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Abstract-Aggressive research on gigabit-per-second networks 
has led to dramatic improvements in network transmission 
speeds. One result of these improvements has been to put 
pressure on router technology to keep pace. This paper describes 
a router, nearly completed, which is more than fast enough to 
keep up with the latest transmission technologies. The router 
has a backplane speed of 50 Gh/s and can forward tens of 
millions of packets per second. 

Index Terms-Data communications, internetworking, packet 
switching, routing. 

I. INTRODUCTION 

T RANSMISSION link bandwidths keep improving, at 
a seemingly inexorable rate, as the result of research 

in transmission technology [26]. Simultaneously, expanding 
network usage is creating an ever-increasing demand that can 
only be served by these higher bandwidth links. (In 1996 
and 1997, Internet service providers generally reported that 
the number of customers was at least doubling annually and 
that per-customer bandwidth usage was also growing, in some 
cases by 15% per month.) 

Unfortunately, transmission links alone do not make a 
network. To achieve an overall improvement in networking 
performance, other components such as host adapters, operat- 
ing systems, switches, multiplexors, and routers also need to 
get faster. Routers have often been seen as one of the lagging 
technologies. The goal of the work described here is to show 
that routers can keep pace with the other technologies and are 
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fully capable of driving the new generation of links (OC-48c 
at 2.4 Gb/s). 

A multigigabit router (a router capable of moving data 
at several gigabits per second or faster) needs to achieve 
three goals. First, it needs to have enough internal bandwidth 
to move packets between its interfaces at multigigabit rates. 
Second, it needs enough packet processing power to forward 
several million packets per second (MPPS). A good rule 
of thumb, based on the Internet’s average packet size of 
approximately 1000 b, is that for every gigabit per second 
of bandwidth, a router needs 1 MPPS of forwarding power.’ 
Third, the router needs to conform to a set of protocol 
standards. For Internet protocol version 4 (IPv4), this set of 
standards is summarized in the Internet router requirements 
[3]. Our router achieves all three goals (but for one minor 
variance from the IPv4 router requirements, discussed below). 

This paper presents our multigigabit router, called the MGR, 
which is nearly completed. This router achieves up to 32 
MPPS forwarding rates with 50 Gb/s of full-duplex backplane 
capacity.* About a quarter of the backplane capacity is lost 
to overhead traffic, so the packet rate and effective bandwidth 
are balanced. Both rate and bandwidth are roughly two to ten 
times faster than the high-performance routers available today. 

II. OVERVIEW OF THE ROUTER ARCHITECTURE 

A router is a deceptively simple piece of equipment. At 
minimum, it is a collection of network interfaces, some sort of 
bus or connection fabric connecting those interfaces, and some 
software or logic that determines how to route packets among 
those interfaces. Within that simple description, however, lies a 
number of complexities. (As an illustration of the complexities, 
consider the fact that the Internet Engineering Task Force’s 
Requirements for IP Version 4 Routers [3] is 175 pages long 
and cites over 100 related references and standards.) In this 
section we present an overview of the MGR design and point 
out its major and minor innovations. After this section, the rest 
of the paper discusses the details of each module. 

‘See [25]. Some experts argue for more or less packet processing power. 
Those arguing for more power note that a TCP/IP datagram containing an 
ACK but no data is 320 b long. Link-layer headers typically increase this 
to approximately 400 b. So if a router were to handle only minimum-sized 
packets, a gigabit would represent 2.5 million packets. On the other side, 
network operators have noted a recent shift in the average packet size to 
nearly 2000 b. If this change is not a fluke, then a gigabit would represent 
only 0.5 million packets. 

*Recently some companies have taken to summing switch bandwidth in 
and out of the switch; in that case this router is a IOO-Gb/s router. 

1063-6692/98$10.00 0 1998 IEEE 
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Fig. I. MGR outline. 

A. Design Summary 

A simplified outline of the MGR design is shown in Fig. 1, 
which illustrates the data processing path for a stream of 
packets entering from the line card on the left and exiting 
from the line card on the right. 

The MGR consists of multiple line cards (each supporting 
one or more network interfaces) and forwarding engine cards, 
all plugged into a high-speed switch. When a packet arrives 
at a line card, its header is removed and passed through the 
switch to a forwarding engine. (The remainder of the packet 
remains on the inbound line card). The forwarding engine 
reads the header to determine how to forward the packet and 
then updates the header and sends the updated header and 
its forwarding instructions back to the inbound line card. The 
inbound line card integrates the new header with the rest of 
the packet and sends the entire packet to the outbound line 
card for transmission. 

Not shown in Fig. 1 but an important piece of the MGR 
is a control processor, called the network processor, that 
provides basic management functions such as link up/down 
management and generation of forwarding engine routing 
tables for the router. 

B. Mujor Innovations 

There are five novel elements of this design. This section 
briefly presents the innovations. More detailed discussions, 
when needed, can be found in the sections following. 

First, each forwarding engine has a complete set of the 
routing tables. Historically, routers have kept a central master 
routing table and the satellite processors each keep only a 
modest cache of recently used routes. If a route was not in a 
satellite processor’s cache, it would request the relevant route 
from the central table. At high speeds, the central table can 
easily become a bottleneck because the cost of retrieving a 
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route from the central table is many times (as much as 1000 
times) more expensive than actually processing the packet 
header. So the solution is to push the routing tables down 
into each forwarding engine. Since the forwarding engines 
only require a summary of the data in the route (in particular, 
next hop information), their copies of the routing table, called 
forwurding tables, can be very small (as little as 100 kB for 
about 50k routes [61). 

Second, the design uses a switched backplane. Until very 
recently, the standard router used a shared bus rather than 
a switched backplane. However, to go fast, one really needs 
the parallelism of a switch. Our particular switch was custom 
designed to meet the needs of an Internet protocol (TP) router. 

Third, the design places forwarding engines on boards 
distinct from line cards. Historically, forwarding processors 
have been placed on the line cards. We chose to separate them 
for several reasons. One reason was expediency; we were not 
sure if we had enough board real estate to fit both forwarding 
engine functionality and line card functions on the target 
card size. Another set of reasons involves flexibility. There 
are well-known industry cases of router designers crippling 
their routers by putting too weak a processor on the line 
card, and effectively throttling the line card’s interfaces to 
the processor’s speed. Rather than risk this mistake, we built 
the fastest forwarding engine we could and allowed as many 
(or few) interfaces as is appropriate to share the use of the 
forwarding engine. This decision had the additional benefit of 
making support for virtual private networks very simple-we 
can dedicate a forwarding engine to each virtual network and 
ensure that packets never cross (and risk confusion) in the 
forwarding path. 

Placing forwarding engines on separate cards led to a fourth 
innovation. Because the forwarding engines are separate from 
the line cards, they may receive packets from line cards that 
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use different link layers, At the same time, correct IP for- 
warding requires some information from the link-layer packet 
header (largely used for consistency checking). However, for 
fast forwarding, one would prefer that the forwarding engines 
not have to have code to recognize, parse, and load a diversity 
of different link-layer headers (each of which may have a 
different length). Our solution was to require all line cards to 
support the ability to translate their local link-layer headers to 
and from an abstract link-layer header format, which contained 
the information required for IP forwarding. 

The fifth innovation was to include quality of service (QoS) 
processing in the router. We wanted to demonstrate that it was 
possible to build a cutting edge router that included line-speed 
QoS. We chose to split the QoS function. The forwarding 
engine simply classifies packets, by assigning a packet to a 
flow, based on the information in the packet header. The actual 
scheduling of the packet is done by the outbound line card, in 
a specialized processor called the QoS processor. 

III. THE FORWARDING ENGINES 

The forwarding engines are responsible for deciding where 
to forward each packet. When a line card receives a new 
packet, it sends the packet header to a forwarding engine. The 
forwarding engine then determines how the packet should be 
routed. 

The development of our forwarding engine design was 
influenced by the Bell Laboratories router [2], which, although 
it has a different architecture, had to solve similar problems. 

A. A Brief Description of the Alpha 21164 Processor 

At the heart of each forwarding engine is a 4 15-MHz Digital 
Equipment Corporation Alpha 21164 processor. Since much 
of the forwarding engine board is built around the Alpha, this 
section summarizes key features of the Alpha. The focus in 
this section is on features that impact how the Alpha functions 
in the forwarding engine. A more detailed description of the 
21164 and the Alpha architecture in general can be found in 
[l] and [31]. 

The Alpha 21164 is a 64-b 32-register super-scalar reduced 
instruction set computer (RISC) processor. There are two 
integer logic units, called EO and El, and two floating point 
units, called FA and FM. The four logic units are distinct. 
While most integer instructions (including loads) can be done 
in either EO or El, a few important operations, most notably 
byte extractions, shift operations, and stores, can only be done 
in EO. Floating point operations are more restricted, with all 
but one instruction limited to either FA or FM. In each cycle 
the Alpha attempts to schedule one instruction to each logic 
unit. For integer register-to-register operations, results are 
almost always available in the next instruction cycle. Floating 
results typically take several cycles. The Alpha processes 
instructions in groups of four instructions (hereafter called 
quads). All four instructions in a quad must successfully issue 
before any instructions in the next quad are issued. In practice 
this means that the programmer’s goal is to place either two 
pairs of integer instructions that can issue concurrently, or 

a pair of integer instructions plus a pair of floating point 
instructions, in each quad. 

The 21164 has three internal caches, plus support for an 
external cache. The instruction and data caches (Icache and 
Dcache) are the first-level caches and are 8 kB each in size. 
The size of the Icache is important because we want to run 
the processor at the maximum instruction rate and require that 
all code fits into the Icache. Since Alpha instructions are 32-b 
long, this means that the Icache can store 2048 instructions, 
more than enough to do key routing functions. If there are 
no errors in branch prediction, there will be no bubbles 
(interruptions in processing) when using instructions from 
the Icache. Our software effectively ignores the Dcache and 
always assumes that the first load of a 32-B cache line misses. 

There is a 96-kB on-chip secondary cache (Scathe) which 
caches both code and data. Loads from the Scathe take a 
minimum of eight cycles to complete, depending on the state 
of the memory management hardware in the processor. We use 
the Scathe as a cache of recent routes. Since each route entry 
takes 64 b, we have a maximum cache size of approximately 
12000 routes. Studies of locality in packet streams at routers 
suggest that a cache of this size should yield a hit rate well 
in excess of 95% [II], [13], [15]. Our own tests with a 
traffic trace from FIX West (a major interexchange point in 
the Internet) suggest a 12 OOO-entry cache will have a hit rate 
in excess of 95%. 

The tertiary cache (Bcache) is an external memory of several 
megabytes managed by the processor. Loads from the Bcache 
can take a long time. While the Bcache uses 21-ns memory, 
the total time to load a 32-B cache line is 44 ns. There is 
also a system bus, but it is far too slow for this application 
and shares a single 128-b data path with the Bcache, so we 
designed the forwarding engine’s memory system to bypass 
the system bus interface. 

A complete forwarding table is kept in the Bcache. In our 
design the Bcache is 16 MB, divided into two 8-MB banks. 
At any time, one bank is acting as the Bcache and the other 
bank is being updated by the network processor via a personal 
computer interface (PCI) bus. When the forwarding table is 
updated, the network processor instructs the Alpha to change 
memory banks and invalidate its internal caches. 

The divided Bcache highlights that we are taking an unusual 
approach-using a generic processor as an embedded proces- 
sor. Readers may wonder why we did not choose an embedded 
processor. The reason is that, even with the inconvenience of 
the Bcache, the Alpha is a very good match for this task. As 
the section on software illustrates below, forwarding an IP 
datagram is a small process of reading a header, processing 
the header, looking up a route, and writing out the header 
plus routing information. The Alpha has four properties that 
make it a good fit: 1) very high clock speed, so forwarding 
code is executed quickly; 2) a large instruction cache, so the 
instructions can be done at peak rate; 3) a very large on-chip 
cache (the Scathe), so that the routing lookup will probably 
hit in the on-chip route cache (avoiding accesses to slow 
external memory); and 4) sufficient control on read and write 
sequencing and buffer management to ensure that we could 
manage how data flowed through the chip. 
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Fig. 2. Basic architecture of forwarding engine. 

B. Forwarding Engine Hardware Operation 

Once headers reach the forwarding engine, they are placed 
in a request first-in first-out (FIFO) queue for processing by 
the Alpha. The Alpha is running a loop which simply reads 
from the front of the FIFO, examines the header to determine 
how to route the packet, and then makes one or more writes 
to inform the inbound and outbound line cards how to handle 
the packet. 

Conceptually, this process is illustrated in Fig. 2. A packet 
header has reached the front of the request FIFO. The header 
includes the tirst 24 or 56 B of the packet plus an 8-B generic 
link-layer header and a packet identifier which identifies both 
the packet and the interface it is buffered on. The Alpha 
software is expected to read at least the first 32 B of the 
packet header. When the packet is read, the packet identifier 
is copied into a holding buffer. When the Alpha writes out the 
updated header, the packet identifier is taken from the holding 
buffer and combined with the data from the Alpha to determine 
where the updated header and packet are sent. 

The Alpha software is free to read and write more than 32 
B of the packet header (if present) and can, if it chooses, read 
and write the packet identifier registers as well. The software 
must read and write this information if it is reading and writing 
packet headers in anything but FIFO order. The motivation for 
the holding buffer is to minimize the amount of data that must 
go through the Alpha. By allowing software to avoid reading 
the packet ID, we minimize the load on the Alpha’s memory 
interface. 

When the software writes out the updated header, it indicates 
which outbound interface to send the packet to by writing 
to one of 241 addresses. (240 addresses for each of 16 
possible interfaces on 15 line cards plus one address indicating 
that the packet should be discarded.) The hardware actually 
implements these FIFO’s as a single buffer and grabs the 
dispatching information from a portion of the FIFO address. 

In addition to the dispatching information in the address 
lines, the updated header contains some key routing informa- 
tion. In particular it contains the outbound link-layer address 
and a flow identifier, which is used by the outbound line card 
to schedule when the packet is actually transmitted. 

A side comment about the link-layer address is in order. 
Many networks have dynamic schemes for mapping IP ad- 
dresses to link-layer addresses. A good example is the address 
resolution protocol (ARP), used for Ethernet [28]. If a router 
gets a datagram to an IP address whose Ethernet address 

Reply FIFOs 

it does not know, it is supposed to send an ARP message 
and hold the datagram until it gets an ARP reply with the 
necessary Ethernet address. In the pipelined MGR architecture 
that approach does not work-we have no convenient place 
in the forwarding engine to store datagrams awaiting an ARP 
reply. Rather, we follow a two-part strategy. First, at a low 
frequency, the router ARP’s for all possible addresses on each 
interface to collect link-layer addresses for the forwarding 
tables. Second, datagrams for which the destination link-layer 
address is unknown are passed to the network processor, which 
does the ARP and, once it gets the ARP reply, forwards the 
datagram and incorporates the link-layer address into future 
forwarding tables. 

C. Forwarding Engine Software 

The forwarding engine software is a few hundred lines of 
code, of which 85 instructions are executed in the common 
case. These instructions execute in no less than 42 cycles,’ 
which translates to a peak forwarding speed of 9.8 MPPS per 
forwarding engines. This section sketches the structure of the 
code and then discusses some of the properties of this code. 

The fast path through the code can be roughly divided up 
into three stages, each of which is about 20-30 instructions 
(lo-15 cycles) long. The first stage: 1) does basic error 
checking to confirm that the header is indeed from an IPv4 
datagram; 2) confirms that the packet and header lengths are 
reasonable; 3) confirms that the IPv4 header has no options; 
4) computes the hash offset into the route cache and loads 
the route; and 5) starts loading the next header. These five 
activities are done in parallel in intertwined instructions. 

During the second stage, it checks to see if the cached route 
matches the destination of the datagram. If not, the code jumps 
to an extended lookup which examines the routing table in 
the Bcache. Then the code checks the IP time-to-live (TTL) 
field and computes the updated TTL and IP checksum, and 
determines if the datagram is for the router itself. The TTL 
and checksum are the only header fields that normally change 
and they must not be changed if the datagram is destined for 
the router. 

In the third stage the updated TTL and checksum are 
put in the IP header. The necessary routing information is 
extracted from the forwarding table entry and the updated IP 
header is written out along with link-layer information from 
the forwarding table. The routing information includes the 

‘The instructions can take somewhat longer, depending on the pattern of’ 
packets received and the resulting branch predictions. 
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flow classifier. Currently we simply associate classifiers with 
destination prefixes, but one nice feature of the route-lookup 
algorithm that we use [34] is that it scales as the log of the 
key size, so incorporating additional information like the IP 
type-of-service field into the lookup key typically has only a 
modest effect on performance. 

This code performs all the steps required by the Internet 
router requirements [3] except one-it does not check the IP 
header checksum, but simply updates it. The update algorithm 
is safe [4], [I 81, [29]. If the checksum is bad, it will remain 
bad after the update. The reason for not checking the header 
checksum is that, in the best code we have been able to 
write, computing it would require 17 instructions and, due 
to consumer-producer relationships, those instructions would 
have to be spread over a minimum of 14 cycles. Assuming we 
can successfully interleave the 17 instructions among other 
instructions in the path, at minimum they still increase the 
time to perform the forwarding code by nine cycles or about 
21%. This is a large penalty to pay to check for a rare error 
that can be caught end-to-end. Indeed, for this reason, IPv6 
does not include a header checksum [8]. 

Certain datagrams are not handled in the fast path code. 
These datagrams can be divided into five categories. 

1) Headers whose destination misses in the route cache. 
This is the most common case. In this case the pro- 
cessor searches the forwarding table in the Bcache for 
the correct route, sends the datagram to the interface 
indicated in the routing entry, and generates a version of 
the route for the route cache. The routing table uses the 
binary hash scheme developed by Waldvogel, Varghese, 
Turner, and Plattner [34]. (We also hope to experiment 
with the algorithm described in [6] developed at Lulea 
University.) Since the forwarding table contains prefix 
routes and the route cache is a cache of routes for 
particular destinations, the processor has to convert the 
forwarding table entry into an appropriate destination- 
specific cache entry. 

2) Headers with errors. Generally, the forwarding engine 
will instruct the inbound line card to discard the errored 
datagram. In some cases the forwarding engine will 
generate an intemet control message protocol (ICMP) 
message. Templates of some common ICMP messages 
such as the TimeExceeded message are kept in the 
Alpha’s Bcache and these can be combined with the 
IP header to generate a valid ICMP message. 

3) Headers with IP options. Most headers with options 
are sent to the network processor for handling, simply 
because option parsing is slow and expensive. However, 
should an IP option become widely used, the forwarding 
code could be modified to handle the option in a special 
piece of code outside the fast path. 

4) Datagrams that must be fragmented. Rather than requir- 
ing line cards to support fragmentation logic, we do 
fragmentation on the network processor. Now that IP 
maximum transmission unit (MTU) discovery [22] is 
prevalent, fragmentation should be rare. 

5) Multicast datagrams. Multicast datagrams require spe- 
cial routing, since the routing of the datagram is depen- 

TABLE I 

DISTRIBUTION OF INSTRUCTIONS IN FAST PATH 

Instructions Count Percentage EO/El/FP 

and, bit, bis, ornot, xor 24 28 @wl 

ext*, ins*, sll, srl, zap 23 27 Eo 

add*, sub*, s*add 8 9 WEI 

branches 8 9 El 

Id* 6 7 IWE1 

addt. cmwt*. fcmov* 6 7 FA 

St* I41 5 1 EO 
fnop 

wmb 

4 1 5 FM 

11 1 Eo 

nap 1 11 1 1 ED/El 

dent on the source address and the inbound link as well 
as the multicast destination. Furthermore, the processor 
may have to write out multiple copies of the header to 
dispatch copies of the datagram to different line cards. 
All of this work is done in separate multicasting code in 
the processor. Multicast routes are stored in a separate 
multicast forwarding table. The code checks to see if the 
destination is a multicast destination and, if so, looks for 
a multicast route. If this fails, it retrieves or builds a route 
from its forwarding table. 

Observe that we have applied a broad logic to handling 
headers. Types of datagrams that appear frequently (fast path, 
destinations that miss in the route cache, common errors, 
multicast datagrams) are handled in the Alpha. Those that are 
rare (IP with options, MTU size issues, uncommon errors) are 
pushed off to the network processor rather than using valuable 
Icache instruction space to handle them. If the balance of traffic 
changes (say to more datagrams with options), the balance of 
code between the forwarding engine and network processor 
can be adapted. 

We have the flexibility to rebalance code because the 
forwarding engine’s peak forwarding rate of 9.8 MPPS is faster 
than the switch’s maximum rate of 6.48 million headers per 
second. 

Before concluding the discussion of the forwarding engine 
code, we would like to briefly discuss the actual instructions 
used, for two reasons. First, while there has been occasional 
speculation about what mix of instructions is appropriate 
for handing IP datagrams, so far as we know, no one has 
ever published a distribution of instructions for a particular 
processor. Second, there has been occasional speculation about 
how well RISC processors would handle IP datagrams. 

Table I shows the instruction distribution for the fast path 
instructions. Instructions are grouped according to type (us- 
ing the type classifications in the 21164 manual) and listed 
with the count, percentage of total instructions, and whether 
instructions are done in integer units EO and El or both, or 
the floating point units FA and FM. 

Probably the most interesting observation from the table is 
that 27% of the instructions are bit, byte, or word manipulation 
instructions like zap. The frequency of these instructions 
largely reflects the fact they are used to extract various 8-, 16-, 
and 32-b fields from 64-b registers holding the IP and link- 
layer headers (the ex t commands) and to zero byte-wide fields 
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Fig. 3. Abstract link layer headers. (a) Inbound. (b) Outbound. 

(zap) in preparation for inserting updated information into 
those registers. Oddly enough, these manipulation instructions 
are some of the few instructions that can only be done in 
the logic unit EO, which means that some care must be taken 
in the code to avoid instruction contention for EO. (This is 
another reason to avoid checking the header checksum. Most 
of the instructions involved in computing the header checksum 
are instructions to extract 16-b fields, so checking the header 
checksum would have further increased the contention for EO.) 

One might suspect that testing bits in the header is a 
large part of the cost of forwarding, given that bit operations 
represent 28% of the code. In truth, only two instructions 
(both xors) represent bit tests on the headers. bis is used to 
assemble header fields, and most of the remaining instructions 
are used to update the header checksum and compute a hash 
into the route cache. 

The floating point operations, while they account for 12% 
of the instructions, actually have no impact on performance. 
They are used to count simple network management protocol 
(SNMP) management information base (MIB) values and are 
interleaved with integer instructions so they can execute in 
one cycle. The presence of four fnop instructions reflects 
the need to pad a group of two integer instructions and one 
floating point instruction so the Alpha can process the four 
instructions in one cycle. 

Finally, observe that there is a minimum of instructions to 
load and store data. There are four loads (Id*) to load the 
header, one load to load the cached forwarding table entry, 
and one load to access the MTU table. Then there are four 
stores (s tq) to store the updated header and an instruction to 
create a write memory barrier (wmb) and ensure that writes 
are sequenced. 

1) Issues in Forwarding Engine Design: To close the pre- 
sentation of the forwarding engine, we address two frequently 
asked questions about forwarding engine design in general and 
the MGR’s forwarding engine in particular. 

a) Why not use an ASIC?: The MGR forwarding engine 
uses a processor to make forwarding decisions. Many people 
often observe that the IPv4 specification is very stable and ask 
if it would be more cost effective to implement the forward 
engine in an application specific integrated circuit (ASIC). 

The answer to this issue depends on where the router might 
be deployed. In a corporate local-area network (LAN) it turns 
out that IPv4 is indeed a fairly static protocol and an ASIC- 
based forwarding engine is appropriate. But in an internet 

service provider’s (ISP’s) backbone, the environment that the 
MGR was designed for, IPv4 is constantly evolving in subtle 
ways that require programmability. 

b) How eflective is a route cache.?: The MGR uses 
a cache of recently seen destinations. As the Internet’s 
backbones become increasingly heavily used and carry traffic 
of a greater number of parallel conversations, is such a cache 
likely to continue to be useful? 

In the MGR, a cache hit in the processor’s on-chip cache 
is at least a factor of five less expensive than a full route 
lookup in off-chip memory, so a cache is valuable provided 
it achieves at least a modest hit rate. Even with an increasing 
number of conversations, it appears that packet trains [ 151 
will continue to ensure that there is a strong chance that two 
datagrams arriving close together will be headed for the same 
destination. A modest hit rate seems assured and, thus, we 
believe that using a cache makes sense. 

Nonetheless, we believe that the days of caches are 
numbered because of the development of new lookup 
algorithms-in particular the binary hash scheme [34]. The 
binary hash scheme takes a fixed number of memory accesses 
determined by the address length, not by the number of keys. 
As a result, it is fairly easy to inexpensively pipeline route 
lookups using the binary hash algorithm. The pipeline could 
be placed alongside the inbound FIFO such that a header 
arrived at the processor with a pointer to its route. In such an 
architecture no cache would be needed. 

D. Abstract Link Layer Header 

As noted earlier, one innovation for keeping the forwarding 
engine and its code simple is the abstract link-layer header, 
which summarizes link-layer information for the forwarding 
engine and line cards. Fig. 3 shows the abstract link-layer 
header formats for inbound (line card to forwarding engine) 
and outbound (forwarding engine to line card) headers. The 
different formats reflect the different needs of reception and 
transmission &. . 

The inbound abstract header contains information that the 
forwarding engine code needs to confirm the validity of the IP 
header and the route chosen for that header. For instance, the 
link-layer length is checked for consistency against the length 
in the IP header. The link-layer identifier, source card, and 
source port are used to determine if an ICMP redirect must 
be sent. (ICMP redirects are sent when a datagram goes in 
and out of the same interface. The link-layer identifier is used 
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in cases where multiple virtual interfaces may coexist on one 
physical interface port, in which case a datagram may go in 
and out of the same physical interface, but different virtual 
interfaces, without causing a redirect.) 

The outbound abstract header contains directions to the line 
cards about how datagram transmission is to be handled. The 
important new fields are the multicast count, which indicates 
how many copies of the packet the inbound line card needs to 
make, and the destination tag, which tells the outbound line 
card what destination address to put on the packet, what line 
to send the packet out, and what flow to assign the packet to. 
For multicast packets, the destination tag tells the outbound 
line card what set of interfaces to send the packet ouL4 

IV. THE SWITCHED Bus 

Most routers today use a conventional shared bus. The 
MGR instead uses a 15port switch to move data between 
function cards. The switch is a point-to-point switch (i.e., it 
effectively looks like a crossbar, connecting one source with 
one destination). 

The major limitation of a point-to-point switch is that 
it does not support the one-to-many transfers required for 
multicasting. We took a simple solution to this problem. 
Multicast packets are copied multiple times, once to each 
outbound line card. The usual concern about making multiple 
copies is that it reduces effective switch throughput. For 
instance, if every packet, on average, is sent to two boards, the 
effective switch bandwidth will be reduced by half. However, 
even without multicast support, this scheme is substantially 
better than a shared bus.’ 

The MGR switch is a variant of a now fairly common type 
of switch. It is an input-queued switch in which each input 
keeps a separate FIFO and bids separately for each output. 
Keeping track of traffic for each output separately means that 
the switch does not suffer head-of-line blocking [20], and it 
has been shown by simulation [30] and more recently proven 
[21] that such a switch can achieve 100% throughput. The 
key design choice in this style of switch is its allocation 
algorithm-how one arbitrates among the various bids. The 
MGR arbitration seeks to maximize throughput at the expense 
of predictable latency. (This tradeoff is the reverse of that 
made in many asynchronous transfer mode (ATM) switches 
and is why we built our own switch, optimized for IP traffic.) 

A. Switch Details 

The switch has two pin interfaces to each function card. The 
data interface consists of 75 input data pins and 75 output data 
pins, clocked at 5 1.84 MHz. The allocation interface consists 
of two request pins, two inhibit pins, one input status pin, 

4For some types of interfaces, such as ATM, this may require the outbound 
line card to generate different link-layer headers for each line. For others, 
such as Ethernet, all of the interfaces can share the same link-layer header. 

“The basic difference is that a multicast transfer on a shared bus would 
monopolize the bus, even if only two outbound line cards were getting the 
multicast. On the switch, those line cards not involved in the multicast can 
concurrently make transfers among themselves while the multicast transactions 
are going on. The fact that our- switch copies multiple times makes it less 
effective than some other switch designs (e.g., [23]), but still much better 
than a bus. 

and one output status pin, all clocked at 25.92 MHz. Because 
of the large number of pins and packaging constraints, the 
switch is implemented as five identical data path cards plus 
one allocator card. 

A single switch transfer cycle, called an epoch, takes 
16 ticks of the data clock (eight ticks of the allocation 
clock). During an epoch, up to 15 simultaneous data transfers 
take place. Each transfer consists of 1024 bits of data plus 
176 auxiliary bits of parity, control, and ancillary bits. The 
aggregate data bandwidth is 49.77 Gbls (58.32 Gbls including 
the auxiliary bits). The per-card data bandwidth is 3.32 Gb/s 
(full duplex, not including auxiliary bits). 

The 1024 bits of data are divided up into two transfer units, 
each 64 B long. The motivation for sending two distinct units 
in one epoch was that the desirable transfer unit was 64 B 
(enough for a packet header plus some overhead information), 
but developing an field programmable gate array (FPGA)- 
based allocator that could choose a connection pattern in eight 
switch cycles was difficult. We chose, instead, to develop an 
allocator that decides in 16 clock cycles and transfers two 
units in one cycle. 

Both 64-B units are delivered to the same destination card. 
Function cards are not required to fill both 64-B units; the 
second one can be empty. When a function card has a 64- 
B unit to transfer, it is expected to wait several epochs to 
see if another 64-B unit becomes available to fill the transfer. 
If not, the card eventually sends just one unit. Observe that 
when the card is heavily loaded, it is very likely that a second 
64-B unit will become available, so the algorithm has the 
desired property that as load increases, the switch becomes 
more efficient in its transfers. 

Scheduling of the switch is pipelined. It takes a minimum 
of four epochs to schedule and complete a transfer. In the 
first epoch the source card signals that it has data to send to 
the destination card. In the second epoch the switch allocator 
decides to schedule the transfer for the fourth epoch. In the 
third epoch the source and destination line cards are notified 
that the transfer will take place and the data path cards are 
told to configure themselves for the transfer (and for all other 
transfers in fourth epoch). In the fourth epoch the transfer 
takes place. 

The messages in each epoch are scheduled via the allocation 
interface. A source requests to send to a destination card by 
setting a bit in a 15-b mask formed by the two request pins 
over the eight clock cycles in an epoch.6 The allocator tells 
the source and destination cards who they will be connected 
to with a 4-b number (O-14) formed from the first four bits 
clocked on the input and output status pins in each epoch. 

The switch implements flow control. Destination cards can, 
on a per-epoch basis, disable the ability of specific source cards 
to send to them. Destination cards signal their willingness 
to receive data from a source by setting a bit in the 15-b 
mask formed by the two inhibit pins. Destinations are allowed 
to inhibit transfers from a source to protect against certain 
pathological cases where packets from a single source could 

6Supporting concurrent requests for multiple line cards plus randomly 
shuffling the bids (see Section IV-B) ensures that even though the MGR 
uses an input-queued switch, it does not suffer head-of-line blocking. 
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Fig. 4. Simple and wavefront allocators, (a) Simple. (b) Wavefront. (c) 
Group wavefront. 

consume the entire destination card’s buffer space, preventing 
other sources from transmitting data through the destination 
card.7 

B. The Allocator 

The allocator is the heart of the high-speed switch in 
the MGR. It takes all of the (pipelined) connection requests 
from the function cards and the inhibiting requests from 
the destination cards and computes a configuration for each 
epoch. It then informs the source and destination cards of 
the configuration for each epoch. The hard problem with the 
allocator is finding a way to examine 225 possible pairings and 
choose a good connection pattern from the possible 1.3 trillion 
(1.5 factorial) connection patterns within one epoch time (about 
300 ns). 

A straightforward allocator algorithm is shown on the left 
side of Fig. 4. The requests for connectivity are arranged in 
a 5 x 5 matrix of bits (where a I in position :c: 1~ means 
there is a request from source :c to connect to destination 
~1). The allocator simply scans the matrix, from left to right 
and top to bottom, looking for connection requests. When it 
finds a connection request that does not interfere with previous 
connection requests already granted, it adds that connection to 
its list of connections for the epoch being scheduled. This 
straightforward algorithm has two problems: 1) it is clearly 
unfair-there is a preference for low-numbered sources and 
2) for a IS x IS matrix, it requires serially evaluating 225 
positions per epoch-that is one evaluation every 1.4 ns, too 
fast for an FPGA. 

There is an elegant solution to the fairness 
problem-randomly shuffle the sources and destinations. 
The allocator has two &entry shuffle arrays. The source 
array is a permutation of the values l-15, and value of 
position s of the array indicates what row in the allocation 
matrix should be tilled with the bids from source s. The 
destination array is a similar permutation. Another way to 
think of this procedure is if one takes the original matrix 
M, one generates a shuffled matrix SM according to the 
following rule: 

SM[:r, y] = M[’ rowsllllfflo[:r:]: &1111fflt:[y]] 

and uses SM to do the allocation.* 
The timing problem is more difficult. The trick is to observe 

that parallel evaluation of multiple locations is possible. Con- 
sider Fig. 4 again. Suppose we have just started a cycle and 
examined position (1,l). On the next cycle, we can examine 
both positions (2, I) and (1,2) because the two possible connec- 
tions are not in conflict with each other-they can only conflict 
with a decision to connect source 1 to itself. Similarly, on the 
next cycle, we can examine (3,1), (2,2), and (1,3) because none 
of them are in conflict with each other. Their only potential 
conflicts are with decisions already made about (1 ,l), (2,1), 
and (1,2). This technique is called wavefront allocation [ 161, 
[32] and is illustrated in the middle of Fig. 4. However, for a 
15 x 15 matrix, wavefront allocation requires 29 steps, which 
is still too many. But one can refine the process by grouping 
positions in the matrix and doing wavefront allocations across 
the groups. The right side of Fig. 4 shows such a scheme using 
2 x 2 groups, which halves the number of cycles. Processing 
larger groups reduces the time further. The MGR allocator 
uses 3 x 5 groups. 

One feature that we added to the allocator was support 
for multiple priorities. In particular we wanted to give trans- 
fers from forwarding engines higher priority than data from 
line cards to avoid header contention on line cards. Header 
contention occurs when packets queue up in the input line 
card waiting for their updated header and routing instructions 
from the forwarding engines. In a heavily loaded switch 
with fair allocation one can show that header contention will 
occur because the forwarding engines’ requests must compete 
equally with data transfers from other function cards. The 
solution to this problem is to give the forwarding engines 
priority as sources by skewing the random shuffling of the 
sources. 

‘Jon C. R. Bennett has pointed out that this allocator does not always evenly 
distribute bandwidth across all sources. In particular, if bids for destinations 
are very unevenly distributed, allocation will follow the unevenness of the 
bids. For instance, consider the bid pattern in the figure below: 

‘The most likely version of this scenario is a burst of packets that come in 
4 0 0 0 (I 0 1 
.j 0 0 0 0 0 1 

a high-speed interface and go out a low-speed interface. If there are enough 6 0 0 0 0 0 1 
packets, and the outbound line card’s scheduler does not discard packets until 
they have aged for a while, the packets could sit in the outbound line card’s Line card I has only a I An-36 chance of transferring to line card 6, while the 
buffers for a long time. other line cards all have a 7-in-36 chance of transferring to line card 6. 
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V. LINE CARD DESIGN 

A line card in the MGR can have up to 16 interfaces on 
it (all of the same type). However, the total bandwidth of all 
interfaces on a single card should not exceed approximately 
2.5 Gb/s. The difference between the 2.5- and 3.3-Gb/s switch 
rate is to provide enough switch bandwidth to transfer packet 
headers to and from the forwarding engines. The 2.5Gb/s 
rate is sufficient to support one OC-4% (2.4-Gb/s) SONET 
interface, four OC-12c (622-Mb/s) SONET interfaces, or three 
HIPPI (800-Mb/s) interfaces on one card. It is also more than 
enough to support 16 lOO-Mb/s Ethernet or FDDI interfaces. 
We are currently building a line card with two OC-12c (622- 
Mb/s) SONET/ATM interfaces and expect to build additional 
line cards. 

With the exception of handling header updates, the inbound 
and outbound packet processes are completely disjoint. They 
even have distinct memory pools. For simplicity, packets 
going between interfaces on the same card must be looped 
back through the switch.’ Inbound packet processing is rather 
simple; outbound packet processing is much more complex. 

A. Inbound Packet Processing 

As a packet arrives at an inbound line card, it is assigned a 
packet identifier and its data is broken up (as the data arrives) 
into a chain of 64-B pages, in preparation for transfer through 
the switch. The first page, which includes the summary of 
the packet’s link-layer header, is then sent to the forwarding 
engine to get routing information. When the updated page 
is returned, it replaces the old first page and its routing 
information is used to queue the entire packet for transfer to 
the appropriate destination card. 

This simple process is complicated in two situations. First, 
when packets are multicast, copies may have to be sent to more 
than one destination card. In this case the forwarding engine 
will send back multiple updated first pages for a single packet. 
As a result, the inbound packet buffer management must keep 
reference counts and be able to queue pages concurrently for 
multiple destinations. 

The second complicating situation occurs when the inter- 
faces use ATM. First, ATM cells have a 48-B payload, which 
is less than the 64-B page size, so the ATM segmentation 
and reassembly @AR) process that handles incoming cells 
includes a staging area where cells are converted to pages. 
Second, there are certain situations where it may be desirable 
to permit an operations and maintenance cell to pass directly 
through the router from one ATM interface to another ATM 
interface. To support this, the ATM interfaces are permitted to 
put a 53-B full ATM cell in a page and ship the cell directly 
to an outbound interface. 

B. Outbound Packet Processing 

When an outbound line card receives pages of a packet 
from the switch, it assembles those pages into a linked list 

91f one allows looping in the card, there will be some place on the card 
that must run twice as fast as the switch (because it may receive data both 
from the switch and the inbound side of the card in the same cycle). That is 
painful to implement at high speed. 

representing the packet and creates a packet record pointing 
to the linked list. If the packet is being multicast to multiple 
interfaces on the card, it will make multiple packet records, 
one for each interface getting the packet. 

After the packet is assembled, its record is passed to a 
line card’s QoS processor. If the packet is being multicast, 
one record is passed to each of the interfaces on which the 
multicast is being sent. The purpose of the QoS processor 
is to implement flow control and integrated services in the 
router. Recall that the forwarding engine classifies packets by 
directing them to particular flows. It is the job of the QoS 
processor to actually schedule each how’s packets. 

The QoS processor is a very large instruction word (VLIW) 
programmable state machine implemented in a 52-MHz 
ORCA 2C04A FPGA. (ORCA FPGA’s can be programmed 
to use some of their real-estate as memory, making them 
very useful for implementing a special purpose processor). 
The QoS processor is event-driven and there are four possible 
events. The first event is the arrival of a packet. The processor 
examines the packet’s record (for memory bandwidth reasons, 
it does not have access the packet data itself) and based 
on the packet’s length, destination, and the flow identifier 
provided by the forwarding engine, places the packet in the 
appropriate position in a queue. In certain situations, such as 
congestion, the processor may choose to discard the packet 
rather than to schedule it. The second event occurs when the 
transmission interface is ready for another packet to send. The 
transmission interface sends an event to the scheduler, which in 
turn delivers to the transmission interface the next few packets 
to transmit. (In an ATM interface each virtual channel (VC) 
separately signals its need for more packets.) The third event 
occurs when the network processor informs the scheduler 
of changes in the allocation of bandwidth among users. The 
fourth event is a timer event, needed for certain scheduling 
algorithms. The processor can also initiate messages to the 
network processor. Some packet handling algorithms such as 
random early detection (RED) [12] require the scheduler to 
notify the network processor when a packet is discarded. 

Any link-layer-based scheduling (such as that required by 
ATM) is done separately by a link-layer scheduler after the 
packet scheduler has passed the packet on for transmission. 
For example, our OC-12c ATM line cards support an ATM 
scheduler that can schedule up to 8000 ATM VC’s per 
interface, each with its own QoS parameters for constant bit 
rate (CBR), variable bit rate (VBR), or unspecified bit rate 
(UBR) service. 

VI. THE NETWORK PROCESSOR 

The network processor is a commercial PC motherboard 
with a PC1 interface. This motherboard uses a 21064 Alpha 
processor clocked at 233 MHz. The Alpha processor was 
chosen for ease of compatibility with the forwarding engines. 
The motherboard is attached to a PC1 bridge, which gives it 
access to all function cards and also to a set of registers on 
the switch allocator board. 

The processor runs the 1.1 NetBSD release of UNIX. 
NetBSD is a freely available version of UNIX based on the 
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4.4 Berkeley Software Distribution (BSD) release. The choice 
of operating system was dictated by two requirements. First, 
we needed access to the kernel source code to customize 
the IP code and to provide specialized PC1 drivers for the 
line and forwarding engine cards. Second, we needed a BSD 
UNIX platform because we wanted to speed the development 
process by porting existing free software such as gated [IO] 
to the MGR whenever possible and almost all this software is 
implemented for BSD UNIX. 

VII. MANAGING ROUTING AND FORWARDING TABLES 

Routing information in the MGR is managed jointly by the 
network processor and the forwarding engines. 

All routing protocols are implemented on the network 
processor, which is responsible for keeping complete routing 
information. From its routing information, the network pro- 
cessor builds a forwarding table for each forwarding engine. 
These forwarding tables may be all the same, or there may be 
different forwarding tables for different forwarding engines. 

One advantage of having the network processor build the 
tables is that while the network processor needs complete 
routing information such as hop counts and whom each route 
was learned from, the tables for the forwarding engines need 
simply indicate the next hop. As a result, the forwarding tables 
for the forwarding engines are much smaller than the routing 
table maintained by the network processor. 

Periodically, the network processor downloads the new 
forwarding tables into the forwarding engines. As noted ear- 
lier, to avoid slowing down the forwarding engines dur- 
ing this process, the forwarding table memory on the for- 
warding engines is split into two banks. When the network 
processor finishes downloading a new forwarding table, it 
sends a message to the forwarding engine to switch memory 
banks. As part of this process, the Alpha must invalidate 
its on-chip routing cache, which causes some performance 
penalty, but a far smaller penalty than having to continuously 
synchronize routing table updates with the network proces- 
sor. 

One of the advantages of decoupling the processing of 
routing updates from the actual updating of forwarding tables 
is that bad behavior by routing protocols, such as route 
flaps, does not have to affect router throughput. The network 
processor can delay updating the forwarding tables on the 
forwarding engines until the flapping has subsided. 

VIII. ROUTER STATUS 

When this paper went to press, all of the router hardware 
had been fabricated and tested except for the interface cards, 
and the majority of the software was up and running. Test cards 
that contained memory and bidding logic were plugged into 
the switch to simulate interface cards when testing the system. 

Estimating latencies through the router is difficult, due 
to a shortage of timing information inside the router, the 
random scheduling algorithm of the switch, and the absence 
of external interfaces. However, based on actual software 
performance measured in the forwarding engine, observations 
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when debugging hardware, and estimates from simulation, we 
estimate that a 128-B datagram entering an otherwise idle 
router would experience a delay of between 7 and 8 LLS. A 
I-kB datagram would take 0.9 LLS longer. These delays assume 
that the header is processed in the forwarding engine, not the 
network processor, and that the Alpha has handled at least a 
few datagrams previously (so that code is in the instruction 
cache and branch predictions are correctly made). 

IX. RELATED WORK AND CONCLUSIONS 

Many of the features of the MGR have been influenced 
by prior work. The Bell Laboratories router [2] similarly 
divided work between interfaces, which moved packets among 
themselves, and forwarding engines, which, based on the 
packet headers, directed how the packets should be moved. 
Tantawy and Zitterbart [33] have examined parallel IP header 
processing. So too, several people have looked at ways to 
adapt switches to support IP traffic [24], [27]. 

Beyond the innovations outlined in Section II-B, we believe 
that the MGR makes two important contributions. The first 
is the MGR’s emphasis on examining every datagram header. 
While examining every header is widely agreed to be desirable 
for security and robustness, many had thought that the cost of 
IP forwarding was too great to be feasible at high speed. The 
MGR shows that examining every header is eminently feasible. 

The MGR is also valuable because there had been con- 
siderable worry that router technology was failing and that 
we needed to get rid of routers. The MGR shows that router 
technology is not failing and routers can continue to serve as 
a key component in high-speed networks. 
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