

The video server maintains a waiting queue WQ; and
all erriving requests are first appended to this quene for dis-

atch at the next occasion. The next occasion arrives when a
channel becomes free. Associated with each communication
chennel is a client list which contains the IDs of the clients
currently viewing the broadcast on this channel. When a
free channel becomes available, the server checks W@ for
any entries, and admits a batch of service requests accord-
ing to some scheduling policy such as those discussed in
Section 2. The assignment of this batch to the free channel
is done by specifying the desired video fragment, and insert-
ing the clients in the batch into the corresponding client list.
When the multicast is finally activated, the specified video
is multicast on that channel to the clients in the list.

In conventional batching techniques, each channel must
multicast the video in its entirety. As a result, the channel is
held up for the entire duration of the video playback. This
severely limits the number of batches can be served simulta-
neously. Animportant objective of the patching techniqueis
to substantially improve the number of requests each chan-
nel can serve per time unit, thereby significantly reduce the
per-customer system cost. This goal can be achieved by
greatly reducing the time required to serve each batch. As
2n example, let us consider the following scenario. After
channel C, has multicast a video to batch B; for three min-
utes, another channel, say C;, becomes free and is used to
serve a new batch B; which also requested the same video.
Let the length of the video be 60 minutes. If we use con-
ventional batching, C; will be busy for the next 60 minutes
serving Bj;. Alternatively, the clients in B; can buffer the
stream broadcast on C; while playing the new start-up flow
broadcast on channel C;. After three minutes, when the
catch-up flow has been played back to the skew poiut, C;
can be released and the original multicast on C; can now
be shared by both batches. This strategy is referred to as
Patching in this paper. The name “patching” alludes to
the fact that majority of the time the channels are used to
patch the missing portion of a service, rather than having

193

to multicast the video in its entirety. We observe in this
example that C; is held up for only three minutes, com-
pared to 60 minutes under batching. Therefore, patching
can potentially improve the throughput of channel Cj up to
20 times. Besides improving the system throughput, since
patching allows clients to start their playback immediately,
true video-on-demand can be achieved. In other words, we
can eliminate service latency without compromising the ben-
efit of multicast.

In Patching, a client might have to download data on
two channels simultaneously. In the above example, the
clients in batch B; must initially download data from both
channels C; and Cj. Although the patching data can be
consumed as soon as they arrive, the shared data on channel
C; must be temporarily buffered to the local disk. As a
result, the price for patching is the additional disk space
required at each client station. This cost, however, should
be minimal. As an example, a disk space of 100 Mbytes can
cache about 10 minutes of MPEG-1 video. Such a disk space
costs less than $10 today. The high cost of a VOD system
is due mostly to the network costs. For instance, the cost of
networking contributes to more than 90% of the hardware
cost of the Time Warner’s Full Service Network project in
Orlando. Therefore, it is essential for a VOD design to take
full advantage of the aggregate bandwidth of the network. If
the clients are workstations, the small additional disk space
is trivial. If set-top boxes are used to receive videos, the
content provider can take up the cost of the additional disk
space. The significant increase in the number of subscribers
who can receive the services simultaneously easily makes up
for this nominal cost. We note that client buffer is also used
to implement VCR functions [20, 21, 22]. In this case, the
buffer can be used to support patching at no additional cost.

3.1 Client Design

In the proposed technique, & communication channel is used
to either multicast a video in its entirety called a regular
maulticast, or to multicast only the leading portion of a video
called a patching multicast. In the former case, the channel
is said to play the role of a regular channel. In the latter, it
is referred to as a patching channel. If a client station tunes
into a regular channel to download its data, the data stream
arriving at the client’s communication port is called a regular
stream. On the other hand, if the source of the data stream
is a patching channel, then we refer to this data stream as
a patching stream.

To implement patching, a client station needs to have
three threads of control: two data loaders L, and L, and a
video player VideoPlayer. While L, and L, are responsible
for downloading data from the patching channel and the
regular channel, respectively, VideoPlayer is used to fetch
the data from the local buffer, reassemble the video frames,
and render them onto the screen.

To request a video, a client sends a request token
(ClientID,VideolID), where ClientID is its own address
and VideoID is the ID of the requested video. When the
server is ready for the service, it notifies the client with a
service token, (PID, RID), where PID and RID are the
IDs of the patching channel and the regular channel, respec-
tively. The Client examines this token; and two scenarios
can happen:

1. If PID is null, the server is about to start a regular
multicast of the video on channel RID. In this case,
the client needs to activate only loader L, to receive

Algorithm: Client Main Routine
1. Send a request token (ClientID, VideoID) to the video server.
2. Wait until the service token (PaichingID, RegularID) from the server arrives.
3. If PaichingID is not null, we start the data loader L.

4. Start the data loaders Ly.
5. Start the video player VideoPlayer.

Algorithm: Loader L,

1. Do the following until no more data arrive on the patching channel PatchingID:

e Download one data packet on channel PatchinglD;
e Store the data packet to PatchBuffer.

2. Terminate L.

Algorithm: Loader L.
1. Do the following until no more data arrive on the regular channel RegulerID:

e Download one data packet on channel RegularID;
e Store the data packet to RegularBuffer.
2. Terminate L.

Algorithm: VideoPlayer

1. Do the following until no more data in PatchBuffer

e Fetch one playback unit from PatchBuffer;

o Free the disk space for the fetched data;

o Reassemble the fetched data into frames and render them onto the screen.
2. Do the following until no more data in RegularBuffer

o Fetch one playback unit from RegularBuffer;

e TFree the disk space for the fetched data;

e Reassemble the fetched data into frames and render them onto the screen.
3. Terminate VideoPlayer.

Figure 2: Algorithms for client stations

Algorithm: Server Main Routine
1. Dispatch a free channel, say FreeChannel.
2. Select the next video, say v, to serve according to a given scheduling policy (e.g., FCFS, MQL, MFQ, etc.)
3. Injtialize the service token as (PID=null, RID=null).
4. If there is no regular multicast of video v in progress, set RID = FreeChannel. Otherwise,

e Set PID=FreeChannel and RID=LatestRegular, where LatestRegular is the latest regular channel for video v.
o Call either GreedyPatching(FreeChannel, LatestRegular) or GracePatching(FreeChannel, LatestRegular)
to determine the portion of video data which should be multicast on channel FreeChannel.
5. For each request token (ClientID = vClient, VideoID = v) in W@, do the following:
¢ If PID is null, we igpend vClient to the client list of channel FreeChannel. Otherwise, it is appended to the
client lists of both channels FreeChannel and LatestRegular.
e Send the service token to notify the client vClient.
e Delete the request token from WQ.
6. Activate the multicast on FreeChannel

Figure 3: Algorithm for the video server

194

Reguier Creaed
/ Tatshong Cmmme)

e e
|
o | |28 7 g.
1
= |59 |E=

Figure 1: Patching Technique

the video data. As the data arrives at the client, the
VideoPlayer renders the video frames onto the screen.

2. If PID is not null, the server is about to do a patching
mnulticast on channel PID. The client must tune into
channel RID for the remaining portion of the video. In
this case, the client must activate both L, and L, to
simultaneously download data from RID and PID,
respectively. Initially, the VideoPlayer plays back
the patching stream as the data arrive at the client.
The regular stream arriving from RID is temporarily
cached in the local buffer. When the patching multi-
cast ends, the VideoPlayer switches to play back the
data in the local buffer as I, continues to download
the remaining of the video file.

‘We show in Figure 1 an example to llustrate the patching
idea. Clients A, B and C are sharing a multicast although
they are in different stages of the video playback. Client A
arrived first. It has been served entirely by a regular stream.
Client B arrived next. Its video player has exhausted the
patching stream, and is currently playing back the regular
stream cached in the local buffer. Client C arrived most
recently. It is still playing back the patching stream as the
regular stream is being cached in the local buffer.

We present the client routines in Figure 2. We note that
the data from the patching channel (if any) and the regular
channel are first buffered in PatchBuffer and RegularBuffer,
respectively. However, the data downloaded to the Paich-
Buffer are immediately piped to VideoPlayer. The size of
PatchBuffer, therefore, is negligible. We will simply refer to
RegularBuffer as the client buffer in this paper.

3.2 Server Design

We now discuss the details of the server design. After a chan-
nel has completed its current batch, its client list is reset.
The channel is now said to be free, and is available for the
next multicast. The server main routine given in Figure 3
is repeated if the server has at least one free channel and its
waiting quene W@ is not empty. When a free channel is dis-
patched for a service, it is given a workload specified as v[t;],
where v and ¢, denote the unique ID of the video file and the
desired playback duration, respectively. For instance, vid[3]
indicates that the free channel should multicast only the first
3 minutes of the video vid. We note in the server main rou-
tine that if there is no regular channel currently multicasting
the video being scheduled, the workload for the free chan-
ael is the entire video (i.e., regular multicast). Otherwise,

195

either GreedyPatching or GracePatching is called to deter-
mine the patching workload for the free channel according
to the status of the latest regular channel. These functions
decide how much of the video data should be delivered on
the free channel, which is the actual cost of serving the cur-
rent batch. Greedy Patching tries to have the current batch
share the data with an existing regular multicast whenever
possible. Grace Patching, on the other hand, will schedule
a new regular multicast for the current batch if the client
buffer is not large enough to cover the missing portion of the
video. In this case, the free channel becomes the latest reg-
ular channel for this video. We discuss these two strategies
in more detail in the following two subsections.

3.2.1 Greedy Patching

Greedy Patching schedules a new regular multicast for a
batch only if there is no regular multicast currently serving
the same video. The algorithm for this technique is given in
Figure 4. It says that if a client arrives, say m, minutes late
and does not have enough storage space to buffer the next
mm minutes of the last regular multicast of the same video,
the buffer space is used to cache the last /m minutes of that
multicast.

Algorithm: GreedyPatching(FreelD, RegularID)

t: current time

ts: start time of the regular multicast on channel
RegularID

V: the video currently multicast on channel
RegulariD

|V]: playback duration of the video V'

B: size of the client buffer in playback time unit

1. Ift—t; < B, we set the workload for channel FreeID

to V[t —ts).

2. Otherwise, the workload is set to
VIVl = Min(B, V| — (¢ —t.))]-

Figure 4: Greedy Patching

3.2.2 Grace Patching

Overly greedy, Greedy Patching can result in less data shar-
ing. As an example, let us consider a regular multicast of
a 60-minute video started 10 minutes ago. Assuming that
each client has only enough buffer space for up to five min-
utes of video, the clients in the current batch have to buffer
the last five minutes of the regular multicast resulting in only
five minutes of data sharing. Furthermore, batches arriving
within the next 50 minutes will benefit from the same regular
multicast for no more than five minutes. As an alternative,
if we schedule a new regular multicast for the current batch,
then the batches arriving within the next five minutes for
the same video will be able to share this new regular multi-
cast for at least 55 minutes. This is the approach taken by
Grace Patching presented in Figure 5. This scheme sched-
ules a new regular multicast if the client buffer is not large
enough for the patching clip. A potential drawback of this
scheme is that it results in many more regular multicasts

Algorithm: GracePatching(FreeID, RegularID)

i current time

#s: start time of the regular multicast on channel
RegulariD

V: the video currently multicast on channel
RegularlD

[V]: playback duration of the video V

B: size of the client buffer in playback time unit

1. If + —~ #; < B, then the workload for channel
FreelD is V[t —t.).

2. Otherwise, FreeID is designated to start a mew
regular multicast as follows:

¢ Modify the service token as
(PID= null, RID = FreelD).

o Set the workload for the new regular channel
FreelD as V[|[V]}-

Figure 5: Grace Patching

compared to Greedy Patching. In the next section we will
show simulation results to compare the performance of these
two strategies.

4 Performance Study

In this section, we show simulation results to demonstrate
the benefits of Patching. We chose MFQ as our experimental
environment since it has been shown to perform better than
FCFS and MQL [4]). Nevertheless, since Patching can be
used to boost the performance of any batching schemes, the
performance results presented herein can be generalized for
all batching techniques. Our study includes both patching
methods: Greedy and Grace. We use MFQ as a reference to
assess the performance of these two patching strategies.

4.1 Simulation Environment

‘We first describe our simulation environment. Each client
station is equipped with a disk buffer. The default size of
this disk space is five minutes of video data. Each simulation
tun consists of 200,000 service requests. Each request is
modeled by an interarrival time, a client ID, and a video
choice. The interarrival time is assumed to follow a Poisson
distribution. For each request, it is generated by a Poisson
process which is exponentially distributed with a mean of
-i, where A is the request rate. The selection of the videos
is modeled using a Zipf-like distribution [23]. That is, the
probability of choosing the ith video is ——3——, where N
* §=1 37
is the total number of videos in the system, and z is called
the skew factor. A larger z corresponds to a more severe
skew condition indicating that some videos are requested
more frequently than the others. We set this value at 0.7
which is typical for VOD applications [3]. We assume that
the system contains 100 videos, all of them are 90 minutes
long. The server is capable of supporting 1,200 channels
which is about the same as the bandwidth of the system
used in the Time Warner trial in Orlando, which can deliver

196

1,000 MPEG-1 streams simultaneously. Our workload and
system parameters are summarized in Table 1. The default
values are listed under the “Default” column. We also vary
some of these parameters to do sensitivity analysis. The
range of values used for such studies are given in the third
column under the heading “Range.”

PARAMETER DEFAULT | RANGE
Number of videos 100 N/A
Video length (minutes) 90 N/A
Server Bandwidth (streams) 1,200 400-1,800
Client buffer (min of data) 5 0-10
Request rate (requests/min) 50 10-90
Skew factor 0.7 N/A

Table 1: Parameters used for the simulation studies.

‘We choose average latency, defection rate, and unfairness
as the performance metrics. We explain these terms in the
following:

e Defection Rate: This is the percentage of service re-
quests which are canceled because the waiting time
exceeds the client’s tolerance. We note that reducing
the defection rate improves the system throughput.

e Unfairness: Let d; denote the defection rate for video
7 and d be the mean defection rate. We define the

. SN (di-dy? .
unfairness as |/ £4=l————, where N is the number

of videos from which clients may make requests.

i A :
o Average Latency: It is defined as Z—*'Elﬂ, where

7 is the total number of client requests; and Latency; is
the service latency or the duration between the arrival
time of request ¢ and the time ¢ is admitted for service.

‘We want to investigate the effect of request rate, server
communication bandwidth, and client buffer size on the
above metrics. In the following subsections, we report our
simulation results under two different environments: one al-
lows defection and the other one does not.

4.2 Study I: No Defection Allowed

In this study, we assume that users do not renege once they
have submitted a service request. Defection rate and unfair-
ness are, therefore, irrelevant in this case. We will discuss
only the average latencies of the various schemes under dif-
ferent workload and system parameters.

4.2.1 Effect of Server Communication Bandwidth

In this study, the client buffer size was fixed at 5 minutes
of data; and the average request rate was 50 requests per
minute. The simulation results are shown in Figure 6. We
observe that Greedy Patching offers little performance im-
provement over MFQ under this workload. This is due to
the fact that the client buffer size is too small for Greedy
Patching to exploit the data sharing feature. Most of the
batches miss the last multicast of the same video by more
than five minutes. As a result, majority of the data sharing
are limited to the last five minutes of the video. To improve
this condition, clients need to have more buffer space. We
will investigate this option in the next subsection.

Uunlike Greedy Patching, we observe that Grace Patch-
ing performs very well. By starting a new regular multi-
cast whenever a batch arrives more than five minutes late,
Grace Patching gives the subsequent batches a better chance
to share essentially the entire multicast with the current
batch. This possibility improves with the increases in the
server communication bandwidth. With more bandwidth,
the batches can be admitted with less waiting time increas-
ing their chances of joining a previous multicast. This fact
can be seen in Figure 6. It shows that the performance of
Grace Patching improves with the increases in the server
communication bandwidth. We note that it requires Grace
Patching only 1,400 channels to provide true VOD services,
ie., service latency is zero. With this bandwidth, Greedy
Patching and MFQ still suffer a rather long average service
latency of more than 2 minutes.

&

Pore photes oy (Lasevisf
g

p= EFD -
Teezy - =
3% -

Figure 6: Effect of server bandwidth

Wenote that Grace Patching performs worse than Greedy
Patching when the server communication bandwidth is very
limited. This can be explained as follows. When the server
hasless than 600 channels, the average service latencies of all
threz schemes are more than five minutes. Since the client
buffer can cache only five minutes of data, a large number of
batches must be served by a regular multicast under -Grace
Patching rendering patching essentially useless. The situ-
2tion is marginally better for Greedy Patching because a
batch can still share the last five minutes with the last regu-
lar multicast. Winning under these situations, however, are
uninteresting since one should not operate in this inadequate
range.

4.2.2 Effect of Client Buiffer Size

In this study, we want to see how the client buffer size af-
fects the average latency. The server capacity was fixed
at 1,200 channels and the arrival rate at 50 requests per
minute. The simulation results are plotted in Figure 7. The
curve for MFQ is flat as it does not take advantage of the
client buffers. The latency curve for Grace Patching drops
very rapidly as the client storage size increases. Under this
workload, the plot indicates that Grace Patching requires
only 6 minutes of client buffer space to achieve true VOD.
We also observe that although Greedy Patching can benefit
from more buffer space, the performance curve drops at a
very slow pace. This indicates that Greedy Patching is not
a very effective technique.

4.2.3 Effect of Request Rate

In this simulation study, we fixed the server capacity at 1,200
channels and the client buffer size at 5 minutes of video data.

197

88 8 &
f
[

8

Avorage Latoncy (seoonds)
a

Gy
=y
a

[

] 1 2 3 4 5 & 7 8 9 1
Coara B%ar Sra {~tmts of exa)

Figure 7: Effect of client buffer size

The effect of the request rate on average latency is plotted
in Figure 8. Again, we see that Greedy Patching offers only
nominal improvement due to insufficient client buffer space.
Grace continues to perform very well. It outperforms the
other schemes by very significant margins. If true VOD is
required, the plot shows that MFQ and Greedy Patching
must limit the request rate to about 10 requests per min-
utes. Grace Patching nonetheless enjoys a request rate of 40
requests per minutes, which is a 300% improvement. Since it
Tequires substantially less bandwidth, Grace Patching offers
an excellent technology for true VOD systems.

Avorogo Latency (vecends)

Figure 8: Effect of Request Rate

We note that Grace Batching offers no advantage when
the request rate is very low (i.e., 10 requests per second).
This can be explained as follows. Since the multicasts are
highly efficient under Grace Patching, this scheme cannot
utilize all the channels under such a low request rate. The
same server bandwidth, however, is just enough for the other
schemes to serve each new request as soon as it arrives. Un-
der this circumstance, MFQ achieves true VOD by serving
each client request using a dedicated channel. The system,
however, totally gives up the benefit of multicast. This re-
sult demonstrates the inherent incompatibility between mul-
ticast and true video on demand. From this perspective, a
significant contribution of our work is making multicast work
for true VOD systems.

4.3 Study 1I: With Defection

In practice, if the wait is too long, the client is likely to
cancel the service request. In this second study, we model
the user defection behavior using a normal distribution with
amean of g = 5 minutes and a standard deviation of o = §.
‘We truncate the distribution on the left, which is negative.
‘We present the simulation results in the following.

Roereyn Laansy (anaess)
/
Delection Nato

o Goedy — Groady —
Gosecy == oy
G2 o . hd Grcs © B
t - 0 2 .
2 : : ° L . . .
=) € &0 =0 =) <)) =] =) =) =) =) 120 wD E= 15D <0) E 1 e
Sever Comrcpn BW 3 Seever Comzmcron EW ivsars) mmc&mﬁm = b

{(a) Average Latency

(b) Defection Rate

(c) Unfairness

Figure 9: Effect of server communication bandwidth

4.3.1 Effect of Server Communication Bandwidth

In this study, we fixed the client buffer size at 5 minutes
of data, and the request rate at 50 arrivals per minute.
The simulation results are plotted in Figure 9. They show
that none of the techniques can offer acceptable performance
when the server bandwidth is inadequate. Grace Patching,
however, is much better at taking advantage of the addi-
tional resources. As the server bandwidth increases from
400 to 1,800 channels, only the curves of Grace Patching
drop rapidly to reach the zero level at 1,400 channels. With
1,400 channels, Grace Patching allows a perfectly fair sys-
tem offering true VOD services with no defection. With
the same hardware, MFQ and Greedy Patching can achieve
only an average latency of about 65 seconds and 55 seconds,
respectively. Their performance are actually much worse
since the defection rates are very high. They are 20% for
Greedy Patching and 23% for MFQ under this condition.
Again, the simulation results confirms that Grace Patching
uses the channels much more efficiently. It requires much
less bandwidth to provide true-VOD services.

4.3.2 Effect of Client Buffer Size

In this study, the server capacity was fixed at 1,200 chan-
nels and the request rate at 50 arrivals per minute. The
performance of the three multicast techniques under various
client buffer sizes are plotted in Figure 10. We observe that
the performance of Greedy Patching improves very slowly
with the increases in the client buffer size. Grace Patching
is much more effective in taking advantage of the additional
buffer space; its curves drop rapidly. The plots indicate that
it achieves true-VOD performance when the client buffer size
is 6 minutes of data. Under this condition, the average la-
tency of MFQ is more than 1 minutes with a defection rate
higher than 20%. The bad defection rate makes MFQ and
Greedy Patching not as fair as Grace Patching.

4.3.3 Effect of Request Rate

In this study, the server capacity was fixed at 1,200 chan-
nels and the client buffer size at 5 minutes of video data.
‘We varied the request rate from 10 to 90 arrivals per min-
utes. The simulation results are shown in Figure 11. They
are very similer to the non-defection case. Grace Patching
can achieve true-VOD performance at a much higher re-
quest rate of 40 requests per minutes compared to only 10
requests per minute for MFQ. At 40 requests per minute,

198

MFQ suffers a rather long average latency which is more
than one minute. Its defection rate is also very high under
this condition, almost 25%.

5 Related Works

‘We also exploited the idea of letting clients of the same
multicast to receive the service at their own earliest possi-
ble time in [1}. The techniques were called Dynamic Multi-
cast or Chaining. Unlike conventional multicast which must
first determine the multicast tree before the multicast can
proceed, a multicast tree in Dynamic Multicast grows dy-
namically to accommodate late requests for the same ser-
vice. This approach requires a small additional disk space
at the client side to buffer data. Each client also acts as
a mini-server to forward the cached data to other clients
in the downstream. The aggregate storage space of these
clients effectively forms a huge network cache temporarily
holding data for future requests. As long as the first part of
the video is still in the multicast tree, i.e., in some client’s
buffer, the next batch of requests for the same video can
join this tree as its newest generation. It was shown in [1]
that latency and throughput can be vastly improved com-
pared to batching. This scheme is very scalable because the
clients using the service also contribute their resources (i.e.,
buffer space and forwarding bandwidth) to the community.
In this way, each client can be seen as a contributor, rather
than just a burden to the video server. This feature allows
Dynamic Multicast to scale beyond the limitation of regular
batching. Implementing this novel idea, however, is a great
challenge. The control mechanism is quite complex. If a
forwarding client decides to turn off its system, the receiv-
ing client must promptly switch to a sibling of the departing
client. If there is no sibling left, the server must be able to
send an emergency stream within a short notice to support
the affected client now detached from the multicast tree.

Compared with Dynamic Multicast, Patching offers a
simpler form of dynamic multicast. We note that the mul-
ticast trees in Patching also grow dynamically to accom-
modate late requests. However, unlike Dynamic Multicast
which uses client buffers to cache data for downstream clients,
Patching uses client buffers to enable the clients to join
an existing multicast. Since the data source is always the
server, the dynamic multicast mechanism in Patching is
much simpler.

Another technique which allows clients arriving at differ-
ent times to share a data stream is called Adaptive Piggy-

s

€« o3 T T T T T T
® - \aw\‘
® \“\-\“ &= st \\‘“
=
€© \
) i \\ & o
¥ e 1 o2 o] [T o~
§ < § .4 ; am
Ed 3 v 3
Pos
M o} a2}
- n
- &
NFD - o MFQ - oot MFO
Lregs N =T . =T
i ; 2 ﬂksﬂm&; ;ﬂﬂﬂT] e 12 nD ; ; SRB;:&S; de.,? L] ; i} 00 1 ; Smé’-&}_ %“ﬂ’ : 9 1)
(a) Average Latency (b) Defection Rate (c) Unfairness

Figure 10: Effect of client buffer size

backing [24]. An adaptive piggybacking procedure is defined
to be a policy for altering display rates of services in progress
(for the same object), for the purpose of “merging” their re-
spective I/O streams into a single stream that can serve the
entire group of merged services. Let us consider a client
which is currently served by some communication channel.
Sometime later, another request for the same video arrives,
the server dispatches another channel to serve this new re-
quest. At this time, the server slows down the data rate on
the former channel, and speeds up that of the later channel.
The affected clients must adapt accordingly to the new play-
back rates. Once the second stream catches up with the first
stream, they are merged into a single multicast freeing one
of the two channels. Obviously, this approach can improve
the service latency as compared to simple batching. A limi-
tation of this technique is that the variation of the playback
Tate must be within, say 5%, of the normal playback rate,
or it will result in a perceivable deterioration of the quality
of service. This fact limits the number of streams that can
be merged, and therefore the effectiveness of Adaptive Pig-
gybacking. As an example, let us consider a stream A which
started six minutes before a stream B. If B is adjusted to a
speed 5% faster than the normal playback rate, it will take B
114 minutes to catch up with A. Under this condition, if the
video is 120 minutes long, stream A will likely finish before
B can catch up. Under the same scenario, Patching would
allow immediate data sharing without the merging delay as
long as the client buffer can hold six minutes of the video.
In terms of implementation, Adaptive Piggybacking is also
quite complex. Although techniques are available to “time
compress” movies, dynamically changing speed is a much
harder problem. One cannot simply use several versions of
each video to support the different playback rates since the
display adjustment must be gradual to insure that it is not
noticeable to the user. For this technique to work, more
work on specialized hardware will be necessary to support
on-the-fly modification [24].

Another related technique, called Bridging, is presented
in [25). Bridging is a buffer management method. In this
scheme, data read for a leading stream are held in the server
buffer, and trailing requests are serviced from this buffer
instead of issuing another storage-I/O stream. This tech-
nique allows multiple requests to share a storage-I/O stream.
However, it does not reduce the demand on the network-1/0
bandwidth.

199

6 Concluding Remarks

Multicast has been shown to be an excellent technique for re-
ducing the demand on the server bandwidth. Unfortunately,
due to its inherent limitation, multicast can only be used to
provide near VOD services. In this paper, we considered
a novel idea, called Patching, which extends the capability
of standard multicast to support true VOD. The proposed
technique has many advantages:

o Unlike conventional multicast, requests can be serviced
immediately under patching. We are able to eliminate
the service latency without compromising the benefit
of multicast.

e Infact, patching can be seen as a better multicast tech-
nique since a multicast can now expand dynamically
to service new client requests. Each multicast, there-
fore, can potentially serve many more clients making
the multicast more efficient.

o Another desirable feature of patching is that channels
are usually used only briefly to broadcast the first few
minutes of the video, instead of being held up for the
entire duration of the playback. This characteristic
makes each channel more productive in the sense that
it can service many more batches per time unit than
it could under batching.

o Patching is very simple. It requires no specialized
hardward. The only new requirement is to enable a
client to join an existing multicast. Implementing this
feature is trivial.

To evaluate the performance of Patching, we implemented

a detailed simulator. The simulation results indicate that
true VOD can indeed be achieved, with Patching outper-
forms conventional true VOD method by 300% under our
workload. The performance results also show convincingly
that Patching offers substantially better service latency and
system throughput compared to conventional batching.

We are currently setting up our laboratory environment
to build a video-on-demand prototype using Patching. Our
system will have one dual-processor NT server and eight
NT workstations. They are interconnected through an ATM
switch. We will run a large number of logical clients on each
workstation, and provide a mechanism to display any four
of the current playbacks at a time. The video-on-demand
system developed for our VideoCenter [26, 27] project will
be used to provide the underlying functions. We will need to
build on top the following components: a channel manager,
a patching scheduler, and the multicast mechanism.

Astraga Lasonsy (Coomds)
LR ;) d
Dofecton Rate

8 B 8§ B BE B B B

350 .- Mo
A=) 3 /’ s t.g by L o) ® %:g B
tﬂ 5 b R&‘;Sh fa) S_g:‘ kel 20 ® YJ' 2 kol ng:-si'a 3 - é n 8 k=] n 2 é R.?xl’xa 5.3 *_1—?“) n o 0
{(a) Average Latency (b) Defection Rate (c) Unfairness

Figure 11: Effect of Request Rate

References

[1] S. Sheu, Kien. A. Hua, and W. Tavanzpong. Chaining:
A generzlized batching technique for video-on-demand. In
Prac. of the Intl Conf. On Multimedia Computing and Sys-
tem, pages 110-117, Ottawa, Ontario, Canada, June 1997.

[2] Origin2000:
pute, memorey, and ifo requirements.
http:/ /www.sgi.com/origin/2000/desk.html.

[3] A. Dan, D. Sitaram, and P. Shahabuddin. Dynamic batching
policies for an on-demand video server. Multimedia Systems,
4(3):112-121, June 1996.

[4] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. On optimal batch-
ing policies for video-on-demand storage servers. In Proc. of
the IEEE Int’l Conf. on Multimedia Systems’96, Hiroshima,
Japan, June 1996.

[5] M. Chen, D.‘Kandlur, and P. Yu. Storage and retrieval
methods to support fully interactive playout in a disk-array-
based video server. Multimedia Systems, 3(3):126-135, July
1995,

[6] K.Keeton and R. H. Katz. Evaluating video layout strategies
for 2 high-performance storage server. Multimedia Systems,
3:43-52, 1995.

[7] T.D.C. Little and D. Venkatesh. Popularity-based assign-
ment of movies to storage devices in 2 video-on-demand sys-
tem. Multimedia Systems, 2(6):280-287, January 1995.

[8] T. S. Chua, J. Li, B. C. Oci, and K. L. Tan. Disk strip-
ing strategies for large video-on-demand servers. In The fth
ACHM International Multimedia Conference, pages 297-306,
Boston, MA, USA, November 1996.

[9] B. Ozden, R. Rastogi, and A. Silberschatz. On the design
of a low-cost video-on-demand storage system. Multimedia
Systems, 4(1):40-54, February 1986.

[10] 3. Korst. Random duplicated assignment: An alternative to
striping in video servers. In Proc. of ACM Int’l Multimedia
Conference, pages 219-226, Seattle, U.S.A., November 1997.

[11] 5-W. Lau and J. Lui. Scheduling and data layout policies
for a near-line multimedia storage architecture. Multimedia
Systems, 5(5):310-323, September 1997.

[12] G.K. Ma, C.S. Wu, M.C. Liu, and B.S.P. Lin. Efficient real-
time data retrieval through scalable multimedia storage. In
Proc. of ACHI Int’l Multimedia Conference, pages 165-172,
Seattle, U.S.A., November 1997.

[13] Y. Wang, J.C.L. Liu, D.H.C. Du, and J. Hsich. Efficient
video file allocation schemes for video-on-demand services.
Lfultimedia Systems, 5(5):283-296, 1997.

[14] Y. Wang and D. Du. Weighted striping in multimedia
servers. In Proc. of IEEE Intl Conf. on Multimedia Comp.
and Sys., pages 102-109, Ottawa, Canada, June 1997.

Web page at

The perfect system for evolving com-

200

{15] R. Zimmerman and S. Ghandeharizadeh. Continuous dis-

play using heterogeneous disk subsystems. In Proc. of ACM
Multimedia Conf., pages 219-226, Seattle, U.S.A., November
1997.

{16] A. Dan, D. Sitaram, , and P. Shahabuddin. Scheduling poli-

cies for an on-demand video server with batching. In Proc.
of ACM Multimedia, pages 1523, San Francisco, California,
October 1994.

[17] S. Viswanathan and T. Imielinski. Metropolitan area video-

[18]

[19]

[20]

[21]

[22]

(23]

(24

[29]

[26]

(27]

on-demand service using pyramid broadcasting. Multimedia
systems, 4(4):179-208, August 1996.

C. C. Aggarwal, J. L. Wolf, and P. S. Yu. A permutation-
based pyramid broadcasting scheme for video-on-demand
systems. In Proc. of the IEEE Int’l Conf. on Multimedia
Systems’96, Hiroshima, Japan, June 1996.

K. A. Hua and S. Sheu. Skyscraper broadcasting: A new
broadcasting scheme for metropolitan video-on-demand sys-
tems. In Proc. of the ACM SIGCOMM?’97, Cannes, France,
Sepetember 1997.

K. Almeroth and M. H. Ammar. The use of multicast de-
livery to provide a scalable and interactive video-on-demand
service. IEEE Journal on Selected Areas in Communica-
tions, 14(6):1110-1122, 1996.

M. S. Chen and D. D. Kandlur. Stream conversion to sup-
port interactive video playout. IEEE Multimedia magazine,
3(2):51-58, Summer 1996.

'W. Feng, F. Jahanian, and S. Sechrest. Providing ver func-
tionality in a constant quality video-on-demand transporta-
tion service. In Proc. of the IEEE Int’l Conf. on Multimedia
Systems’96, Hiroshima, Japan, June 1996.

K. A. Hua, C. Lee, and C. M. Hua. Dynamic load balancing
in multicomputer database systems using partition tuning.
IEEE Tras. on Knowledge and Data Engineering, 7(6):968-
983, December 1995.

L. Golubchik, J. Lui, and R. Muntz. Adaptive piggyback-
ing: a noval technique for data sharing in video-on-demand
storage servers. Multimedia Systems, 4(3):140-155, 1996.

M. Kamath, K. Ramaritham, and D. Towsley. Continuous
media sharing in multimedia database systems. In Proceed-
ings of the Fourth Int’l Conf. on Database Sysetms for Ad-
vanced Applications (DASFAA’95), Singapore, April 1995,
W. Tavanapong, Kien A. Hua, and J. Wang. A framework for
supporting previewing and VCR operations in a low band-
width environment. In ACM Conference on Multimedia Sys-
tems, pages 303-312, Seattle, U.S.A., November 1997.

Kien A. Hua, W. Tavanapong, and J. Wang. 2PSM: An effi-
cient framwork for searching video information in a limited-
bandwidth environment. ACM Multimedia Systems, to ap-
pear.

