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Abstract

Overcast is an application-level multicasting system
that can be incrementally deployed using today’s
Internet infrastructure. These properties stem from
Overcast’s implementation as an overlay network.
An overlay network consists of a collection of nodes
placed at strategic locations in an existing network
fabric. These nodes implement a network abstrac-
tion on top of the network provided by the under-
lying substrate network.

Overcast provides scalable and reliable single-source
multicast using a simple protocol for building effi-
cient data distribution trees that adapt to changing
network conditions. To support fast joins, Overcast
implements a new protocol for efficiently tracking
the global status of a changing distribution tree.

Results based on simulations confirm that Over-
cast provides its added functionality while perform-
ing competitively with IP Multicast. Simulations
indicate that Overcast quickly builds bandwidth-
efficient distribution trees that, compared to IP
Multicast, provide 70%-100% of the total band-
width possible, at a cost of somewhat less than twice
the network load. In addition, Overcast adapts
quickly to changes caused by the addition of new
nodes or the failure of existing nodes without caus-
ing undue load on the multicast source.

1 Introduction

Overcast is motivated by real-world problems faced
by content providers using the Internet today. How
can bandwidth-intensive content be offered on de-
mand? How can long-running content be offered to
vast numbers of clients? Neither of these challenges
are met by today’s infrastructure, though for dif-
ferent reasons. Bandwidth-intensive content (such
as 2Mbit/s video) is impractical because the bot-
tleneck bandwidth between content providers and

consumers is considerably less than the natural con-
sumption rate of such media. With currently avail-
able bandwidth, a 10-minute news clip might require
an hour of download time. On the other hand, large-
scale (thousands of simultaneous viewers) use of
even moderate-bandwidth live video streams (per-
haps 128Kbit/s) is precluded because network costs
scale linearly with the number of consumers.

Overcast attempts to address these difficulties by
combining techniques from a number of other sys-
tems. Like TP Multicast, Overcast allows data to
be sent once to many destinations. Data are repli-
cated at appropriate points in the network to mini-
mize bandwidth requirements while reaching multi-
ple destinations. Overcast also draws from work in
caching and server replication. Overcast’s multicast
capabilities are used to fill caches and create server
replicas throughout a network. Finally Overcast is
designed as an overlay network, which allows Over-
cast to be incrementally deployed. As nodes are
added to an Overcast system the system’s benefits
are increased, but Overcast need not be deployed
universally to be effective.

An Overcast system is an overlay network consist-
ing of a central source (which may be replicated
for fault tolerance), any number of internal Over-
cast nodes (standard PCs with permanent storage)
sprinkled throughout a network fabric, and stan-
dard HTTP clients located in the network. Using
a simple tree-building protocol, Overcast organizes
the internal nodes into a distribution tree rooted
at the source. The tree-building protocol adapts
to changes in the conditions of the underlying net-
work fabric. Using this distribution tree, Overcast
provides large-scale, reliable multicast groups, espe-
cially suited for on-demand and live data delivery.
Overcast allows unmodified HTTP clients to join
these multicast groups.

Overcast permits the archival of content sent to mul-
ticast groups. Clients may specify a starting point



when joining an archived group, such as the begin-
ning of the content. This feature allows a client to
“catch up” on live content by tuning back ten min-
utes into a stream, for instance. In practice, the
nature of a multicast group will most often deter-
mine the way it is accessed. A group containing
stock quotes will likely be accessed live. A group
containing a software package will likely be accessed
from start to finish; “live” would have no meaning
for such a group. Similarly, high-bandwidth con-
tent can not be distributed live when the bottleneck
bandwidth from client to server is too small. Such
content will always be accessed relative to its start.

We have implemented Overcast and used it to create
a data distribution system for businesses. Most cur-
rent users distribute high quality video that clients
access on demand. These businesses operate ge-
ographically distributed offices and need to dis-
tribute video to their employees. Before using Over-
cast, they met this need with low resolution Web-
accessible video or by physically reproducing and
mailing VHS tapes. Overcast allows these users
to distribute high-resolution video over the Inter-
net. Because high quality videos are large (Approx-
imately 1 Gbyte for a 30 minute MPEG-2 video),
it is important that the videos are efficiently dis-
tributed and available from a node with high band-
width to the client. To a lesser extent, Overcast is
also being used to broadcast live streams. Existing
Overcast networks typically contain tens of nodes
and are scheduled to grow to hundreds of nodes.

The main challenge in Overcast is the design and
implementation of protocols that can build effi-
cient, adaptive distribution trees without knowing
the details of the substrate network topology. The
substrate network’s abstraction provides the ap-
pearance of direct connectivity between all Over-
cast nodes. Our goal is to build distribution trees
that maximize each node’s bandwidth from the
source and utilize the substrate network topology
efficiently. For example, the Overcast protocols
should attempt to avoid sending data multiple times
over the same physical link. Furthermore, Overcast
should respond to transient failures or congestion in
the substrate network.

Consider the simple network depicted in Figure 1.
The network substrate consists of a root node (R),
two Overcast nodes (O), a router, and a number
of links. The links are labeled with bandwidth in
Mbit/s. There are three ways of organizing the root
and the Overcast nodes into a distribution tree. The
organization shown optimizes bandwidth by using

Figure 1: An example network and Overcast topology. The
straight lines are the links in the substrate network. These
links are labeled with bandwidth in Mbit/s. The curved lines
represent connections in the Overlay network. S represents
the source, O represents two Overcast nodes.

the constrained link only once.

The contributions of this paper are:

A novel use of overlay networks. We describe
how reliable, highly-scalable, application-level
multicast can be provided by adding nodes that
have permanent storage to the existing network
fabric.

e A simple protocol for forming efficient and scal-
able distribution trees that adapt to changes in
the conditions of the substrate network without
requiring router support.

e A novel protocol for maintaining global status
at the root of a changing distribution tree. This
state allows clients to join an Overcast group
quickly while maintaining scalability.

e Results from simulations that show Overcast is
efficient. Overcast can scale to a large num-
ber of nodes; its efficiency approaches router-
based systems; it quickly adjusts to configura-
tion changes; and a root can track the status of
an Overcast network in a scalable manner.

Section 2 details Overcast’s relation to prior work.
Overcast’s general structure is examined in Section
3, first by describing overlay networks in general,
then providing the details of Overcast. Section
4 describes the operation of the Overcast network
performing reliable application-level multicast. Fi-
nally, Section 5 examines Overcast’s ability to build
a bandwidth-efficient overlay network for multicas-
ting and to adapt efficiently to changing network
conditions.



2 Related Work

Overcast seeks to marry the bandwidth savings of
an IP Multicast distribution tree with the reliability
and simplicity of store-and-forward operation using
reliable communication between nodes. Overcast
builds on research in IP multicast, content distri-
bution (caching, replication, and content routing),
and overlay networks. We discuss each in turn.

IP Multicast IP Multicast [11] is designed to pro-
vide efficient group communication as a low level
network primitive. Overcast has a number of ad-
vantages over IP Multicast. First, as it requires no
router support, it can be deployed incrementally on
existing networks. Second, Overcast provides band-
width savings both when multiple clients view con-
tent simultaneously and when multiple clients view
content at different times. Third, while reliable mul-
ticast is the subject of much research [19, 20], prob-
lems remain when various links in the distribution
tree have widely different bandwidths. A common
strategy in such situations is to decrease the fidelity
of content over lower bandwidth links. Although
such a strategy has merit when content must be de-
livered live, Overcast also supports content types
that require bit-for-bit integrity, such as software.

Express [15] is a single-source multicasting system
that addresses some of IP Multicast’s deficits. Ex-
press alleviates difficulties relating to IP Multicast’s
small address space, susceptibility to denial of ser-
vice attacks, and billing difficulties which may lie
at the root of IP Multicast’s lack of deployment
on commercial networks. In these three respects
Overcast bears a great deal of similarity to Ex-
press. Overcast differs mainly by stressing deploy-
ability and flexibility. Overcast does not require
router modifications, simplifying adoption and in-
creasing flexibility. Although Overcast provides a
useful range of functionality, we recognize that there
needs for which Overcast may not be suited. Ex-
press standardizes a single model in the router which
works to lock out applications with different needs.

Content Distribution Systems Others have ad-
vocated distributing content servers in the net-
work fabric, from initial proposals [10] to larger
projects, such as Adaptive Caching [26], Push
Caching [14], Harvest [8], Dynamic Hierarchical
Caching [7], Speculative Data Dissemination [6],
and Application-Level Replication [4]. Overcast ex-
tends this previous work by building an overlay net-
work using a self-organizing algorithm. This algo-
rithm, operating continuously, not only eliminates

the need for manually determined topology infor-
mation when the overlay network is created, but
also reacts transparently to the addition or removal
of nodes in the running system. Initialization, ex-
pansion, and fault tolerance are unified.

A number of service providers (e.g., Adero, Aka-
mai, and Digital Island) operate content distribu-
tion networks, but in-depth information describing
their internals is not public information. FastFor-
ward’s product is described below as an example of
an overlay network.

Overlay Networks A number of research groups
and service providers are investigating services
based on overlay networks. In particular, many of
these services, like Overcast, exist to provide some
form of multicast or content distribution. These in-
clude End System Multicast [16], Yoid [13] (formerly
Yallcast), X-bone [24], RMX [9], FastForward [1],
and PRISM [5]. All share the goal of providing
the benefits of IP multicast without requiring di-
rect router support or the presence of a physical
broadcast medium. However, except Yoid, these ap-
proaches do not exploit the presence of permanent
storage in the network fabric.

End System Multicast is an overlay network that
provides small-scale multicast groups for telecon-
ferencing applications; as a result the End System
Multicast protocol (Narada) is designed for multi-
source multicast. The Overcast protocols different
from Narada in order to support large-scale multi-
cast groups.

Yoid is a generic architecture for overlay networks
with a number of new protocols, which are in devel-
opment. The most striking difference between Yoid
and Overcast is in approach. Yoid strives to be a
general purpose overlay network and content distri-
bution toolkit, addressing applications as diverse as
netnews, streaming broadcasts, and bulk email dis-
tribution. While these goals are laudable, we believe
that because Overcast is more focused on providing
single-source multicast our protocols are simpler to
understand and implement. Nonetheless, there re-
mains a great deal of similarity between Overcast
and Yoid, including url-like group naming, the use
of disk space to “time-shift” multicast distribution,
and automatic tree configuration.

X-bone is also a general-purpose overlay network
that can support many different network services.
The overlay networks formed by X-bone are meshes,
which are statically configured.



RMX focuses on real-time reliable multicast. As
such, its focus is on reconciling the heterogenous ca-
pabilities and network connections of various clients
with the need for reliability. Therefore their work
focuses on semantic rather than data reliability. For
instance, RMX can be used to change high resolu-
tion images into progressive JPEGs before trans-
mittal to underprovisioned clients. Our work is less
concerned with interactive response times. Overcast
is designed for content that clients are interested in
only at full fidelity, even if it means that the content
does not become available to all clients at the same
time.

FastForward Networks produces a system sharing
many properties with RMX. Like RMX, FastFor-
ward focuses on real-time operation and includes
provisions for intelligently decreasing the band-
width requirements of rich media for low-bandwidth
clients. Beyond this, FastForward’s product differs
from Overcast in that its distribution topology is
statically configured by design. Within this stati-
cally configured topology, the product can pick dy-
namic routes. In this way FastForward allows ex-
perts to configure the topology for better perfor-
mance and predictability while allowing for a lim-
ited degree of dynamism. Overcast’s design seeks
to minimize human intervention to allow its overlay
networks to scale to thousands of nodes. Similarly,
FastForward achieves fault tolerance by statically
configuring distribution topologies to avoid single
points of failure, while Overcast seeks to dynami-
cally reconfigure its overlay in response to failures.

PRISM is an architecture for distributing streaming
media over IP. Its architecture bears some similarity
to Overcast, but their work appears focused on the
naming of content and the design of interior nodes of
the system. PRISM’s high level design includes an
overlay based content distribution mechanism, but
it is assumed that such a system can be “plugged
in” to the rest of PRISM. Overcast could provide
that mechanism.

Active Services Active Services [2] is a frame-
work for implementing services at the application-
level throughout the fabric of the network. In that
sense, there is a strong similarity in mindset between
our works. However, Active Services must contend
with the difficulty of sharing the resources of a sin-
gle computer among multiple services, a difficulty
we avoid by using dedicated nodes. Perhaps be-
cause of this challenge, Active Service applications
have focused on real-time multimedia streaming, an
application with transient resource needs. Our ap-

plication uses large amounts of disk space for long
periods of time which is problematic in a shared en-
vironment.

Our observation is that one-time hardware costs do
not drive the total costs of systems on the scale
that we propose. Total cost is dominated by band-
width, maintenance, and continual hardware obso-
lescence. Therefore Overcast seeks to minimize the
use of bandwidth, cut maintenance costs by sim-
plifying node deployment, and avoid obsolescence
by structuring the system to allow older nodes to
continue to contribute to the total efficiency of the
overlay network.

Active Networks One may view overlay networks
as an alternative implementation of active net-
works [23]. In active networks, new protocols and
application-code can dynamically be downloaded
into routers, allowing for rapid innovation of net-
work services. Overcast avoids some of the hard
problems of active networks by focusing on a single
application; it does not have to address the prob-
lems created by dynamic downloading of code and
sharing resources among multiple competing appli-
cations. Furthermore, since Overcast requires no
changes to existing routers, it is easier to deploy.
The main challenge for Overcast is to be competi-
tive with solutions that are directly implemented on
the network level.

3 The Overcast Network

This section describes the overlay network created
by the Overcast system. First, we argue the ben-
efits and drawbacks of using an overlay network.
After concluding that an overlay network is appro-
priate for the task at hand, we explore the particular
design of an overlay network to meet Overcast’s de-
mands. To do so, we examine the key design require-
ment of the Overcast network—single source distri-
bution of bandwidth-intensive media on today’s In-
ternet infrastructure. Finally we illustrate the use
of Overcast with an example.

3.1 Why overlay?

Overcast was designed to meet the needs of con-
tent providers on the Internet. This goal led us to
an overlay network design. To understand why we
chose an overlay network, we consider the benefits
and drawbacks of overlays.



An overlay network provides advantages over both
centrally located solutions and systems that advo-
cate running code in every router. An overlay net-
work is:

Incrementally Deployable An overlay network
requires no changes to the existing Internet infras-
tructure, only additional servers. As nodes are
added to an overlay network, it becomes possible to
control the paths of data in the substrate network
with ever greater precision.

Adaptable Although an overlay network abstrac-
tion constrains packets to flow over a constrained
set of links, that set of links is constantly being
optimized over metrics that matter to the applica-
tion. For instance, the overlay nodes may opti-
mize latency at the expense of bandwidth. The De-
tour Project [21] has discovered that there are often
routes between two nodes with less latency than the
routes offered by today’s IP infrastructure. Overlay
networks can find and take advantage of such routes.

Robust By virtue of the increased control and the
adaptable nature of overlay networks, an overlay
network can be more robust than the substrate fab-
ric. For instance, with a sufficient number of nodes
deployed, an overlay network may be able to guar-
antee that it is able to route between any two nodes
in two independent ways. While a robust substrate
network can be expected to repair faults eventu-
ally, such an overlay network might be able to route
around faults immediately.

Customizable Overlay nodes may be multi-
purpose computers, easily outfitted with whatever
equipment makes sense. For example, Overcast
makes extensive use of disk space. This allows
Overcast to provide bandwidth savings even when
content is not consumed simultaneously in different
parts of the network.

Standard An overlay network can be built on the
least common denominator network services of the
substrate network. This ensures that overlay traffic
will be treated as well as any other. For example,
Overcast uses TCP (in particular, HTTP over port
80) for reliable transport. TCP is simple, well un-
derstood, network friendly, and standard. Alterna-
tives, such as a “home grown” UDP protocol with
retransmissions, are less attractive by all these mea-
sures. For better or for worse, creativity in reliable
transport is a losing battle on the Internet today.

On the other hand, building an overlay network
faces a number of interesting challenges. An overlay
network must address:

Management complexity The manager of an
overlay network is physically far removed from the
machines being managed. Routine maintenance
must either be unnecessary or possible from afar,
using tools that do not scale in complexity with the
size of the network. Physical maintenance must be
minimized and be possible by untrained personnel.

The real world In the real world, IP does not
provide universal connectivity. A large portion of
the Internet lies behind firewalls. A significant and
growing share of hosts are behind Network Address
Translators (NATs), and proxies. Dealing with
these practical issues is tedious, but crucial to adop-
tion.

Inefficiency An overlay can not be as efficient as
code running in every router. However, our observa-
tion is that when an overlay network is small, the in-
efficiency, measured in absolute terms, will be small
as well — and as the overlay network grows, its ef-
ficiency can approach the efficiency of router based
servcies.

Information loss Because the overlay network is
built on top of a network infrastructure (IP) that
offers nearly complete connectivity (limited only by
firewalls, NATSs, and proxies), we expend consider-
able effort deducing the topology of the substrate
network.

The first two of these problems can be addressed
and nearly eliminated by careful design. To ad-
dress management complexity, management of the
entire overlay network can be concentrated at a sin-
gle site. The key to a centralized-administration
design is guaranteeing that newly installed nodes
can boot and obtain network connectivity without
intervention. Once that is accomplished, further in-
structions may be read from the central manage-
ment server.

Firewalls, NATs and HTTP proxies complicate
Overcast’s operation in a number of ways. Fire-
walls force Overcast to open all connections “up-
stream” and to communicate using HTTP on port
80. This allows an Overcast network to extend ex-
actly to those portions of the Internet that allow
web browsing. NATSs are devices used to multiplex
a small set of IP addresses (often exactly one) over a
number of clients. The clients are configured to use
the NAT as their default router. At the NAT, TCP
connections are rewritten to use one of the small
number of IP addresses managed by the NAT. TCP
port numbers allow the NAT to demultiplex return



packets back to the correct client. The complication
for Overcast is that client IP addresses are obscured.
All Overcast nodes behind the NAT appear to have
the same IP address. HT'TP proxies have the same
effect.

Although private IP addresses are never directly
used by external Overcast nodes, there are times
when an external node must correctly report the
private IP address of another node. For example,
an external node may have internal children. Dur-
ing tree building a node must report its childrens’
addresses so that they may be measured for suitabil-
ity as parents themselves. Only the private address
is suitable for such purposes. To alleviate this com-
plication all Overcast messages contain the sender’s
IP address in the payload of the message.

The final two disadvantages are not so easily dis-
missed. They represent the true tradeoff between
overlay networks and ubiquitous router based soft-
ware. For Overcast, the goal of instant deployment
is important enough to sacrifice some measure of
efficiency. However, the amount of inefficency in-
troduced is a key metric by which Overcast should
be judged.

3.2 Single-Source Multicast

Overcast is a single-source multicast system. This
contrasts with IP Multicast which allows any mem-
ber of a multicast group to send packets to all
other members of the group. Beyond the fact that
this closely models our intended application domain,
there are a number of reasons to pursue this partic-
ular refinement to the TP Multicast model.

Simplicity Both conceptually and in implementa-
tion, a single-source system is simpler than an any-
source model. For example, a single-source provides
an obvious rendezvous point for group joins.

Optimization It is difficult to optimize the struc-
ture of the overlay network without intimate knowl-
edge of the substrate network topology. This only
becomes harder if the structure must be optimized
for all paths [16].

Address space Single-source multicast groups pro-
vide a convenient alternative to the limited IP Mul-
ticast address space. The namespace can be par-
titioned by first naming the source, then allowing
further subdivision of the source’s choosing. In con-
trast, IP Multicast’s address space is flat, limited,

and without obvious administration to avoid colli-
sions amongst new groups.

On the other hand, a single-source model clearly of-
fers reduced functionality compared to a model that
allows any group member to multicast. As such,
Overcast is not appropriate for applications that re-
quire extensive use of such a model. However, many
applications which appear to need multi-source mul-
ticast, such as a distributed lecture allowing ques-
tions from the class, do not. In such an application,
only one “non-root” sender is active at any particu-
lar time. It would be a simple matter for the sender
to unicast to the root, which would then perform the
true multicast on the behalf of the sender. A num-
ber of projects [15, 17, 22] have used or advocated
such an approach.

3.3 Bandwidth Optimization

Overcast is designed for distribution from a single
source. As such, small latencies are expected to be
of less importance to its users than increased band-
width. Extremely low latencies are only important
for applications that are inherently two-way, such
as video conferencing. Overcast is designed with
the assumption that broadcasting “live” video on
the Internet may actually mean broadcasting with
a ten to fifteen second delay.

Overcast distribution trees are built with the sole
goal of creating high bandwidth channels from the
source to all nodes. Although Overcast makes no
guarantees that the topologies created are optimal,
our simulations show that they perform quite well.
The exact method by which high-bandwidth distri-
bution trees are created and maintained is described
in Section 4.2.

3.4 Deployment

An important goal for Overcast is to be deployable
on today’s Internet infrastructure. This motivates
not only the use of an overlay network, but many
of its details. In particular, deployment must re-
quire little or no human intervention, costs per node
should be minimized, and unmodified HTTP clients
must be able to join multicast groups in the Over-
cast network.

To help ease the human costs of deployment, nodes
in the Overcast network configure themselves in an



adaptive distributed tree with a single root. No hu-
man intervention is required to build efficient dis-
tribution trees, and nodes can be a part of multiple
distribution trees.

Overcast’s implementation on commodity PCs run-
ning Linux further eases deployment. Development
is speeded by the familiar programming environ-
ment, and hardware costs are minimized by con-
tinually tracking the best price/performance ratio
available in off-the-shelf hardware. The exact hard-
ware configuration we have deployed has changed
many times in the year or so that we have deployed
Overcast nodes.

The final consumers of content from an Overcast
network are HTTP clients. The Overcast proto-
cols are carefully designed so that unmodified Web
browsers can become members of a multicast group.
In Overcast, a multicast group is represented as an
HTTP URL: the hostname portion names the root
of an Overcast network and the path represents a
particular group on the network. All groups with
the same root share a single distribution tree.

Using URLs as a namespace for Overcast groups
has three advantages. First, URLs offer a hierar-
chal namespace, addressing the scarcity of multi-
cast group names in traditional IP Multicast. Sec-
ond, URLs and the means to access them are an
existing standard. By delivering data over a simple
HTTP connection, Overcast is able to bring multi-
casting to unmodified applications. Third, a URL’s
richer structure allows for simple expression of the
increased power of Overcast over tradition multi-
cast. For example, a group suffix of start=10s may
be defined to mean “begin the content stream 10
seconds from the beginning.”

3.5 Example usage

We have used Overcast to build a content-
distribution application for high-quality video and
live streams. The application is built out of a pub-
lishing station (called a studio) and nodes (called
appliances). Appliances are installed at strategic
locations in their network. The appliances boot,
contact their studio, and self-organize into a distri-
bution tree, as described below. No local adminis-
tration is required.

The studio stores content and schedules it for deliv-
ery to the appliances. Typically, once the content
is delivered, the publisher at the studio generates

a web page announcing the availability of the con-
tent. When a user clicks on the URL for published
content, Overcast redirects the request to a nearby
appliance and the appliance serves the content. If
the content is video, no special streaming software
is needed. The user can watch the video over stan-
dard protocols and a standard MPEG player, which
is supplied with most browsers.

An administrator at the studio can control the over-
lay network from a central point. She can view the
status of the network (e.g., which appliances are
up), collect statistics, control bandwidth consump-
tion, etc.

Using this system, bulk data can be distributed effi-
ciently, even if the network between the appliances
and the studio consists of low-bandwidth or inter-
mittent links. Given the relative prices of disk space
and network bandwidth, this solution is far less ex-
pensive than upgrading all network links between
the studio and every client.

4 Protocols

The previous section described the structure and
properties of the Overcast overlay network. This
section describes how it functions: the initializa-
tion of individual nodes, the construction of the
distribution hierarchy, and the automatic mainte-
nance of the network. In particular, we describe
the “tree” protocol to build distribution trees and
the “up/down” protocol to maintain the global state
of the Overcast network efficiently. We close by de-
scribing how clients (web browsers) join a group and
how reliable multicasting to clients is performed.

4.1 Initialization

When a node is first plugged in or moved to a new
location it automatically initializes itself and con-
tacts the appropriate Overcast root(s). The first
step in the initialization process is to determine an
IP address and gateway address that the node can
use for general IP connectivity. If there is a local
DHCP server then the node can obtain IP configu-
ration directly data using the DHCP protocol [12].
If DHCP is unavailable, a utility program can be
used from a nearby workstation for manual config-
uration.

Once the node has an IP configuration it contacts a
global, well-known registry, sending along its unique



serial number. Based on a node’s serial number, the
registry provides a list of the Overcast networks the
node should join, an optional permanent IP config-
uration, the network areas it should serve, and the
access controls it should implement. If a node is
intended to become part of a particular content dis-
tribution network, the configuration data returned
will be highly specific. Otherwise, default values
will be returned and the networks to which a node
will join can be controlled using a web-based GUL

4.2 The Tree Building Protocol

Self-organization of appliances into an efficient, ro-
bust distribution tree is the key to efficient opera-
tion in Overcast. Once a node initializes, it begins a
process of self-organization with other nodes of the
same Overcast network. The nodes cooperatively
build an overlay network in the form of a distri-
bution tree with the root node at its source. This
section describes the tree-building protocol.

As described earlier, the virtual links of the overlay
network are the only paths on which data is ex-
changed. Therefore the choice of distribution tree
can have a significant impact on the aggregate com-
munication behavior of the overlay network. By
carefully building a distribution tree, the network
utilization of content distribution can be signifi-
cantly reduced. Overcast stresses bandwidth over
other conceivable metrics, such as latency, because
of its expected applications. Overcast is not in-
tended for interactive applications, therefore opti-
mizing a path to shave small latencies at the ex-
pense of total throughput would be a mistake. On
the other hand, Overcast’s architecture as an over-
lay network allows this decision to be revisited. For
instance, it may be decided that trees should have
a fixed maximum depth to limit buffering delays.

The goal of Overcast’s tree algorithm is to max-
imize bandwidth to the root for all nodes. At a
high level the algorithm proceeds by placing a new
node as far away from the root as possible with-
out sacrificing bandwidth to the root. This ap-
proach leads to “deep” distribution trees in which
the nodes nonetheless observe no worse bandwidth
than obtaining the content directly from the root.
By choosing a parent that is nearby in the network,
the distribution tree will form along the lines of the
substrate network topology.

The tree protocol begins when a newly initialized
node contacts the root of an Overcast group. The

root thereby becomes the current node. Next, the
new node begins a series of rounds in which it will
attempt to locate itself further away from the root
without sacrificing bandwidth back to the root. In
each round the new node considers its bandwidth
to current as well as the bandwidth to current
through each of current’s children. If the band-
width through any of the children is about as high
as the direct bandwidth to current, then one of
these children becomes current and a new round
commences. In the case of multiple suitable chil-
dren, the child closest (in terms of network hops) to
the searching node is chosen. If no child is suitable,
the search for a parent ends with current.

To approximate the bandwidth that will be ob-
served when moving data, the tree protocol mea-
sures the download time of 10 Kbytes. This mea-
surement includes all the costs of serving actual
content. We have observed that this approach to
measuring bandwidth gives us better results than
approaches based on low-level bandwidth measure-
ments such as using ping. On the other hand, we
recognize that a 10 Kbyte message is too short to
accurately reflect the bandwidth of “long fat pipes”.
We plan to move to a technique that uses progres-
sively larger measurements until a steady state is
observed.

When the measured bandwidths to two nodes are
within 10% of each other, we consider the nodes
equally good and select the node that is closest, as
reported by traceroute. This avoids frequent topol-
ogy changes between two nearly equal paths, as well
as decreasing the total number of network links used
by the system.

A node periodically reevaluates its position in the
tree by measuring the bandwidth to its current sib-
lings (an up-to-date list is obtained from the par-
ent), parent, and grandparent. Just as in the initial
building phase, a node will relocate below its sib-
lings if that does not decrease its bandwidth back
to the root. The node checks bandwidth directly
to the grandparent as a way of testing its previous
decision to locate under its current parent. If nec-
essary the node moves back up in the hierarchy to
become a sibling of its parent. As a result, nodes
constantly reevaluate their position in the tree and
an Overcast network is inherently tolerant of non-
root node failures. If a node goes off-line for some
reason, any nodes that were below it in the tree
will reconnect themselves to the rest of the rout-
ing hierarchy. When a node detects that its parent
is unreachable, it will simply relocate beneath its



grandparent. If its grandparent is also unreachable
the node will continue to move up its ancestry until
it finds a live node. The ancestor list also allows cy-
cles to be avoided as nodes asynchronously choose
new parents. A node simply refuses to become the
parent of a node it believes to be it’s own ances-
tor. A node that chooses such a node will forced to
rechoose.

While there is extensive literature on faster fail-over
algorithms, we have not yet found a need to opti-
mize beyond the strategy outlined above. It is im-
portant to remember that the nodes participating
in this protocol are dedicated machines that are less
prone to failure than desktop computers. If this be-
comes an issue, we have considered extending the
tree building algorithm to maintain backup parents
(excluding a node’s own ancestry from considera-
tion) or an entire backup tree.

By periodically remeasuring network performance,
the overlay network can adapt to network condi-
tions that manifest themselves at time scales larger
than the frequency at which the distribution tree
reorganizes. For example, a tree that is optimized
for bandwidth efficient content delivery during the
day may be significantly suboptimal during the
overnight hours (when network congestion is typ-
ically lower). The ability of the tree protocol to
automatically adapt to these kinds of changing net-
work conditions provides an important advantage
over simpler, statically configured content distribu-
tion schemes.

4.3 The Up/Down Protocol

To allow web clients to join a group quickly, the
Overcast network must track the status of the Over-
cast nodes. It may also be important to report sta-
tistical information back to the root, so that content
providers might learn, for instance, how often cer-
tain content is being viewed. This section describes
a protocol for efficient exchange of information in
a tree of network nodes to provide the root of the
tree with information from nodes throughout the
network. For our needs, this protocol must scale
sublinearly in terms of network usage at the root,
but may scale linearly in terms of space (all with
respect to the number of Overcast nodes). This
is a simple result of the relative requirements of a
client for these two resources and the cost of those
resources. Overcast might store (conservatively) a
few hundred bytes about each Overcast node, but
even in a group of millions of nodes, total RAM cost
for the root would be under $1,000.

We call this protocol the “up/down” protocol be-
cause our current system uses it mainly to keep track
of what nodes are up and what nodes are down.
However, arbitrary information in either of two large
classes may be propagated to the root. In particu-
lar, if the information either changes slowly (e.g.,
up/down status of nodes), or the information can
be combined efficiently from multiple children into a
single description (e.g., group membership counts),
it can be propagated to the root. Rapidly chang-
ing information that can not be aggregated during
propagation would overwhelm the root’s bandwidth
capacity.

Each node in the network, including the root node,
maintains a table of information about all nodes
lower than itself in the hierarchy and a log of all
changes to the table. Therefore the root node’s ta-
ble contains up-to-date information for all nodes in
the hierarchy. The table is stored on disk and cached
in the memory of a node.

The basis of the protocol is that each node period-
ically checks in with the node directly above it in
the tree. If a child fails to contact its parent within
a preset interval, the parent will assume the child
and all its descendants have “died”. That is, either
the node has failed, an intervening link has failed, or
the child has simply changed parents. In any case,
the parent node marks the child and its descendants
“dead” in its table. Parents never initiate contact
with descendants. This is a byproduct of a design
that is intended to cross firewalls easily. All node
failures must be detected by a failure to check in,
rather than active probing.

During these periodic check-ins, a node reports new
information that it has observed or been informed
of since it last checked in. This includes:

e “Death certificates” - Children that have
missed their expected report time.

e “Birth certificates” - Nodes that have become
children of the reporting node.

e Changes to the reporting node’s “extra infor-
mation.”

e Certficates or changes that have been propa-
gated to the node from its own children since
its last checkin.

This simple protocol exhibits a race condition when
a node chooses a new parent. The moving node’s



former parent propagates a death certificate up the
hierarchy, while at nearly the same time the new
parent begins propagating a birth certificate up the
tree. If the birth certificate arrives at the root first,
when the death certificate arrives the root will be-
lieve that the node has failed. This inaccuracy will
remain indefinitely since a new birth certificate will
only be sent in response to a change in the hierarchy
that may not occur for an arbitrary period of time.

To alleviate this problem, a node maintains a se-
quence number indicating of how many times it has
changed parents. All changes involving a node are
tagged with that number. A node ignores changes
that are reported to it about a node if it has already
seen a change with a higher sequence number. For
instance, a node may have changed parents 17 times.
When it changes again, its former parent will propa-
gate a death certificate annotated with 17. However,
its new parent will propagate a birth certificate an-
notated with 18. If the birth certificate arrives first,
the death certificate will be ignored since it is older.

An important optimization to the up/down protocol
avoids large sets of birth certificates from arriving
at the root in response to a node with many de-
scendants choosing a new parent. Normally, when
a node moves to a new parent, a birth certificate
must be sent out for each of its descendants to its
new parent. This maintains the invariant that a
node knows the parent of all its descendants. Keep
in mind that a birth certificate is not only a record
that a node exists, but that it has a certain parent.

Although this large set of updates is required, it is
usually unnecessary for these updates to continue
far up the hierarchy. For example, when a node
relocates beneath a sibling, the sibling must learn
about all of the node’s descendants, but when the
sibling, in turn, passes these certificates to the orig-
inal parent, the original parent notices that they do
not represent a change and quashes the certificate
from further propagation.

Using the up/down protocol, the root of the hi-
erarchy will receive timely updates about changes
to the network. The freshness of the information
can be tuned by varying the length of time between
check-ins. Shorter periods between updates guaran-
tee that information will make its way to the root
more quickly. Regardless of the update frequency,
bandwidth requirements at the root will be propor-
tional to the number of changes in the hierarchy
rather than the size of the hierarchy itself.

4.4 Replicating the root

In Overcast, there appears to be the potential for
significant scalability and reliability problems at the
root. The up/down protocol works to alleviate the
scalability difficulties in maintaining global state
about the distribution tree, but the root is still
responsible for handling all join requests from all
HTTP clients. The root handles such requests by
redirection, which is far less resource intensive than
actually delivering the requested content. Nonethe-
less, the possibility of overload remains for particu-
larly popular groups. The root is also a single point
of failure.

To address this, overcast uses a standard technique
used by many popular websites. The DNS name of
the root resolves to any number of replicated roots
in round-robin fashion. The database used to per-
form redirections is replicated to all such roots. In
addition, TP address takeover may be used for imme-
diate failover, since DNS caching may cause clients
to continue to contact a failed replica. This sim-
ple, standard technique works well for this purpose
because handling joins from HTTP clients is a read-
only operation that lends well to distribution over
numerous replicas.

There remains, however, a single point of failure for
the up/down protocol. The functionality of the root
in the up/down protocol cannot be distributed so
easily because its purpose is to maintain changing
state. However the up/down protocol has the use-
ful property that all nodes maintain state for nodes
below them in the distribution tree. Therefore, a
convenient technique to address fault tolerance is to
specially construct the top of the hierarchy.

Starting with the root, some number of nodes are
configured linearly, that is, each has only one child.
In this way all other overcast nodes lie below these
top nodes. Figure 2 shows a distribution tree in
which the top three nodes are arranged linearly.
Each of these nodes has enough information to act
as the root of the up/down protocol in case of a fail-
ure. This technique has the drawback of increasing
the latency of content distribution unless special-
case code skips the extra roots during distribution.
If latency were important to Overcast this would be
an important, but simple, optimization.

“Linear roots” work well with the need for replica-
tion to address scalability, as mentioned above. The
set, of linear nodes has all the information needed to



Figure 2: A specially configured distribution topology that
allows either of the grey nodes to quickly stand in as the root
(black) node. All filled nodes have complete status informa-
tion about the unfilled nodes.

perform Overcast joins, therefore these nodes are
perfect candidates to be used in the DNS round-
robin approach to scalability. By choosing these
nodes, no further replication is necessary.

4.5 Joining a multicast group

To join a multicast group, a Web client issues an
HTTP GET request with the URL for a group. The
hostname of the URL names the root node(s). The
root uses the pathname of the URL, the location of
the client, and its database of the current status of
the Overcast nodes to decide where to connect the
client to the multicast tree. Because status informa-
tion is constantly propagated to the root, a decision
may be made quickly without further network traf-
fic, enabling fast joins.

Joining a group consists of selecting the best server
and redirecting the client to that server. The de-
tails of the server selection algorithm are beyond
the scope of this paper as considerable previous
work [3, 18] exists in this area. Furthermore, Over-
cast’s particular choices are constrained consider-
ably by a desire to avoid changes at the client. With-
out such a constraint simpler choices could have
been made, such as allowing clients to participate
directly in the Overcast tree building protocol.

Although we do not discuss server selection here, a
number of Overcast’s details exist to support this
important functionality, however it may actually be
implemented. A centralized root performing redi-
rections is convenient for an approach involving
large tables containing collected Internet topology
data. The up/down algorithm allows for redirec-
tions to nodes that are known to be functioning.

4.6 Multicasting with Overcast

We refer to reliable multicasting on an overcast net-
work as “overcasting”. Overcasting proceeds along

the distribution tree built by the tree protocol.
Data is moved between parent and child using TCP
streams. If a node has four children, four separate
connections are used. The content may be pipelined
through several generations in the tree. A large file
or a long-running live stream may be in transit over
tens of different TCP streams at a single moment,
in several layers of the distribution hierarchy.

If a failure occurs during an overcast, the distri-
bution tree will rebuild itself as described above.
After rebuilding the tree, the overcast resumes for
on-demand distributions where it left off. In order
to do so, each node keeps a log of the data it has
received so far. After recovery, a node inspects the
log and restarts all overcasts in progress.

Live content on the Internet today is typically
buffered before playback. This compensates for mo-
mentary glitches in network throughput. Overcast
can take advantage of this buffering to mask the
failure of a node being used to Overcast data. As
long as the failure occurs in a node that is not at the
edge of the Overcast network, an HTTP client need
not ever become aware that the path of data from
the root has been changed in the face of failure.

5 Evaluation

In this section, the protocols presented above are
evaluated by simulation. Although we have de-
ployed Overcast in the real world, we have not yet
deployed on a sufficiently large network to run the
experiments we have simulated.

To evaluate the protocols, an overlay network is sim-
ulated with increasing numbers of overcast nodes
while keeping the total number of network nodes
constant. Overcast should build better trees as
more nodes are deployed, but protocol overhead
may grow.

We use the Georgia Tech Internetwork Topology
Models [25] (GT-ITM) to generate the network
topologies used in our simulations. We use the
“transit-stub” model to obtain graphs that more
closely resemble the Internet than a pure random
construction. GT-ITM generates a transit-stub
graph in stages, first a number of random back-
bones (transit domains), then the random structure
of each back-bone, then random “stub” graphs are
attached to each node in the backbones.

We use this model to construct five different 600
node graphs. Each graph is made up of three tran-
sit domains. These domains are guaranteed to be



connected. Each transit domain consists of an aver-
age of eight stub networks. The stub networks con-
tain edges amongst themselves with a probability of
0.5. Each stub network consists of an average of 25
nodes, in which nodes are once again connected with
a probability of 0.5. These parameters are from the
sample graphs in the GT-ITM distribution; we are
unaware of any published work that describes pa-
rameters that might better model common Internet
topologies.

We extended the graphs generated by GT-ITM
with bandwidth information. Links internal to
the transit domains were assigned a bandwidth
of 45Mbits/s, edges connecting stub networks to
the transit domains were assigned 1.5Mbits/s, fi-
nally, in the local stub domain, edges were assigned
100Mbit/s. These reflect commonly used network
technology: T3s, Tls, and Fast Ethernet. All
measurements are averages over the five generated
topologies.

Empirical measurements from actual Overcast
nodes show that a single Overcast node can eas-
ily support twenty clients watching MPEG-1 videos,
though the exact number is greatly dependent on
the bandwidth requirements of the content. Thus
with a network of 600 overcast nodes, we are simu-
lating multicast groups of perhaps 12,000 members.

5.1 Tree protocol

The efficiency of Overcast depends on the position-
ing of Overcast nodes. In our first experiments, we
compare two different approaches to choosing po-
sitions. The first approach, labelled “Backbone”,
preferentially chooses transit nodes to contain Over-
cast nodes. Once all transit nodes are Overcast
nodes, additional nodes are chosen at random. This
approach corresponds to a scenario in which the
owner of the Overcast nodes places them strategi-
cally in the network. In the second, labelled “Ran-
dom”, we select all Overcast nodes at random. This
approach corresponds to a scenario in which the
owner of Overcast nodes does not pay attention to
where the nodes are placed.

The goal of Overcast’s tree-building protocol is to
optimize the bottleneck bandwidth available back
to the root for all nodes. The goal is to provide
each node with the same bandwidth to the root that
the node would have in an idle network. Figure 3
compares the sum of all nodes’ bandwidths back to
the root in Overcast networks of various sizes to
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Figure 3: Fraction of potential bandwidth provided by
Overcast.

the sum of all nodes’ bandwidths back to the root
in an optimal distribution tree using router-based
software. This indicates how well Overcast performs
compared to IP Multicast.

The main observation is that, as expected, the back-
bone strategy for placing Overcast nodes is more
effective than the random strategy, but the results
of random placement are encouraging nonetheless.
Even a small number of deployed Overcast nodes,
positioned at random, provide approximately 70%-
80% of the total possible bandwidth.

It is extremely encouraging that, when using the
backbone approach, no node receives less bandwidth
under Overcast than it would receive from IP Mul-
ticast. However some enthusiasm must be withheld,
because a simulation artifact has been left in these
numbers to illustrate a point.

Notice that the backbone approach and the random
approach differ in effectiveness even when all 600
nodes of the network are Overcast nodes. In this
case the same nodes are participating in the proto-
col, but better trees are built using the backbone
approach. This illustrates that the trees created by
the tree-building protocol are not unique. The back-
bone approach fares better by this metric because
in our simulations backbone nodes were turned on
first. This allowed backbone nodes to preferrentially
form the “top” of the tree. This indicates that in
future work it may be beneficial to extend the tree-
building protocol to accept hints that mark certain
nodes as “backbone” nodes. These nodes would
preferentially form the core of the distribution tree.

Overcast appears to perform quite well for its in-
tended goal of optimizing available bandwidth, but
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the wire” to be propagated through an Overcast network to a
lower bound estimate of the same measure for IP Multicast.

it is reasonable to wonder what costs are associated
with this performance.

To explore this question we measure the network
load imposed by Overcast. We define network load
to be the number of times that a particular piece of
data must traverse a network link to reach all Over-
cast nodes. In order to compare to IP Multicast
Figure 4 plots the ratio of the network load imposed
by Overcast to a lower bound estimate of IP Mul-
ticast’s network load. For a given set of nodes, we
assume that IP Multicast would require exactly one
less link than the number of nodes. This assumes
that all nodes are one hop away from another node,
which is unlikely to be true in sparse topologies, but
provides a lower bound for comparison.

Figure 4 shows that for Overcast networks with
greater than 200 nodes Overcast imposes somewhat
less than twice as much network load as IP Multi-
cast. In return for this extra load Overcast offers
reliable delivery, immediate deployment, and future
flexibility. For networks with few Overcast nodes,
Overcast appears to impose a considerably higher
network load than IP Multicast. This is a result of
our optimistic lower bound on IP Multicast’s net-
work load, which assumes that 50 randomly placed
nodes in a 600 node network can be spanned by 49
links.

Another metric to measure the effectiveness of an
application-level multicast technique is stress, pro-
posed in [16]. Stress indicates the number of times
that the same data traverses a particular physical
link. By this metric, Overcast performs quite well
with average stresses of between 1 and 1.2. We do
not present detailed analysis of Overcast’s perfor-
mance by this metric, however, because we believe
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Figure 5: Number of rounds to reach a stable distribution
tree as a function of the number of overcast nodes and the
length of the lease period.

that network load is more telling for Overcast. That
is, Overcast has quite low scores for average stress,
but that metric does not describe how often a longer
route was taken when a shorter route was available.

Another question is how fast the tree protocol con-
verges to a stable distribution tree, assuming a sta-
ble underlying network. This is dependent on three
parameters. The round period controls how long a
node that has not yet determined a stable position
in the hierarchy will wait before evaluating a new set
of potential parents. The reevaluation period deter-
mines how long a node will wait before reevaluating
its position in the hierarchy once it has obtained a
stable position. Finally the lease period determines
how long a parent will wait to hear from a child
before reporting the child’s death.

For convenience, we measure all convergence times
in terms of the fundamental unit, the round time.
We also set the reevaluation period and lease pe-
riod to the same value. Figure 5 shows how long
Overcast requires to converge if an entire Overcast
network is simultaneously activated. To demon-
strate the effect of a changing reevaluation and lease
period, we plot for the “standard” lease time—10
rounds, as well as longer and shorter periods. Lease
periods shorter than five rounds are impractical be-
cause children actually renew their leases a small
random number of rounds (between one and three)
before their lease expires to avoid being thought
dead. We expect that a round period on the order of
1-2 seconds will be practical for most applications.

We next measure convergence times for an existing
Overcast network in which overcast nodes are added
or fail. We simulate overcast networks of various
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Figure 6: Number of rounds to recover a stable distribution
tree as a function of the number of nodes that change state
and the number of nodes in the network.

sizes until they quiesce, add and remove Overcast
nodes, and then simulate the network until it qui-
esces once again. We measure the time, in rounds,
for the network to quiesce after the changes. We
measure for various numbers of additions and re-
movals allowing us to assess the dependence of con-
vergence on how many nodes have changed state.
We measure only the backbone approach.

Figure 6 plots convergence times (using a 10 round
lease time) against the number of overcast nodes in
the network. The convergence time for node fail-
ures is quite modest. In all simulations the Over-
cast network reconverged after less than three lease
times. Furthermore, the reconvergence time scaled
well against both the number of nodes failing and
the total number of nodes in the overcast network.
In neither case was the convergence time even lin-
early affected.

For node additions, convergence times do appear
more closely linked to the size of the Overcast net-
work. This makes intuitive sense because new nodes
are navigating the network to determine their best
location. Even so, in all simulations fewer than
five lease times are required. It is important to
note that an Overcast network continues to func-
tion even while stabilizing. Performance may be
somewhat impacted by increased measurement traf-
fic and by TCP setup and tear down overhead as
parents change, but such disruptions are localized.

5.2 TUp/Down protocol

The goal of the up/down algorithm is to minimize
the bandwidth required at the root node while main-
taining timely status information for the entire net-
work. Factors that affect the amount of bandwidth
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Figure 7: Certificates received at the root in response to
node additions.

used include the size of the overcast network and
the rate of topology changes. Topology changes oc-
cur when the properties of the underlying network
change, nodes fail, or nodes are added. Therefore
the up/down algorithm is evaluated by simulating
overcast networks of various sizes in which various
numbers of failures and additions occur.

To assess the up/down protocol’s ability to provide
timely status updates to the root without undue
overhead we keep track of the number of certificates
(for both “birth” and “death”) that reach the root
during the previous convergence tests. This is in-
dicative of the bandwidth required at the root node
to support an overcast network of the given size and
is dependent on the amount of topology change in-
duced by the additions and deletions.

Figure 7 graphs the number of certificates received
by the root node in response to new nodes being
brought up in the overcast network. Remember, the
root may receive multiple certificates per node ad-
dition because the addition is likely to cause some
topology reconfiguration. Fach time a node picks
a new parent that parent propagates a birth cer-
tificate. These results indicate that the number
of certificates is quite modest: certainly no more
than four certificates per node addition, usually ap-
proximately three. What is more important is that
the number of certificates scales more closely to the
number of new nodes than the size of the overcast
network. This gives evidence that overcast can scale
to large networks.

Similarly, Overcast requires few certificates to react
to node failures. Figure 8 shows that in the common
case, no more than four certificates are required per
node failure. Again, because the number of certifi-
cates is proportional to the number of failures rather
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Figure 8: Certificates received at the root in response to
node deletions.

than the size of the network, Overcast appears to of-
fer the ability to scale to large networks.

On the other hand, Figure 8 shows that there are
some cases that fall far outside the norm. The large
spikes at 50 and 150 node networks with 5 and 10
failures occurred because of failures that happened
to occur near the root. When a node with a sub-
stantial number of children chooses a new parent
it must convey it’s entire set of descendants to its
new parent. That parent then propagates the entire
set. However, when the information reaches a node
that already knows the relationships in question, the
update is quashed. In these cases, because the re-
configurations occurred high in the tree there was
no chance to quash the updates before they reached
the root. In larger networks such failures are less
likely.

6 Conclusions

We have described a simple tree-building protocol
that yields bandwidth-efficient distribution trees for
single-source multicast and our up/down protocol
for providing timely status updates to the root of the
distribution tree in scalable manner. Overcast im-
plements these protocols in an overlay network over
the existing Internet. The protocols allow Overcast
networks to dynamically adapt to changes (such as
congestion and failures) in the underlying network
infrastructure and support large, reliable single-
source multicast groups. Geographically-dispersed
businesses have deployed Overcast nodes in small-
scale Overcast networks for distribution of high-
quality, on-demand video to unmodified desktops.

Simulation studies with topologies created with the
Georgia Tech Internetwork Topology Models show

that Overcast networks work well on large-scale net-
works, supporting multicast groups of up to 12,000
members. Given these results and the low cost for
Overcast nodes, we believe that putting computa-
tion and storage in the network fabric is a promis-
ing approach for adding new services to the Internet
incrementally.
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