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Abstract

c:nt~ now, true videwon-dernaad can ody be atievsd hg
a dedicated data flow for web service request. This brute
force approach is probibitivdy &\Tensive. Using mtiticast
w si@cantly reduce the system rest. This solution, how-
ever, mu~t dday services in order to serve many requ~s as a
hztch. h this paper, we consider a third alternative ded
Pat&ing. h our technique, an e*mg mtiticast m ex-
pand dynarnidy to serve new &ents. ~otig new &ents
to join an existiig rutiticast improves the ficiency of the
rntiti-.. ~hermor~ since W requ~s can be served im-
mediatdy, the &ents experience no service dday md true
vide+on-dem~d ~ be achieve~ A si~cant contribu-
tion of tkis work, is making mdti- work for true vide~
on-demand ssrvicw. h fact, we are able to tiate the
service latency and improve the efficiency of mtiticast at the
same time To assms the ben~t of this sdetne, w perform
simdations to compare its performance +th that of stan-
dard rntiti-. Our simtiation rats indicate convincingly
that Patching offers .wbstanti~y better perforrnace.

1 !rttroduct?on

l~ideo on Demand (l~OD) is a criticrd technolo~ for many
import ant mtitimedia applications, such as home entertain-
ment, digitd video fibraries, distmce 1- g, dectronic
cornmerc~ just to name a few. A mid l~OD service dom
remet e u~ers to pla~back any video from a large co~ection
of ~<deos stored on one or more video servers. h r~onse
to a service request, a video server d&vers the video to
the user in au isochronons video strm Each uideo hmrn
can be vieved as a concatenation of a storag~I/O stream
and a communication stream. That is, ticient storage
1/0 bandtidth mm=t be a~dable to continuously transfer
the data from the storage subsystem to the network inter-
face caTd (A~C); ad the NC in turn must have enough
tiee bandtidth to fo~d the data to the user. Obviously,
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the smder of the 1/0 bandtidth and the fiterconnection
bandtidth determines the matium number of concurrent
video streams the server can support sirmdtaneously (i.e.,
server bandwidth). k today’s server dwigns we find that
~C is usudy the impediment. This is referred to as the
network-I/O bottleneck [1]. As m axample, the forthcom-
ing PCI bus sends 64 bits of data at 100 MHz, thus moving
more than 6 Gbps. A storage subsystem designed around
this bus ti be able to take ti adwtage of the 6-Gbps
data rate. On the other hand, the perforrnmce of the NC
is constrained by the tiernd networking environment. E
an 0G12 ~C is used, the video detivery capabifi@ of th~
system fl be tited to ody 622 Mbps, a 10-timw Wer-
ence in performance. This impedance mismatch fl con-
tinue to be a problem in the foreseeable future due to the
inherent Merencw betieen networking and bus technol~
gies - improving the performance of a %ery short ne~ork”
(i.e., system bus) that interconnects ody a handftd of ex-
ption wds in a box is a lot easier than trying to improve
the performance of a huge communication netiork designed
for fions of boxes.

It W seems that the netiork-I/O bottleneck can be ad-
dressed by using a larger number of ~Cs for each server.
Bus d~igns, however, must Wt the number of expansion
cards to maintain their good performance. As an example,
the 16 RQs (intetipt rquest levels) in today’s Pentium-
based servers constrain them to a very smd number of
mTansion slots. To address this problem, new-generation
high-end servers, such as nCUBE Media Cube and SGI Ori-
gin 2000, are designed tith crossbar or hypercube intercon-
nects to dow incremental grotih in both 1/0 bandtidth
and interconnection bandtidth. These modern servers can
accommodate a lmge number of ~Cs. Their storag&I/O
capacity, however, *O incr-es accordingly. Taking SGI
Origin 2000 as an example, it has a sustained storageI/O
bmdtidth of 640 Gbps [2]. Taking M advantage of this
bandtidth wotid require 533 0G24 NCS. Even if this is
ftible, concentrating that many ~Cs to one server ti~
most Wely cause severe congestions in the netiork. A more
practid desi~ wotid have to sdce some of the storage
1/0 capabti~ by employing a large number of servers which
are geographicdy separated from each other and intercon-
nected in some hierarchy. This approach, however, is ex-
pensive due to the increase in the hwdtie wd networking
costs. This is aggravated by the high cost of managing a dis-
tributed system. A good design shodd control the degree
of distribution as much as possible to minimize the hard-
-e and operating costs. This is achieved in th~ paper by
reducing the demand on the service bandtidth.
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The most direct solution to the ne~ork-I/O bottleneck
is to improve the performance of JWCS. This requirw ad-
vooces in the networking tetiology. Several high-performance
technologiw =e emerging. ATM h= been show to surpass
its commerci$ tit of 622 hlbps, ~x~erimenttiy reaching
2.488 Gbps. By the yw 2000, ~PI @gh Pdorrnance
Pmdd kterface) speed is ~xTected to grow to 25.6 Gbps.
With d this power, it seems that the bottlenecks fl disap
pear. Unfortunatdy, bringing these networking technologies
to the dwL~op is generdy not f=ible because of the kigh
cost of the NVCS and port costs in the ~tch~. For in-
stance, a =PI-6400 *t& wodd cost about S20,000 per
port. It is *O --tic to assume that compties can af-
ford to revamp their netiork ~ cture as frequently as
they upgrade their computing systems. l~lth these practid
constraints, the ne~ork-I/O performance of most systems
d stfi be tited by tr~c congestions in the ne~ork.

A good solution to the netiork-I/O problem, therefore,
must *O include inno~ations in the sotie desi~ A r:d-
kno= techniqne to reduce communication tic is to dow
the fients to share mtiticast data Sevd such techniques
have been proposed for VOD systems [3, 4]. Th=e schemes
dday requ=ts and hope that more requ~ for the same
video @ -tive during the bat fig intm~ and the entire
group is served in one mdtiat. This approach si~cantiy
improves the ~stem throughput. It, however, has to d~
tith the fo~omg tiemm=

● L7sersmaking the early requests are Mdy to renegeif
they are kept wtiting too long.

● On the other hand, if we keep the titing times short
then the ben&t of mtiticast diminishes.

To overcome these problems, the chtienge is to achieve the
fouotig mo goti

1. The ~aits must be very short for A requds indepen-
dent of their arriving order.

2. Each mtiticast must st~ be able to serve a large num-
ber of users.

b tfis paper, n-e pr=ent a novd mtiticast ttique which
ackieves these -o seemingly coticting go~. Under the
new schern~ a new service request can exTloit an -g
mtiticast by btiering the future stream from the mtiticast
=’tie playing the new start-up flow born the start. Once the
new flow h= been played back to the skew point, the catch-
up Sow a be taated and the original mtiticast can
be shared (the skew is absorbed by the new &ent’s btier)-
TITenote that the mtiticast paths are btit at the applica-
tion levd rather than by routers. Site tients m join an
a=mg mdtim~t, this approach si~cantly iruprova the
ticien~ of the mtiticast. Furthermore, since requ- can
rec~ve the sm<ce immediat~y n<thout dday, tie VOD -
be achieve~ b this paper, a technique is said to be able to
offer true VOD if it can service requ~s tithout a dday.
A sia--t contribution of our work is making mtiticast
work for true VOD servic=. h fact, ~w are able to tiate
the smite latency and improve the ticiency of mtiticast
at the same time We ~ discuss this scheme in more detti
in Section 3.

We note that once we have determined the portion of
storageI/O bandtidth that a be ufied for each server
in the system, the video H= must be =~y laid out to
~e the storage cost. Since tideos are not accessed
tith the same tiequency, how to repficate, strip% and place

the ties over a miniium number of storage devices to sup
port the acc=s pattern is a nontrivial problem. This issue
have been studied intensively; and some recent techniques
are presented in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. The
interwted reader is referred to those papers for many excel-
lent ideas. h this paper, we focus on techniques to reduce
the demand on the neWork-I/O bandtidth.

The remainder of this paper is organized as fo~ows. We
describe the conventional multicast tetiquw in more d+
t~ in Section 2 to make the paper self-contained. The pr~
posed method is introduced in Section 3. k Section 4, we
present our simtiation study. Some related works are dis-
cussed in Section 5. FinWy, v~egive our concluding remarks
in Section 6.

2 Conventional Multicast Techniques

k conventional mdticast techniqua, service requests for
the same video arriving tithin a short time duration are
bunched together and served in a batch by a single data
stream. Since requwts are generally made for different videos,
a server can have a number of pending batch= at any one
time. Dfierent batching pohciw have been proposed. They
are primtiy Werent in the criterion used to select the
next batch to receive service. We briefly discuss some of
thwe technique in the fo~otig.

● First Come First Send (FCFS) [16]:

When sticient bandtidth becomes free, this pohcy
selects the batch tith the oldest request (v~hich has
been titing for the Iongwt time) to serve next. The
advantage of this scheme is its fairness - every video
is treated equ~y regardfis of its poptitity. Obvi-
ously, the drawback of this strate~ is the lower system
throughput.

. Mu-mum Queue Length First (MQL) [16]:
Ufie FCFS, this po~cy is designed to mtilze the
system throughput by selecting the batch tith the
largest number of pending requests to serve fist. This
strategy, how’ever, is unfair since it favors more popu-
lar videos.

● M&mum Factored Queue length first (MFQ) [4]:
This scheme improves on the FCFS and MQL policies
by taking into account both the waiting times of the
requests aud the poptiarity of the videos. When suf-
ficient bandtidth becom= a@able, MFQ selects the
pending batch tith the largest size weighted by the

best factor, (the associated access frequency)-~, to
serve n~%. This scheme can achieve throughput close
to that of MQL tith Ettle compromise of its fairness.

It ~ be clear shortly that our technique can be used to
boost the performance of A batching schemes. We, how-
ever, used MFQ in our performance study since it has been
show to provide better performmce than those of the other
techniques [4].

The above mtiticast tecbniqus are referred to as Sched-
uled Multicast because the sever selects the next batch to
mtiticast according to some dynamic schedu~ig poficy. An-
other approach is ded Petiodic Broadmst [16, 17, 18, 19].
These schemes divide the server bandtidth into a large num-
ber of logid channek tith equal bandtidth. To broadcast
a video over its, say K, dedicated channels, the video fde
is partitioned into K fragments of increasing sizes, each is
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rep-te~y brozdcast on its own chmmd. To plzy bzck a
d~ed video, a tient tunes into the appropriate channd to
dodozd the ti data fragment of this video at the ~ oc-
mmc~ As th~e data are arriving at the &ent, they are
rend~ed onto the scre~ For the subsequent fragments,
the &entt dotioa& the n~x~ tigment at the mfiest po~-
ble time tier beginning to play back the current fraagment.
Thus, zt =y point, the &ent dodoads from at most *O
cbann~ and consumes the data figment from one of them
in parfid. To ensure the continuous playback, the we of
the dzta fragments must be chosm such that the playback
duration of my frz=ment is longer than the worst ktency
in dowrdoading the n~x~ hgment. To achieve low service
latencies, the ske of the first figments - be made very
>=W to dow them to be brozdcast more frequently. M-
though this approzch is very ficient, it ca ody be used
for very popdar videos. h this paper, we focus on the more
general schedded mtiticast approach.

3 Patcting

h this section, we introduce a novd mtiticast technique
cded Patching. h this schemq most of the communication
bandwidth of the server is orzed into a set of logid
&ann&, each k capzble of transmitting a video at the play-
back rate. The rem-g bandwidth of the server is used
for control m~ges such as service requests and service n-
fications.

The video sm’er maintains a waiting queue E’Q; and
d -arrivingrequtis are M appended to this queue for&
patch at.the n~x~occasion. me nm~ oction arrives when a
&annd becomes fre~ Associated with each communimtion
&annd is a client Est which contains the ~s of the &ents
curratly vietig the brozdcast on this channd. When a
free ch-d becomes atiabl% the server checks ~rQ for
any entries, and zdmits a batch of service requ~ accord-
ing to some schedfig po%cy such as those discussed in
Section 2. The zssi~ent of this batch to the free &ad
is done bV specifying the desired video hgrnent, and insert-
ing the &ents in the bztch into the corr~ontig dent W.
When the mtiticast is tidy zctitated, the spetied video
is mtiticast on that channd to the tients in the W.

b conventionti batching techniqu=, =ch -d must
mdticast the video in its entirety. As a rdt, the channd is
held up for the entire duration of the video playback. This
severdy tits the number of batches can be served simtita-
neomly. An important objective of the patching technique is
to substantitiy improve the number of requests =ch chn-
nd can serve per time unit, th=eby sidcantly reduce the
per-customer ~stem cost. This god can be achieved by
gr=tly reducing the time required to serve d batch. As
an ~~mple, let w consider the fo~owing scenario. After
&annd C, has mtiticast a video to batch Bi for three min-
utes, another channd, say Cj, becomes free and is used to
serve a new bztch Bj whi& *O requested the same video.
Let the length of the \<deo be 60 rninutw. Ewe use con-
ventional batching, Cj fl be busy for the nm% 60 minut=
serving Bj. Mtemativdy, the tients in Bj can btier the
.~eam broadcast on C~ w~e playing the new start-up flow
broadcast on channd Ci. Mer three minutes, when the
retch-up flow has been played back to the skew po-mt, Cj
can be r~=<ed and the original mdti~ on Gi = now
be shared by both batches. This strategy k referred to as
Putching in this pzper. The name ~atchin~ Auds to
the fact that majority of the time the &ann& are used to
patch the -mg portion of a service, rather than having

193

to mdticast the video in its entirety. We observe in this
mample that Cj is held up for ody three minutes, com-
pared to 60 minutes under batching. Therefore, patching
m potenti~y improve the throughput of channel Cj up to
20 times. Besid~ improving the system throughput, since
patching tiows c~ents to start their playback immediately,
true vide~on-demand cm be achieved. ~ other words, we
can etiate service latency without compromising the ben-
efit of mtitiwt.

h Patching, a ctient might have to dodoad data on
two channek simtitaneously. k the above sample, the
tients in batch Bj must initially dodoad data from both
chann~ Ci and Cj. Although the patching data cm be
co~ed as soon as they arrive, the shared data on channel
C; must be temportiy btiered to the Iocd disk. As a
resdt, the price for patching is the additiond disk space
required at 6 cfient station. This cost, however, shodd
be minimal. As an example, a disk space of 100 Mbytes can
cache about 10 tiutes of MPEG1 video. Such a disk space
costs 1- than S1Otoday. The high cost of a VOD system
is due mostly to the network costs. For instance, the cost of
networking contributes to more than 90% of the hardware
cost of the Time Warner’s W Service Network project in
Orlando. Therefore, it is essential for a VOD design to take
fl advantage of the aggregate bandwidth of the network. If
the ctients are workstations, the sm~ additional disk space
is trivkd. H set-top box= are used to receive videos, the
content provider can take up the cost of the additiond disk
space. The signidcant increase in the number of subscribers
who can receive the services simdt aneously -fly makes up
for this nornind rest. We note that chent buffer is *O used
to implement VCR functions [20, 21, 22]. k this case, the
btier can be used to support patching at no additiond cost.

3.1 Cfient Desi~

h the proposed tetique, a communication channel is used
to either mtitiat a video in its entirety cded a TegulaT
multicast,or to mtiticast ordy the leading portion of a video
&ed a patching multimst. ~ the former case, the channel
is said to play the role of a regulaT channel. h the latter, it
is referred to as a patching channel. E a chent station tunes
into a re~ar channel to dotioad its data, the data stream
arriving at the chent’s communication port is called a TeguZaT
stream. On the other hand, if the source of the data stream
is a patching charmel, then we refer to this data stream as
a patching stmm.

To implement patching, a client station needs to have
three threads of controk two data loaders LP and L., and a
video player VideoPlayer. We LP and L, are rwponsible
for dotioading data horn the patching channel and the
re~ar chmmel, rqectively, VideoPlayer is used to fetch
the data from the Iod btier, reassemble the video fram=,
and render them onto the screen.

To requ=t a video, a chent sends a request token
(ClientID, VideoID), where ClientID is its own address
ad VideoID is the ~ of the requtied video. When the
server is rady for the service, it not%es the ctient with a
stice token, (PID, HD), where PID and MD are the
~s of the patching channel and the re~ar channel, respec-
tively. The Chent examines this tokew and two scenarios
can happen:

1. H PID is nd, the server is about to start a re@ar
mtiticast of the video on channel MD. k this case,
the cfient needs to activate ody loader L. to receive
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MgoStk flient Afain Routine

1. Send a request token (ClientID, VidwID) to the video s~er.

2. t~’ait unti the service token (PatchingID, RegularID) from the server tiv~.

3. H PatAingID is not nfl, we start the data loader Lp.

4. Start the data loaders L,.
5. Start the video player EdeoPlayer.

Mgarith Loader LP

1. Do the fo~owing unti no more data arrive on the patching channel PatchingID:
. Dotioad one data packet on channd PatchingIQ
● Store the data packet to PatchBuffer.

2. Terminate LP.

Mgotitb Loader L,

1. Do the fo~owingunfl no more data arrive on the re@ar channel RegularID:
. Dowrdoad one data pzcket on channd Regular~
. Store the data packet to RegularBuffer.

2. Terminate Lr.

Ngoritk VideoPlager

1. Do the fo~owing unti no more data in PatchBufier
● Fet& one playback unit from Pat~uffeq
. Ree the disk space for the fetched dat~
● Reassemble the fetched data into kes and render them onto the screen.

2. Do the fo~~g unti no more data in RegularBu#er
● Fetch one playback unit from RegularBuffe~
● ~ee the disk space for the fetched dat~
. R=emble the fetched data into frams =d render them onto the screen.

3. Terminate ~dmPlayer.

Figure 2 Mgorithms for &ent stations

lgarit~ Server Jlain Routine

1. Dispatch a free charred, say fiee~anneL

2. Sdect the nati tideo, say v, to serve according to a given schedfig poticy (e.g., FCFS, MQL, MFQ, etc.)

3. Mti&e the service token as (P~=ndl, ~=ndl).

4 H there is no re~m mtiticast of video w in progress, set ~ = k@anneL Otherwise,
● Set PD=Ree-d ad U=LatatRegular, where LatmtRegular is the lat~t re@ar channel for video v.
● CA tither GreedyPatching(FreeChannel, Latest%gdar) or GracePatching(FreeChannel, LatestRegular)

to determine the portion of video data which shotid be mtitimt on charmel fieefiannel.

5. For each request token [~ent~ = v~ien$ Vldeom = v) in WQ, do the fo~owing
● M Pm is nfi, we a penal u~ient to the fient W of channel Fr~manneL Otherwise, it is appended to the

J&ent Ws of both ann~ Free~annd and LatestRegular.
. Send the service token to no~ the fient v~ient
● Ddete the requwt token from iVQ.

6. Activate the mtiticast on FreefianneL

I

I
I

Fi~e 3 Ngorithm for the video server
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Figure 1: Patching Technique

the video dat~ As the data arriv~ at the Went, the
VideoPlayer renders the video ks onto the screen.

2. UPID is not nfl, the server is about to do a patching
mtiti~ on channd PID. The dent must tune into
chad MD for theremtig portion of the video. b
this me, the dent must activate both L, and LP to
s-mdtmeously dowrdoad data from ~D and PID,
rqectivdy. titidy, the VideoPlayer plays bd
the pattig strm as the data arrive at the fient.
The re~= stream arriving Corn MD is tempody
ca~ed in the lod buffer. When the patching mdti-
@ ends, the VtdeoPlager switchesto play bd the
data in the lod btier as L, conthmw to dotioad
the remaining of the video ~C

We show in Figure 1 an ~ple to ~ustrate the patching
ida ~ents A, B md C *e sharing a mtiticast although
they are ti Merent stages of the video pIayb* ~ent A
arrived fist. It has been served entirdy by a re~ar stream.
Ctiat B arrived R*. Its video player has *a*ed the
patching str-, and is currently playing bti the rem
stream inched in the lod buffer. Chent C tived most
recently. It is @ pla3tig ba& the patching strm as the
re@ar stream is being cached in the Iod buffer.

We present the &ent routines in Figure 2. We note that
the data born the patching channel (if any) and the re~ar
dannd are& btiered in PatchB&~er and RegularBufler,
respectivdy. Howe~er, the data dotioaded to the Patch-
B~fler are immedi2t4y piped to VidwPlayer. The tie of
PatchEufler, therefore, is negEgibla We ~ simply refer to
EeyJurB~fier as the &ent btier in this paper.

3.2 Sewer Des;w

Tf7enow discuss the det~ of the smTer design. Mer a chan-
nd h-as completed its current batch, its tient M is reset.
The ch=d is now said to be fi~ and is a~able for the
next mdticast. The server main routine given in Figure 3
is repmted if the server has at least one free channd and its
titing queue TVQ is not emp~. When a free charred is &
p~t&ed for a servic~ it is given a workload sptied as v[tP],
rhere v ad tP dmote the unique ~ of the videa fle and the
d=ed playba& duration, rwpectivdy. For instance, vid[3]
indicatesthat the free channd shodd mdticast ody the *
3 minutes of the video vial. I{Tenote in the server main rou-
tine that if there is no re~ar channd currently mdti~ing
the video being s&edded, the worHoad for the bee chan-
nd is the entire ~fideo (i.&, re~m mdtiti). Otherwise,

either GrssdyPatching or GracePatching is cded to deter-
mine the patching wor~oad for the free channd according
to the status of the latest re@ar chaund. Thwe fictions
decide how much of the video data shotid be detivered on
the free channel, which is the actual cost of serving the cur-
rent batch. Greedy Patching tries to have the current batch
share the data with an -ting re@ar mdtic=t whenever
possible. Grace Patching, on the other hand, W schedtie
a new re@ar mtiticast for the current batch if the c~ent
btier is not l=ge enough to cover the missiig portion of the
video. k this c-~e, the-free channel becomw-{he latest reg-
tiar channd for this tideo. We discuss these two strategies
in more detd in the fo~owing two subsections.

3.2.1 Greedy Patcting

Greedv Patchins schedties a new redar mtiticast for a
batch ~rdy if th~e is no re~m mtiti”mt currently serving
the same video. The algorithm for this technique is given in
Figure 4. It says that if a cfient fives, say m, minutes late
and do= not have enough storage space to buffer the nd
m minutes of the last re@ar mtiticast of the same video,
the buffer space is used to cache the last m minutes of that
mdticast.

Ngotitk GreedyPatching(Fr4D, RegularID)

h currenttime
t“ start time of the re@m mdticast on channel
‘- RegularID

V the videa currently mtitimt on channel
RegularID

IVI: playbd duration of the video V
B: tie of the tient buffer in playbad time unit

1. Et – t. <B, we set the worMoad for channel fiedD
to V[t– t.].

2. Otherwise, the wor~oad is set to
VIIVI – Min(B, IVI – (t – t.))].

Figure 4 Greedy Patching

[

,,

+

[

3.2.2 Grace Patching

Overly greedy, Greedy Patching can restit in less data shi-
ning. As an =ample, let us consider a re~ar mtiticast of
a 6&minute video started 10 minutes ago. Assuming that
=ch chent has ordy enough buffer space for up to five miu-
utes of video, the cfients in the cment batch have to btier ,
the last five minutes of the re@ar mtiticast rwtiting in ody
five minutes of data sharing. Furthermore, batches arriving
within the n% 50 minut= M benefit horn the same regular
mtiticast for no more than five minutes. As an alternative, i
if we schedtie a new re@m mtiticast for the current batch, 1

then the batches tiving within the n- five minutes for I

the same video fi be able to share this new regulm mtiti-
cast for at l-t 55 minutw. This is the approach t~en by
Grace Patching presented in Figure 5. This scheme sched-
des a new re~ar mtitiwt if the cfient btier is not l=ge
enough for the patching cfip. A potential drawb~ of this
scheme is that it r=tits in many more re@ar mtiticasts ~
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Mgoritk Gra@at&ing(RO, RegularID)

k ment time
t.s. start time of the re@ar mtiticsst on channd

Rq~larID
JT: the ttideo currently mdticsst on channd

Rey~larID
IV]: playb2ch duration of the tideo V
B: she of the &ent btier in playbad time unit

1. H t - f. ~ B, then the worUoad for channd
FreeID is V[t – t.].

2. Oth+e, fiedD is designated to start a new
re~ar mtiti~t as fo~ow

. k~~~ the service token =
(Pm= nul~ ~ = FrAD).

. Set the worHoad for the new re@ar channd
FreeID as VIIV{].

Figure 5: Grace Patching

compared to Greedy Patching. b the n=~ section we d
show simdation rats to compare the performance of these
two strategies.

4 Performance Study

h this section, we &ow simdation restits to demonstrate
the ba~ts of Patching. J17echose MFQ as our =Terimentd
environment since it has been shown to perform better than
FCFS ad JTQL [4]. Nevtihdess, since Patching m be
used to boost the performance of any batching schemes, the
performance r~dts presented herein can be genhed for
& batching techniques. Our study includes both patching
metho~s: GTdg and Gram We use MFQ as a reference to
assess the performmce of these&o patching strategies.

4.1 Simulation Environment

We M describe our simtiation environment. Each dent
station is equipped with a U btier. The defadt tie of
this &k space is five minutes of video data Each simtiation
run consists of 200,000 service requests. Each request is
modded by an interarri~d time, a dent ~, =d a video
choice The interaad time is assumed to fo~ow a Poisson
distribution. For ead request, it is generated by a Poisson
process which is a\Tonentiy distributed with a mm of
~, where A is the request rate. The sdection of the videos
is modded using a Zip~-Me distribution [:3]. That is, the
prob2btity of choosing the ith video is ,==;=, +> ‘h=e N

is the total nurnbw of tideos in the system, md z is ded
the skew ~actoT. A larger z corresponds to a more severe
skew condition indi~ting that some tideos are requested
more frequently than the otha. We set this tiue at 0.7
mtich is typi~ for VOD applications [3]. We assume that
the system contti 100 videos, d of them are 90 minutes
long. The server is capable of supporting 1,200 ,ch~ek
wti& is about the same as the bandwidth of the system
used in the Time Wzer trial in Orlando, which can d&ver

1,000 MPEG-1 streams simdtaneously. Our wor~oad and
system pmameters are summ~ed in Table 1. The defatit ~
dues are &ted under the Wefatitn column. We *O vary
some of these parameters to do sensitivity analysis. The
range of tiu~ used for such studies are given in the third
column under the heading ~ge?’

PARAM~ER DEFAULT RANGE
Number of videos 100 N/A
Video len~h (minut=) 90 NIA

Table 1: Parameters used for the simtiation studies.

We choose average latency, defection rate, and unjaimess
as the performance metrics. We ~lain these terms in the ~
fouowing

. Defection Rate This is the percentage of service r~ 1
quests which are canceled because the waiting time
~ceeds the c~ent’s tolerance. We note that reducing
the defection rate improves the system throughput.

I

. Unfai~es~ Let & denote the defection rate for video
i and d be the mean defection rate. We dehe the

~==F~hereN’thenumb~
of videos horn which &ents may m~e requests.

. Average Latency It isdfiedas ‘:=lL’tencyi, where
n is the total number of ctient requestq &d Latenqi is
the service latency or the duration between the arrid
time of request i and the time i is admitted for service.

We want to investigate the effect of request rate, server
cornmunimtion bandwidth, and ctient btier ske on the
above metrics. k the fo~owing subsections, we report our
simdation rdts under WO Werent environments one d-
lows defection and the other one does not.

4.2 Study 1: No Defection Allowed

h this study, we assume that users do not renege once they
have submitted a service request. Defection rate and unfair-
ness are, therefore, irrelevant in this case. We fl discuss
ordy the average latencies of the various schemes under dif-
ferent worUoad and system parameters.

4.2.1 Effeti of Server Communication Bandwidth

h this study, the chent btier she was fied at 5 minutes ‘
of dat~ and the average request rate - 50 requats per
minute. The simtiation rats are shown in Figure 6. We
observe that Greedy Patching offers httle performance im-
provement over MFQ under this wor~oad. This is due to
the fact that the ctient btier sbe is too smd for Greedy ,
Patching to ~~loit the data sharing feature. Most of the ;
batches miss the last mtitic~t of the same video by more I

thm five minutes. As a restit, majority of the data sharing \
me tited to the last five minutes of the video. To improve
this condition, chents need to have more btier space. We :
fl investigate this option in the n- subsection,

I
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Urdike Greedy Patching, me observe that Grace Patch-
tig pdorms vw m’~. By starting a new re~ar mtiti-
cast whene~er a batch arrives more than five minutes late,
Grace Patching gives the subsequent batches abetter chance
to shxe essentitiJT the entire mtiticast tith the current
batch. This possi~tity improves tith the increass in the
server communication bandtidth. Tllth more bandtidth,
the batches can be admitted tith 1- titing time inm~
ing thti &ances of joining a previous mtiticast. This fact
- be seen in Figure 6. It shows that the perforruace of
Grace Patching improvw tith the incr-es in the server
communication bandtidth. 11’e note that it requirm Grace
Pat&g ody 1,400 &mm&to provide true VOD services,
i.e., service Iateng is zero. ~Tlth tfi bandwidth, Greedy
Fattig and NIFQ fi stier a rather long average service
laten~ of more than 2 ~uta.

Figure 6: Effect of server budtidth

TTenote that Grace Patching performs worse than Greedy
Fatching when the server comnmniation bandtidth is very
tited. Tkis can be a\Tltied as fo~ows. IVhsn the server
has l~s than 600 chann~, the average service Iatencies of fl
tties scbem~~ are more than five minutes. Since the tient
btier a mche ody five minutes of dat~ a large number of
batches must be served by a re@ar mtiticsst under Grace
Pat &g rendering pzttig essenti~y useless. The situ-
ation is margintiy better for Greedy Patching bemuse a
batch m stti share the last five minutes tith the last regu-
lar rmdtimst. Jtrig under these situations, however, are
uninteresting since one shodd not operate in this inadequate
range

4.2.2 ERect of Cfient Bfier Size

h this study, we v,wt to see how the dent btier tie af-
fects the average latency. The server capaci~ w fi~ed
at 1,200 &annek and the arrixd rate at 50 requests per
minutk The simdation ressts are plotted in Figure 7. The
cw’e for 3PQ is tit as it do= not take advantage of the
&ent btiers. The latency curve for Grace Patching drops
vq rapi~y as the fient storage size increases. Under this
worMozd, the plot indiates that Grace Patching requires
ody 6 minut=s of c~at btier space to achieve tie VOD.
JTe &so observe that although Greedy Patching can bendt
from more btier space, the performance curve drops at a
very slow pzce. This indicatw that Greedy Patching is not
a ;-~ ~ective technique.

4.2.3 Efie~ af Request Rate

b this Simdation study, we &xed the servm capacity at 1,200
&m* and the &ent btier size at 5 minutes of video data
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Figure Z Effect of ctient btier size

The tiect of the request rate on average latency is plotted
in Figure 8. Again, wresee that Greedy Patching offers only
nominal improvement due to insufficient Went b~er space.
Grace continu= to perform very we~. It outperforms the
other schem~ by very si~cant margins. E true VOD is
required, the plot shorn that MFQ ad Greedy Patching
must tit the request rate to about 10 requests per min-
utw. Grace Pat&g nonetheless enjoys a request rate of 40
requwts per minutes, which is a 300% improvement. Since it
requires substanti~y l= bandtidth, Grace Patchiig offers
an ace~ent technology for true VOD systems.

Figure 8 Effect of Requwt Rate

~Venote that Grace Batching offers no advantage when
the request rate is very low (i.e., 10 requests per second).
This can be ~~ltied as fo~ow. Since the multicasts are
hig~y efficient under Grace Patching, this scheme caunot
uttie M the channek under such a low request rate. The
s-e server bandtidth, however, is just enough for the other
schemes to serve each new request X saon as it arrives. Un-
der this circumstance, MFQ achieves true VOD by serving
each tient request using a dedicated channel. The system,
ho~’ever, tottiy gives up the benefit of mdticast. This r~
~t demonstrate= the inherent incompatibfity betieen mti-
ticast -d true video on demand. From this perspective, a
si~cant contribution of our work is making mtiticast work
for true VOD systems.

4.3 Study 1[: Wth Defection

h practice, if the tit is too long, the chent is fikely to
caned the service request. k this second study, we model
the user defection behavior using a normrd distribution tith
am- of p = 5 minutes and a standard deviation of u = $.
J+retruncate the distribution on the left, which is negative.
}Ve present the shtiation rwults in the fo~otig.
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4.3.1 Efied of Sewer Communimtion Bandwidth

h tti study, we fixed the tient btier size at 5 minut=
of dat+ md the requat rate at 50 arri~~ per minute.
The sirmdation rats are plotted in Figure 9. They show
that none of the techniques can offer acceptable performance
when the server bandwidth is inadequate. Grace Patching,
however, is much better at ttig advantage of the addi-
tionrd rsourcs. As the server bandwidth increas= ~om
400 to 1,800 _&, ody the curves of Grace Patching
drop rapi~y to r=~ the zero levd at 1,400 charm&. With
1,400 chann&, Grace Patching Wows a perfectly ti s~
tem oEfig true VOD services with no defection. l~lth
the same hardwar~ MFQ and Greedy Patching can achieve
ordy an av~age latency of about 65 seconds and 55 seconds,
respectivdy. Their performance are actutiy much worse
since the defection rats are very high. They are 20% for
Greedy P2tching and 23% for MFQ under this condition.
Again, the sirmdation rats co- that Grace Patching
us* the &“ann* much more efficiently. It requires much
1S bandwidth to provide trueVOD servic=.

4.3.2 Effeti of Ctient Buffer Size

ti this study, the server capacity was tied at 1,200 chan-
n~ and the request rate at 50 arri~ per minute. The
performance of the three mtiticast techniquw under various
&at bfier sizm are plotted in Fi~e 10. We observe that
the performance of Greedy Patching improv~ very slowly
with the increas~ in the &ent btier size. Grace Patching
is much more dective in ttig advantage of the additiond
buffer spacq its curvw drop rapidy. The plots indicate that
it a~ev~ tru&VOD performance when the &eat bti= size
is 6 rninuta of data Under this condition, the average la-
teng of MFQ is more than 1 ruinut= with a defection rate
higher thm 20%. The bad defection rate maka hlFQ ad
Greedy Patching not as fair as Grace Patching.

4.3.3 Etieti of Request Rate

h this study, the server mpacity - fi-ed at 1,200 cha-
nh and the fient buffer size at 5 minut= of video data
We varied the reque~ rate from 10 to 90 arri}~ per rnin-
ut=. The simtiation r=tits are shown in Figure 11. They
are very sti= to the non-defection me. Grace Patching
m 2chieve tru*VOD performance at a much higher re
quest rate of 40 requ~ts per minut= compared to ordy 10
requ=ts per minute for MFQ. At 40 requests per minute,

MFQ ders a rather long average latency which is more
than one minute. Its defection rate is *O very high under
tfi condition, ahnost 25%.

5 Related Work

We *O qloited the idea of letting cfients of the same
mtiticast to receive the service at their own earhest po~i-
ble time in [1]. The techniques were tied Dynamic Multi-
Wt or ~aining. U~e conventional mtiticast which must
& determine the mtiticast tree before the mtiticast can
proceed, a mtitick tree in Dynamic Mtiticast grows dy-
namidy to accommodate late requests for the same ser-
vice. This approach requires a sm~ additiond disk space
at the chent side to btier data. Each chent *O acts as
a mini-server to fo-d the cached data to other c~ents
in the downstream. The aggregate storage space of thae
c~ents @ectively forms a huge network cache temporarily
holding data for fiture requwts. As long as the first part of
the video is st~ in the mtiticast tree, i.e., in some ctient’s
btier, the n- batch of requ~s for the same video can
join this tree x its new=t generation. It w= shown in [1]
that latency and throughput can be vastly improved com-
pared to batching. This scheme is very scalable because the
cheats using the service *O contribute their resourcw (i.e.,
b@er space and forwarding bandwidth) to the comnmni~.
k this way, each cfient can be seen as a contributor, rather
than jti a burden to the video server. This feature Wows
Dynamic Mtiticast to scale beyond the tiltation of re~ar
batching. tiplementing this novel idea, however, is a great
ch~enge. The control mechanism is quite complm. H a
forwarding cfient decides to turn off its system, the receiv-
ing cfient must promptly switch to a sibhg of the departing
tient. H there is no sibhg left, the server must be able to
send an emergency stream within a short notice to support
the tiected chent now detached horn the mtiticast tree.

Compared with Dynamic Mdticast, Patching offers a
simpler form of dynamic mtiticast. We note that the mti-
ticast trees in Patching dso grow dynarnicdy to accom-
modate late requests. However, urdike Dynamic Mdtic=t
which usw cfient btiers to cache dat a for downstream chents,
Patching us= tient btiers to enable the cfients to join
an ~ting mdtic=t. Since the data source is always the
server, the dynamic mdticast mechanism in Patching is
much simpler.

Another technique which &ows ctients arriving at tier-
ent tima to share a data stream is ctied Adaptive Piggy-

*
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Figore 10 ~W of Went buffer ske

baclting [24]. An adaptive piggybacking procedure is deed
to be a POKCYfor rdtering display rates of services in progrm
(for the sme object), for the purpose of hergin< their r-
spective 1/0 str~ into a single stream that can serve the
entire graup of merged services. Let us cOtia= a fient
which is currently served by some communication chmmel.
Sometime later, another request for the same video arrives,
the server dispatches another chrmnd to serve this new r-
qu@. At tfis timq the server slows down the data rate on
the former channd, and speeds up that of the later channel.
The tiected &ents must adapt accordingly to the new play-
back rate. Once the second stream catch= up with the W
strm, they are merged into a single mdticast freeing one
af the two chann&~. Obtiously, this approach can imprave
the smtice lateng as compared to simple batching. A ti-
tation of this technique is that the variation of the playback
rate must be within, say +5Y0, of the normal playback rate,
ar it W rdt in a perceivable deterioration of the quti~
af smtice. This fact tits the number of streams that can
be merged, and thwefore the dectiveness of Adaptive Plg-
~backing. As au a-pi% let us consider a stream A which
started&s minute before a str= B. H B is adjusted to a
.~eed 5% faster than the normal playback rate, it ~ take B
114 minutes to retch up with A. Under this condition, if the
~tideois 120 minut~ Iang, stream A ~ Mdy tih before
B can catch up. Under the same scenario, Patching wodd
tiaw immediate data sharing without the merging dday as
long x the &ent btier - hold tix minut~ of the video.
h terms af implementation, Adaptive Piggybacking is *o
quite campla~ &though tecbniquw are atiable to Yie
campr=- ma~+~, dynamidy changing speed is a much
harder probl- One -ot simply use sevd versions of
mch video to support the ~erent playback rates since the
&splay adjustment must be gradud to insure that it is not
noticeable to the mer. For this technique to work, more
wark an .~ecitied hardware ti be necessary to support
on-th+fly motivation 124].

Anather related tetique, ded Btidging, is pr=ented
in ~25]. Bridatig is a btier management method. ~ tfi
scheme, data read for a leading stream are hdd in the server
btier, and trtig requests are s~iced horn this btier
instead af issuing mother storag*I/0 str-. This tech-
nique Aows mtitiple reqn~s to share a storag&I/O str-.
Hawever, it do= not reduce the demand on the network-I/O
bandwidtk
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6 Concluding Remark

Mtiticaat has been shown to be an axce~ent technique for r~
ducing the demand on the server bandwidth. Unfortunately,
due to its inherent titation, mdticast can ody be used to
provide near VOD services. h this paper, we considered
a novel idea, ded Patching, which Mends the capabfity
of standard mtiticast to support true VOD. The proposed
tecbniaue has manv advanta~s:

●

●

●

●

~@e conv~tiond mti-ticast, requests can be serviced
immediately under patching. We are able to efiminate
the stice latency without compromising the benefit
of mdticast.

k fact, patching can be seen as a better mtiticast tech-
nique since a mtiticast - now ~and dynamic~y
to service new cfient requ-ts. Each mtiticast, there
fore, can potentidy serve many more c~ents making
the mdticast more efficient.

Another desirable feature of patching is that channek
are usu~y used ody briefly to braadcast the tit few
minutes of the video, instead of being held up for the
entire duration of the playback. This chmxteristic
makes each channel more productive in the sense that
it can service many more batch= per time unit than
it codd under batching.

Patching is vq simple. It requira no speckdiied
hard=-d. The- ody new requirement is to enable a
Went to join an @ting mtiticast. hplementing th=
feature is tivid.

To eduate the performance of Patching, we implemented
a detded simtiator. The simtiation restits indicate that
true VOD can indeed be tieved, with Patching outper-
forms conventional true VOD method by 300% under our
woruoad. The performance rfitits *O show convincingly
that Patching offers substantidy better service latency and
system throughput compared to conventional batching.

We =e currently setting up our laboratory environment
to btid a vide~on-demand prototype using Patching. Our
system d have one dud-proc-or NT server and eight
NT workstations. They are interconnected through an ATM
switch. We ~ run a large number of Iogicd cfients on each
workstation, and provide a mechanism to display any four
of the current playbacks at a time. The vide~on-demand
system devdoped for our VideoCenter [26, 27] project -
be used to provide the underl~g fanctions. We will need to
bdd on top the fo~owing components a channel manager,
a patching schedtier, and the mtiticast mechanism.
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