
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6. NO. 3, JUNE 1998 231

A 50-Gb/s IP Router
Craig Partridge, Senior Member, IEEE, Philip P. Carvey, Member, IEEE, Ed Burgess, Isidro Castineyra, Tom Clarke,

Lise Graham, Michael Hathaway, Phil Herman, Allen King, Steve Kohalmi, Tracy Ma, John Mcallen,
Trevor Mendez, Walter C. Milliken, Member, IEEE, Ronald Pettyjohn, Member, IEEE,

John Rokosz, Member, IEEE, Joshua Seeger, Michael Sollins, Steve Starch,
Benjamin Tober, Gregory D. Troxel, David Waitzman, and Scott Winterble

Abstract-Aggressive research on gigabit-per-second networks
has led to dramatic improvements in network transmission
speeds. One result of these improvements has been to put
pressure on router technology to keep pace. This paper describes
a router, nearly completed, which is more than fast enough to
keep up with the latest transmission technologies. The router
has a backplane speed of 50 Gh/s and can forward tens of
millions of packets per second.

Index Terms-Data communications, internetworking, packet
switching, routing.

I. INTRODUCTION

T RANSMISSION link bandwidths keep improving, at
a seemingly inexorable rate, as the result of research

in transmission technology [26]. Simultaneously, expanding
network usage is creating an ever-increasing demand that can
only be served by these higher bandwidth links. (In 1996
and 1997, Internet service providers generally reported that
the number of customers was at least doubling annually and
that per-customer bandwidth usage was also growing, in some
cases by 15% per month.)

Unfortunately, transmission links alone do not make a
network. To achieve an overall improvement in networking
performance, other components such as host adapters, operat-
ing systems, switches, multiplexors, and routers also need to
get faster. Routers have often been seen as one of the lagging
technologies. The goal of the work described here is to show
that routers can keep pace with the other technologies and are

Manuscript received February 20, 1997; revised July 22, 1997; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor G. Parulkar. This work
was supported by the Defense Advanced Research Projects Agency (DARPA).

C. Partridge is with BBN Technologies, Cambridge, MA 02138 USA, and
with Stanford University, Stanford, CA 94305 USA (e-mail: craig@bbn.com).

P. P. Carvey, T. Clarke, and A. King were with BBN Technologies,
Cambridge, MA 02138 USA. They are now with Avici Systems, Inc.,
Chelmsford, MA 01824 USA (e-mail: phil@avici.com; tclarke@avici.com;
allen@avici.com).

E. Burgess, I. Castineyra, L. Graham, M. Hathaway, P. Herman, S.
Kohalmi, T. Ma, J. Mcallen, W. C. Milliken, J. Rokosz, J. Seeger, M.
Sollins, S. Starch, B. Tober, G. D. Troxel, and S. Winterble are with BBN
Technologies, Cambridge, MA 02138 USA (e-mail: skohalmi@bbn.com;
milliken@bbn.com; jseeger@bbn.com; sstorch@bbn.com; tober@bbn.com).

T. Mendez was with BBN Technologies, Cambridge, MA 02138 USA. He
is now with Cisco Systems, Cambridge, MA 02138 USA.

R. Pettyjohn was with BBN Technologies, Cambridge, MA 02138 USA.
He is now with Argon Networks, Littleton, MA 01460 USA (e-mail:
ronp@argon.com).

D. Waitzman was with BBN Technologies, Cambridge, MA 02138 USA.
He is now with D. E. Shaw and Company, L.P., Cambridge, MA 02139 USA.

Publisher Item Identifier S 1063-6692(98)04174-O.

fully capable of driving the new generation of links (OC-48c
at 2.4 Gb/s).

A multigigabit router (a router capable of moving data
at several gigabits per second or faster) needs to achieve
three goals. First, it needs to have enough internal bandwidth
to move packets between its interfaces at multigigabit rates.
Second, it needs enough packet processing power to forward
several million packets per second (MPPS). A good rule
of thumb, based on the Internet’s average packet size of
approximately 1000 b, is that for every gigabit per second
of bandwidth, a router needs 1 MPPS of forwarding power.’
Third, the router needs to conform to a set of protocol
standards. For Internet protocol version 4 (IPv4), this set of
standards is summarized in the Internet router requirements
[3]. Our router achieves all three goals (but for one minor
variance from the IPv4 router requirements, discussed below).

This paper presents our multigigabit router, called the MGR,
which is nearly completed. This router achieves up to 32
MPPS forwarding rates with 50 Gb/s of full-duplex backplane
capacity.* About a quarter of the backplane capacity is lost
to overhead traffic, so the packet rate and effective bandwidth
are balanced. Both rate and bandwidth are roughly two to ten
times faster than the high-performance routers available today.

II. OVERVIEW OF THE ROUTER ARCHITECTURE

A router is a deceptively simple piece of equipment. At
minimum, it is a collection of network interfaces, some sort of
bus or connection fabric connecting those interfaces, and some
software or logic that determines how to route packets among
those interfaces. Within that simple description, however, lies a
number of complexities. (As an illustration of the complexities,
consider the fact that the Internet Engineering Task Force’s
Requirements for IP Version 4 Routers [3] is 175 pages long
and cites over 100 related references and standards.) In this
section we present an overview of the MGR design and point
out its major and minor innovations. After this section, the rest
of the paper discusses the details of each module.

‘See [25]. Some experts argue for more or less packet processing power.
Those arguing for more power note that a TCP/IP datagram containing an
ACK but no data is 320 b long. Link-layer headers typically increase this
to approximately 400 b. So if a router were to handle only minimum-sized
packets, a gigabit would represent 2.5 million packets. On the other side,
network operators have noted a recent shift in the average packet size to
nearly 2000 b. If this change is not a fluke, then a gigabit would represent
only 0.5 million packets.

*Recently some companies have taken to summing switch bandwidth in
and out of the switch; in that case this router is a IOO-Gb/s router.

1063-6692/98$10.00 0 1998 IEEE

238 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 3, JUNE 1998

Switch

I
Packets

Headera

I

Fig. I. MGR outline.

A. Design Summary

A simplified outline of the MGR design is shown in Fig. 1,
which illustrates the data processing path for a stream of
packets entering from the line card on the left and exiting
from the line card on the right.

The MGR consists of multiple line cards (each supporting
one or more network interfaces) and forwarding engine cards,
all plugged into a high-speed switch. When a packet arrives
at a line card, its header is removed and passed through the
switch to a forwarding engine. (The remainder of the packet
remains on the inbound line card). The forwarding engine
reads the header to determine how to forward the packet and
then updates the header and sends the updated header and
its forwarding instructions back to the inbound line card. The
inbound line card integrates the new header with the rest of
the packet and sends the entire packet to the outbound line
card for transmission.

Not shown in Fig. 1 but an important piece of the MGR
is a control processor, called the network processor, that
provides basic management functions such as link up/down
management and generation of forwarding engine routing
tables for the router.

B. Mujor Innovations

There are five novel elements of this design. This section
briefly presents the innovations. More detailed discussions,
when needed, can be found in the sections following.

First, each forwarding engine has a complete set of the
routing tables. Historically, routers have kept a central master
routing table and the satellite processors each keep only a
modest cache of recently used routes. If a route was not in a
satellite processor’s cache, it would request the relevant route
from the central table. At high speeds, the central table can
easily become a bottleneck because the cost of retrieving a

Output

Packets

Llne Card

route from the central table is many times (as much as 1000
times) more expensive than actually processing the packet
header. So the solution is to push the routing tables down
into each forwarding engine. Since the forwarding engines
only require a summary of the data in the route (in particular,
next hop information), their copies of the routing table, called
forwurding tables, can be very small (as little as 100 kB for
about 50k routes [61).

Second, the design uses a switched backplane. Until very
recently, the standard router used a shared bus rather than
a switched backplane. However, to go fast, one really needs
the parallelism of a switch. Our particular switch was custom
designed to meet the needs of an Internet protocol (TP) router.

Third, the design places forwarding engines on boards
distinct from line cards. Historically, forwarding processors
have been placed on the line cards. We chose to separate them
for several reasons. One reason was expediency; we were not
sure if we had enough board real estate to fit both forwarding
engine functionality and line card functions on the target
card size. Another set of reasons involves flexibility. There
are well-known industry cases of router designers crippling
their routers by putting too weak a processor on the line
card, and effectively throttling the line card’s interfaces to
the processor’s speed. Rather than risk this mistake, we built
the fastest forwarding engine we could and allowed as many
(or few) interfaces as is appropriate to share the use of the
forwarding engine. This decision had the additional benefit of
making support for virtual private networks very simple-we
can dedicate a forwarding engine to each virtual network and
ensure that packets never cross (and risk confusion) in the
forwarding path.

Placing forwarding engines on separate cards led to a fourth
innovation. Because the forwarding engines are separate from
the line cards, they may receive packets from line cards that

PARTRIDGE et al.: 50-Gbh IP ROUTER 239

use different link layers, At the same time, correct IP for-
warding requires some information from the link-layer packet
header (largely used for consistency checking). However, for
fast forwarding, one would prefer that the forwarding engines
not have to have code to recognize, parse, and load a diversity
of different link-layer headers (each of which may have a
different length). Our solution was to require all line cards to
support the ability to translate their local link-layer headers to
and from an abstract link-layer header format, which contained
the information required for IP forwarding.

The fifth innovation was to include quality of service (QoS)
processing in the router. We wanted to demonstrate that it was
possible to build a cutting edge router that included line-speed
QoS. We chose to split the QoS function. The forwarding
engine simply classifies packets, by assigning a packet to a
flow, based on the information in the packet header. The actual
scheduling of the packet is done by the outbound line card, in
a specialized processor called the QoS processor.

III. THE FORWARDING ENGINES

The forwarding engines are responsible for deciding where
to forward each packet. When a line card receives a new
packet, it sends the packet header to a forwarding engine. The
forwarding engine then determines how the packet should be
routed.

The development of our forwarding engine design was
influenced by the Bell Laboratories router [2], which, although
it has a different architecture, had to solve similar problems.

A. A Brief Description of the Alpha 21164 Processor

At the heart of each forwarding engine is a 4 15-MHz Digital
Equipment Corporation Alpha 21164 processor. Since much
of the forwarding engine board is built around the Alpha, this
section summarizes key features of the Alpha. The focus in
this section is on features that impact how the Alpha functions
in the forwarding engine. A more detailed description of the
21164 and the Alpha architecture in general can be found in
[l] and [31].

The Alpha 21164 is a 64-b 32-register super-scalar reduced
instruction set computer (RISC) processor. There are two
integer logic units, called EO and El, and two floating point
units, called FA and FM. The four logic units are distinct.
While most integer instructions (including loads) can be done
in either EO or El, a few important operations, most notably
byte extractions, shift operations, and stores, can only be done
in EO. Floating point operations are more restricted, with all
but one instruction limited to either FA or FM. In each cycle
the Alpha attempts to schedule one instruction to each logic
unit. For integer register-to-register operations, results are
almost always available in the next instruction cycle. Floating
results typically take several cycles. The Alpha processes
instructions in groups of four instructions (hereafter called
quads). All four instructions in a quad must successfully issue
before any instructions in the next quad are issued. In practice
this means that the programmer’s goal is to place either two
pairs of integer instructions that can issue concurrently, or

a pair of integer instructions plus a pair of floating point
instructions, in each quad.

The 21164 has three internal caches, plus support for an
external cache. The instruction and data caches (Icache and
Dcache) are the first-level caches and are 8 kB each in size.
The size of the Icache is important because we want to run
the processor at the maximum instruction rate and require that
all code fits into the Icache. Since Alpha instructions are 32-b
long, this means that the Icache can store 2048 instructions,
more than enough to do key routing functions. If there are
no errors in branch prediction, there will be no bubbles
(interruptions in processing) when using instructions from
the Icache. Our software effectively ignores the Dcache and
always assumes that the first load of a 32-B cache line misses.

There is a 96-kB on-chip secondary cache (Scathe) which
caches both code and data. Loads from the Scathe take a
minimum of eight cycles to complete, depending on the state
of the memory management hardware in the processor. We use
the Scathe as a cache of recent routes. Since each route entry
takes 64 b, we have a maximum cache size of approximately
12000 routes. Studies of locality in packet streams at routers
suggest that a cache of this size should yield a hit rate well
in excess of 95% [II], [13], [15]. Our own tests with a
traffic trace from FIX West (a major interexchange point in
the Internet) suggest a 12 OOO-entry cache will have a hit rate
in excess of 95%.

The tertiary cache (Bcache) is an external memory of several
megabytes managed by the processor. Loads from the Bcache
can take a long time. While the Bcache uses 21-ns memory,
the total time to load a 32-B cache line is 44 ns. There is
also a system bus, but it is far too slow for this application
and shares a single 128-b data path with the Bcache, so we
designed the forwarding engine’s memory system to bypass
the system bus interface.

A complete forwarding table is kept in the Bcache. In our
design the Bcache is 16 MB, divided into two 8-MB banks.
At any time, one bank is acting as the Bcache and the other
bank is being updated by the network processor via a personal
computer interface (PCI) bus. When the forwarding table is
updated, the network processor instructs the Alpha to change
memory banks and invalidate its internal caches.

The divided Bcache highlights that we are taking an unusual
approach-using a generic processor as an embedded proces-
sor. Readers may wonder why we did not choose an embedded
processor. The reason is that, even with the inconvenience of
the Bcache, the Alpha is a very good match for this task. As
the section on software illustrates below, forwarding an IP
datagram is a small process of reading a header, processing
the header, looking up a route, and writing out the header
plus routing information. The Alpha has four properties that
make it a good fit: 1) very high clock speed, so forwarding
code is executed quickly; 2) a large instruction cache, so the
instructions can be done at peak rate; 3) a very large on-chip
cache (the Scathe), so that the routing lookup will probably
hit in the on-chip route cache (avoiding accesses to slow
external memory); and 4) sufficient control on read and write
sequencing and buffer management to ensure that we could
manage how data flowed through the chip.

240 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 3, JUNE 1998

Request FIFO

Alpha 21164
* Processor -----)

Fig. 2. Basic architecture of forwarding engine.

B. Forwarding Engine Hardware Operation

Once headers reach the forwarding engine, they are placed
in a request first-in first-out (FIFO) queue for processing by
the Alpha. The Alpha is running a loop which simply reads
from the front of the FIFO, examines the header to determine
how to route the packet, and then makes one or more writes
to inform the inbound and outbound line cards how to handle
the packet.

Conceptually, this process is illustrated in Fig. 2. A packet
header has reached the front of the request FIFO. The header
includes the tirst 24 or 56 B of the packet plus an 8-B generic
link-layer header and a packet identifier which identifies both
the packet and the interface it is buffered on. The Alpha
software is expected to read at least the first 32 B of the
packet header. When the packet is read, the packet identifier
is copied into a holding buffer. When the Alpha writes out the
updated header, the packet identifier is taken from the holding
buffer and combined with the data from the Alpha to determine
where the updated header and packet are sent.

The Alpha software is free to read and write more than 32
B of the packet header (if present) and can, if it chooses, read
and write the packet identifier registers as well. The software
must read and write this information if it is reading and writing
packet headers in anything but FIFO order. The motivation for
the holding buffer is to minimize the amount of data that must
go through the Alpha. By allowing software to avoid reading
the packet ID, we minimize the load on the Alpha’s memory
interface.

When the software writes out the updated header, it indicates
which outbound interface to send the packet to by writing
to one of 241 addresses. (240 addresses for each of 16
possible interfaces on 15 line cards plus one address indicating
that the packet should be discarded.) The hardware actually
implements these FIFO’s as a single buffer and grabs the
dispatching information from a portion of the FIFO address.

In addition to the dispatching information in the address
lines, the updated header contains some key routing informa-
tion. In particular it contains the outbound link-layer address
and a flow identifier, which is used by the outbound line card
to schedule when the packet is actually transmitted.

A side comment about the link-layer address is in order.
Many networks have dynamic schemes for mapping IP ad-
dresses to link-layer addresses. A good example is the address
resolution protocol (ARP), used for Ethernet [28]. If a router
gets a datagram to an IP address whose Ethernet address

Reply FIFOs

it does not know, it is supposed to send an ARP message
and hold the datagram until it gets an ARP reply with the
necessary Ethernet address. In the pipelined MGR architecture
that approach does not work-we have no convenient place
in the forwarding engine to store datagrams awaiting an ARP
reply. Rather, we follow a two-part strategy. First, at a low
frequency, the router ARP’s for all possible addresses on each
interface to collect link-layer addresses for the forwarding
tables. Second, datagrams for which the destination link-layer
address is unknown are passed to the network processor, which
does the ARP and, once it gets the ARP reply, forwards the
datagram and incorporates the link-layer address into future
forwarding tables.

C. Forwarding Engine Software

The forwarding engine software is a few hundred lines of
code, of which 85 instructions are executed in the common
case. These instructions execute in no less than 42 cycles,’
which translates to a peak forwarding speed of 9.8 MPPS per
forwarding engines. This section sketches the structure of the
code and then discusses some of the properties of this code.

The fast path through the code can be roughly divided up
into three stages, each of which is about 20-30 instructions
(lo-15 cycles) long. The first stage: 1) does basic error
checking to confirm that the header is indeed from an IPv4
datagram; 2) confirms that the packet and header lengths are
reasonable; 3) confirms that the IPv4 header has no options;
4) computes the hash offset into the route cache and loads
the route; and 5) starts loading the next header. These five
activities are done in parallel in intertwined instructions.

During the second stage, it checks to see if the cached route
matches the destination of the datagram. If not, the code jumps
to an extended lookup which examines the routing table in
the Bcache. Then the code checks the IP time-to-live (TTL)
field and computes the updated TTL and IP checksum, and
determines if the datagram is for the router itself. The TTL
and checksum are the only header fields that normally change
and they must not be changed if the datagram is destined for
the router.

In the third stage the updated TTL and checksum are
put in the IP header. The necessary routing information is
extracted from the forwarding table entry and the updated IP
header is written out along with link-layer information from
the forwarding table. The routing information includes the

‘The instructions can take somewhat longer, depending on the pattern of’
packets received and the resulting branch predictions.

PARTRIDGE ef ~1.: 50.Gbls IP ROUTER 241

flow classifier. Currently we simply associate classifiers with
destination prefixes, but one nice feature of the route-lookup
algorithm that we use [34] is that it scales as the log of the
key size, so incorporating additional information like the IP
type-of-service field into the lookup key typically has only a
modest effect on performance.

This code performs all the steps required by the Internet
router requirements [3] except one-it does not check the IP
header checksum, but simply updates it. The update algorithm
is safe [4], [I 81, [29]. If the checksum is bad, it will remain
bad after the update. The reason for not checking the header
checksum is that, in the best code we have been able to
write, computing it would require 17 instructions and, due
to consumer-producer relationships, those instructions would
have to be spread over a minimum of 14 cycles. Assuming we
can successfully interleave the 17 instructions among other
instructions in the path, at minimum they still increase the
time to perform the forwarding code by nine cycles or about
21%. This is a large penalty to pay to check for a rare error
that can be caught end-to-end. Indeed, for this reason, IPv6
does not include a header checksum [8].

Certain datagrams are not handled in the fast path code.
These datagrams can be divided into five categories.

1) Headers whose destination misses in the route cache.
This is the most common case. In this case the pro-
cessor searches the forwarding table in the Bcache for
the correct route, sends the datagram to the interface
indicated in the routing entry, and generates a version of
the route for the route cache. The routing table uses the
binary hash scheme developed by Waldvogel, Varghese,
Turner, and Plattner [34]. (We also hope to experiment
with the algorithm described in [6] developed at Lulea
University.) Since the forwarding table contains prefix
routes and the route cache is a cache of routes for
particular destinations, the processor has to convert the
forwarding table entry into an appropriate destination-
specific cache entry.

2) Headers with errors. Generally, the forwarding engine
will instruct the inbound line card to discard the errored
datagram. In some cases the forwarding engine will
generate an intemet control message protocol (ICMP)
message. Templates of some common ICMP messages
such as the TimeExceeded message are kept in the
Alpha’s Bcache and these can be combined with the
IP header to generate a valid ICMP message.

3) Headers with IP options. Most headers with options
are sent to the network processor for handling, simply
because option parsing is slow and expensive. However,
should an IP option become widely used, the forwarding
code could be modified to handle the option in a special
piece of code outside the fast path.

4) Datagrams that must be fragmented. Rather than requir-
ing line cards to support fragmentation logic, we do
fragmentation on the network processor. Now that IP
maximum transmission unit (MTU) discovery [22] is
prevalent, fragmentation should be rare.

5) Multicast datagrams. Multicast datagrams require spe-
cial routing, since the routing of the datagram is depen-

TABLE I

DISTRIBUTION OF INSTRUCTIONS IN FAST PATH

Instructions Count Percentage EO/El/FP

and, bit, bis, ornot, xor 24 28 @wl

ext*, ins*, sll, srl, zap 23 27 Eo

add*, sub*, s*add 8 9 WEI

branches 8 9 El

Id* 6 7 IWE1

addt. cmwt*. fcmov* 6 7 FA

St* I41 5 1 EO
fnop

wmb

4 1 5 FM

11 1 Eo

nap 1 11 1 1 ED/El

dent on the source address and the inbound link as well
as the multicast destination. Furthermore, the processor
may have to write out multiple copies of the header to
dispatch copies of the datagram to different line cards.
All of this work is done in separate multicasting code in
the processor. Multicast routes are stored in a separate
multicast forwarding table. The code checks to see if the
destination is a multicast destination and, if so, looks for
a multicast route. If this fails, it retrieves or builds a route
from its forwarding table.

Observe that we have applied a broad logic to handling
headers. Types of datagrams that appear frequently (fast path,
destinations that miss in the route cache, common errors,
multicast datagrams) are handled in the Alpha. Those that are
rare (IP with options, MTU size issues, uncommon errors) are
pushed off to the network processor rather than using valuable
Icache instruction space to handle them. If the balance of traffic
changes (say to more datagrams with options), the balance of
code between the forwarding engine and network processor
can be adapted.

We have the flexibility to rebalance code because the
forwarding engine’s peak forwarding rate of 9.8 MPPS is faster
than the switch’s maximum rate of 6.48 million headers per
second.

Before concluding the discussion of the forwarding engine
code, we would like to briefly discuss the actual instructions
used, for two reasons. First, while there has been occasional
speculation about what mix of instructions is appropriate
for handing IP datagrams, so far as we know, no one has
ever published a distribution of instructions for a particular
processor. Second, there has been occasional speculation about
how well RISC processors would handle IP datagrams.

Table I shows the instruction distribution for the fast path
instructions. Instructions are grouped according to type (us-
ing the type classifications in the 21164 manual) and listed
with the count, percentage of total instructions, and whether
instructions are done in integer units EO and El or both, or
the floating point units FA and FM.

Probably the most interesting observation from the table is
that 27% of the instructions are bit, byte, or word manipulation
instructions like zap. The frequency of these instructions
largely reflects the fact they are used to extract various 8-, 16-,
and 32-b fields from 64-b registers holding the IP and link-
layer headers (the ex t commands) and to zero byte-wide fields

242 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 3. JUNE IYYX

0

Link Layer
Length

16

Link Layer
Identifier Unused

63

n 16 32 48 63

Link Layer
Length

Destination
Tag

Multicast
Count Type g Unused

Fig. 3. Abstract link layer headers. (a) Inbound. (b) Outbound.

(zap) in preparation for inserting updated information into
those registers. Oddly enough, these manipulation instructions
are some of the few instructions that can only be done in
the logic unit EO, which means that some care must be taken
in the code to avoid instruction contention for EO. (This is
another reason to avoid checking the header checksum. Most
of the instructions involved in computing the header checksum
are instructions to extract 16-b fields, so checking the header
checksum would have further increased the contention for EO.)

One might suspect that testing bits in the header is a
large part of the cost of forwarding, given that bit operations
represent 28% of the code. In truth, only two instructions
(both xors) represent bit tests on the headers. bis is used to
assemble header fields, and most of the remaining instructions
are used to update the header checksum and compute a hash
into the route cache.

The floating point operations, while they account for 12%
of the instructions, actually have no impact on performance.
They are used to count simple network management protocol
(SNMP) management information base (MIB) values and are
interleaved with integer instructions so they can execute in
one cycle. The presence of four fnop instructions reflects
the need to pad a group of two integer instructions and one
floating point instruction so the Alpha can process the four
instructions in one cycle.

Finally, observe that there is a minimum of instructions to
load and store data. There are four loads (Id*) to load the
header, one load to load the cached forwarding table entry,
and one load to access the MTU table. Then there are four
stores (s tq) to store the updated header and an instruction to
create a write memory barrier (wmb) and ensure that writes
are sequenced.

1) Issues in Forwarding Engine Design: To close the pre-
sentation of the forwarding engine, we address two frequently
asked questions about forwarding engine design in general and
the MGR’s forwarding engine in particular.

a) Why not use an ASIC?: The MGR forwarding engine
uses a processor to make forwarding decisions. Many people
often observe that the IPv4 specification is very stable and ask
if it would be more cost effective to implement the forward
engine in an application specific integrated circuit (ASIC).

The answer to this issue depends on where the router might
be deployed. In a corporate local-area network (LAN) it turns
out that IPv4 is indeed a fairly static protocol and an ASIC-
based forwarding engine is appropriate. But in an internet

service provider’s (ISP’s) backbone, the environment that the
MGR was designed for, IPv4 is constantly evolving in subtle
ways that require programmability.

b) How eflective is a route cache.?: The MGR uses
a cache of recently seen destinations. As the Internet’s
backbones become increasingly heavily used and carry traffic
of a greater number of parallel conversations, is such a cache
likely to continue to be useful?

In the MGR, a cache hit in the processor’s on-chip cache
is at least a factor of five less expensive than a full route
lookup in off-chip memory, so a cache is valuable provided
it achieves at least a modest hit rate. Even with an increasing
number of conversations, it appears that packet trains [151
will continue to ensure that there is a strong chance that two
datagrams arriving close together will be headed for the same
destination. A modest hit rate seems assured and, thus, we
believe that using a cache makes sense.

Nonetheless, we believe that the days of caches are
numbered because of the development of new lookup
algorithms-in particular the binary hash scheme [34]. The
binary hash scheme takes a fixed number of memory accesses
determined by the address length, not by the number of keys.
As a result, it is fairly easy to inexpensively pipeline route
lookups using the binary hash algorithm. The pipeline could
be placed alongside the inbound FIFO such that a header
arrived at the processor with a pointer to its route. In such an
architecture no cache would be needed.

D. Abstract Link Layer Header

As noted earlier, one innovation for keeping the forwarding
engine and its code simple is the abstract link-layer header,
which summarizes link-layer information for the forwarding
engine and line cards. Fig. 3 shows the abstract link-layer
header formats for inbound (line card to forwarding engine)
and outbound (forwarding engine to line card) headers. The
different formats reflect the different needs of reception and
transmission &. .

The inbound abstract header contains information that the
forwarding engine code needs to confirm the validity of the IP
header and the route chosen for that header. For instance, the
link-layer length is checked for consistency against the length
in the IP header. The link-layer identifier, source card, and
source port are used to determine if an ICMP redirect must
be sent. (ICMP redirects are sent when a datagram goes in
and out of the same interface. The link-layer identifier is used

PARTRIDGE et rrl.: 50-Gb/s IP ROUTER 243

in cases where multiple virtual interfaces may coexist on one
physical interface port, in which case a datagram may go in
and out of the same physical interface, but different virtual
interfaces, without causing a redirect.)

The outbound abstract header contains directions to the line
cards about how datagram transmission is to be handled. The
important new fields are the multicast count, which indicates
how many copies of the packet the inbound line card needs to
make, and the destination tag, which tells the outbound line
card what destination address to put on the packet, what line
to send the packet out, and what flow to assign the packet to.
For multicast packets, the destination tag tells the outbound
line card what set of interfaces to send the packet ouL4

IV. THE SWITCHED Bus

Most routers today use a conventional shared bus. The
MGR instead uses a 15port switch to move data between
function cards. The switch is a point-to-point switch (i.e., it
effectively looks like a crossbar, connecting one source with
one destination).

The major limitation of a point-to-point switch is that
it does not support the one-to-many transfers required for
multicasting. We took a simple solution to this problem.
Multicast packets are copied multiple times, once to each
outbound line card. The usual concern about making multiple
copies is that it reduces effective switch throughput. For
instance, if every packet, on average, is sent to two boards, the
effective switch bandwidth will be reduced by half. However,
even without multicast support, this scheme is substantially
better than a shared bus.’

The MGR switch is a variant of a now fairly common type
of switch. It is an input-queued switch in which each input
keeps a separate FIFO and bids separately for each output.
Keeping track of traffic for each output separately means that
the switch does not suffer head-of-line blocking [20], and it
has been shown by simulation [30] and more recently proven
[21] that such a switch can achieve 100% throughput. The
key design choice in this style of switch is its allocation
algorithm-how one arbitrates among the various bids. The
MGR arbitration seeks to maximize throughput at the expense
of predictable latency. (This tradeoff is the reverse of that
made in many asynchronous transfer mode (ATM) switches
and is why we built our own switch, optimized for IP traffic.)

A. Switch Details

The switch has two pin interfaces to each function card. The
data interface consists of 75 input data pins and 75 output data
pins, clocked at 5 1.84 MHz. The allocation interface consists
of two request pins, two inhibit pins, one input status pin,

4For some types of interfaces, such as ATM, this may require the outbound
line card to generate different link-layer headers for each line. For others,
such as Ethernet, all of the interfaces can share the same link-layer header.

“The basic difference is that a multicast transfer on a shared bus would
monopolize the bus, even if only two outbound line cards were getting the
multicast. On the switch, those line cards not involved in the multicast can
concurrently make transfers among themselves while the multicast transactions
are going on. The fact that our- switch copies multiple times makes it less
effective than some other switch designs (e.g., [23]), but still much better
than a bus.

and one output status pin, all clocked at 25.92 MHz. Because
of the large number of pins and packaging constraints, the
switch is implemented as five identical data path cards plus
one allocator card.

A single switch transfer cycle, called an epoch, takes
16 ticks of the data clock (eight ticks of the allocation
clock). During an epoch, up to 15 simultaneous data transfers
take place. Each transfer consists of 1024 bits of data plus
176 auxiliary bits of parity, control, and ancillary bits. The
aggregate data bandwidth is 49.77 Gbls (58.32 Gbls including
the auxiliary bits). The per-card data bandwidth is 3.32 Gb/s
(full duplex, not including auxiliary bits).

The 1024 bits of data are divided up into two transfer units,
each 64 B long. The motivation for sending two distinct units
in one epoch was that the desirable transfer unit was 64 B
(enough for a packet header plus some overhead information),
but developing an field programmable gate array (FPGA)-
based allocator that could choose a connection pattern in eight
switch cycles was difficult. We chose, instead, to develop an
allocator that decides in 16 clock cycles and transfers two
units in one cycle.

Both 64-B units are delivered to the same destination card.
Function cards are not required to fill both 64-B units; the
second one can be empty. When a function card has a 64-
B unit to transfer, it is expected to wait several epochs to
see if another 64-B unit becomes available to fill the transfer.
If not, the card eventually sends just one unit. Observe that
when the card is heavily loaded, it is very likely that a second
64-B unit will become available, so the algorithm has the
desired property that as load increases, the switch becomes
more efficient in its transfers.

Scheduling of the switch is pipelined. It takes a minimum
of four epochs to schedule and complete a transfer. In the
first epoch the source card signals that it has data to send to
the destination card. In the second epoch the switch allocator
decides to schedule the transfer for the fourth epoch. In the
third epoch the source and destination line cards are notified
that the transfer will take place and the data path cards are
told to configure themselves for the transfer (and for all other
transfers in fourth epoch). In the fourth epoch the transfer
takes place.

The messages in each epoch are scheduled via the allocation
interface. A source requests to send to a destination card by
setting a bit in a 15-b mask formed by the two request pins
over the eight clock cycles in an epoch.6 The allocator tells
the source and destination cards who they will be connected
to with a 4-b number (O-14) formed from the first four bits
clocked on the input and output status pins in each epoch.

The switch implements flow control. Destination cards can,
on a per-epoch basis, disable the ability of specific source cards
to send to them. Destination cards signal their willingness
to receive data from a source by setting a bit in the 15-b
mask formed by the two inhibit pins. Destinations are allowed
to inhibit transfers from a source to protect against certain
pathological cases where packets from a single source could

6Supporting concurrent requests for multiple line cards plus randomly
shuffling the bids (see Section IV-B) ensures that even though the MGR
uses an input-queued switch, it does not suffer head-of-line blocking.

244 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 3. JUNE 1998

123456

1

2

3

4

5

6

(a) (b)

123456

Fig. 4. Simple and wavefront allocators, (a) Simple. (b) Wavefront. (c)
Group wavefront.

consume the entire destination card’s buffer space, preventing
other sources from transmitting data through the destination
card.7

B. The Allocator

The allocator is the heart of the high-speed switch in
the MGR. It takes all of the (pipelined) connection requests
from the function cards and the inhibiting requests from
the destination cards and computes a configuration for each
epoch. It then informs the source and destination cards of
the configuration for each epoch. The hard problem with the
allocator is finding a way to examine 225 possible pairings and
choose a good connection pattern from the possible 1.3 trillion
(1.5 factorial) connection patterns within one epoch time (about
300 ns).

A straightforward allocator algorithm is shown on the left
side of Fig. 4. The requests for connectivity are arranged in
a 5 x 5 matrix of bits (where a I in position :c: 1~ means
there is a request from source :c to connect to destination
~1). The allocator simply scans the matrix, from left to right
and top to bottom, looking for connection requests. When it
finds a connection request that does not interfere with previous
connection requests already granted, it adds that connection to
its list of connections for the epoch being scheduled. This
straightforward algorithm has two problems: 1) it is clearly
unfair-there is a preference for low-numbered sources and
2) for a IS x IS matrix, it requires serially evaluating 225
positions per epoch-that is one evaluation every 1.4 ns, too
fast for an FPGA.

There is an elegant solution to the fairness
problem-randomly shuffle the sources and destinations.
The allocator has two &entry shuffle arrays. The source
array is a permutation of the values l-15, and value of
position s of the array indicates what row in the allocation
matrix should be tilled with the bids from source s. The
destination array is a similar permutation. Another way to
think of this procedure is if one takes the original matrix
M, one generates a shuffled matrix SM according to the
following rule:

SM[:r, y] = M[’ rowsllllfflo[:r:]: &1111fflt:[y]]

and uses SM to do the allocation.*
The timing problem is more difficult. The trick is to observe

that parallel evaluation of multiple locations is possible. Con-
sider Fig. 4 again. Suppose we have just started a cycle and
examined position (1,l). On the next cycle, we can examine
both positions (2, I) and (1,2) because the two possible connec-
tions are not in conflict with each other-they can only conflict
with a decision to connect source 1 to itself. Similarly, on the
next cycle, we can examine (3,1), (2,2), and (1,3) because none
of them are in conflict with each other. Their only potential
conflicts are with decisions already made about (1 ,l), (2,1),
and (1,2). This technique is called wavefront allocation [161,
[32] and is illustrated in the middle of Fig. 4. However, for a
15 x 15 matrix, wavefront allocation requires 29 steps, which
is still too many. But one can refine the process by grouping
positions in the matrix and doing wavefront allocations across
the groups. The right side of Fig. 4 shows such a scheme using
2 x 2 groups, which halves the number of cycles. Processing
larger groups reduces the time further. The MGR allocator
uses 3 x 5 groups.

One feature that we added to the allocator was support
for multiple priorities. In particular we wanted to give trans-
fers from forwarding engines higher priority than data from
line cards to avoid header contention on line cards. Header
contention occurs when packets queue up in the input line
card waiting for their updated header and routing instructions
from the forwarding engines. In a heavily loaded switch
with fair allocation one can show that header contention will
occur because the forwarding engines’ requests must compete
equally with data transfers from other function cards. The
solution to this problem is to give the forwarding engines
priority as sources by skewing the random shuffling of the
sources.

‘Jon C. R. Bennett has pointed out that this allocator does not always evenly
distribute bandwidth across all sources. In particular, if bids for destinations
are very unevenly distributed, allocation will follow the unevenness of the
bids. For instance, consider the bid pattern in the figure below:

‘The most likely version of this scenario is a burst of packets that come in
4 0 0 0 (I 0 1
.j 0 0 0 0 0 1

a high-speed interface and go out a low-speed interface. If there are enough 6 0 0 0 0 0 1
packets, and the outbound line card’s scheduler does not discard packets until
they have aged for a while, the packets could sit in the outbound line card’s Line card I has only a I An-36 chance of transferring to line card 6, while the
buffers for a long time. other line cards all have a 7-in-36 chance of transferring to line card 6.

PARTRIDGE et al.: 50-Gbls IP ROUTER 245

V. LINE CARD DESIGN

A line card in the MGR can have up to 16 interfaces on
it (all of the same type). However, the total bandwidth of all
interfaces on a single card should not exceed approximately
2.5 Gb/s. The difference between the 2.5- and 3.3-Gb/s switch
rate is to provide enough switch bandwidth to transfer packet
headers to and from the forwarding engines. The 2.5Gb/s
rate is sufficient to support one OC-4% (2.4-Gb/s) SONET
interface, four OC-12c (622-Mb/s) SONET interfaces, or three
HIPPI (800-Mb/s) interfaces on one card. It is also more than
enough to support 16 lOO-Mb/s Ethernet or FDDI interfaces.
We are currently building a line card with two OC-12c (622-
Mb/s) SONET/ATM interfaces and expect to build additional
line cards.

With the exception of handling header updates, the inbound
and outbound packet processes are completely disjoint. They
even have distinct memory pools. For simplicity, packets
going between interfaces on the same card must be looped
back through the switch.’ Inbound packet processing is rather
simple; outbound packet processing is much more complex.

A. Inbound Packet Processing

As a packet arrives at an inbound line card, it is assigned a
packet identifier and its data is broken up (as the data arrives)
into a chain of 64-B pages, in preparation for transfer through
the switch. The first page, which includes the summary of
the packet’s link-layer header, is then sent to the forwarding
engine to get routing information. When the updated page
is returned, it replaces the old first page and its routing
information is used to queue the entire packet for transfer to
the appropriate destination card.

This simple process is complicated in two situations. First,
when packets are multicast, copies may have to be sent to more
than one destination card. In this case the forwarding engine
will send back multiple updated first pages for a single packet.
As a result, the inbound packet buffer management must keep
reference counts and be able to queue pages concurrently for
multiple destinations.

The second complicating situation occurs when the inter-
faces use ATM. First, ATM cells have a 48-B payload, which
is less than the 64-B page size, so the ATM segmentation
and reassembly @AR) process that handles incoming cells
includes a staging area where cells are converted to pages.
Second, there are certain situations where it may be desirable
to permit an operations and maintenance cell to pass directly
through the router from one ATM interface to another ATM
interface. To support this, the ATM interfaces are permitted to
put a 53-B full ATM cell in a page and ship the cell directly
to an outbound interface.

B. Outbound Packet Processing

When an outbound line card receives pages of a packet
from the switch, it assembles those pages into a linked list

91f one allows looping in the card, there will be some place on the card
that must run twice as fast as the switch (because it may receive data both
from the switch and the inbound side of the card in the same cycle). That is
painful to implement at high speed.

representing the packet and creates a packet record pointing
to the linked list. If the packet is being multicast to multiple
interfaces on the card, it will make multiple packet records,
one for each interface getting the packet.

After the packet is assembled, its record is passed to a
line card’s QoS processor. If the packet is being multicast,
one record is passed to each of the interfaces on which the
multicast is being sent. The purpose of the QoS processor
is to implement flow control and integrated services in the
router. Recall that the forwarding engine classifies packets by
directing them to particular flows. It is the job of the QoS
processor to actually schedule each how’s packets.

The QoS processor is a very large instruction word (VLIW)
programmable state machine implemented in a 52-MHz
ORCA 2C04A FPGA. (ORCA FPGA’s can be programmed
to use some of their real-estate as memory, making them
very useful for implementing a special purpose processor).
The QoS processor is event-driven and there are four possible
events. The first event is the arrival of a packet. The processor
examines the packet’s record (for memory bandwidth reasons,
it does not have access the packet data itself) and based
on the packet’s length, destination, and the flow identifier
provided by the forwarding engine, places the packet in the
appropriate position in a queue. In certain situations, such as
congestion, the processor may choose to discard the packet
rather than to schedule it. The second event occurs when the
transmission interface is ready for another packet to send. The
transmission interface sends an event to the scheduler, which in
turn delivers to the transmission interface the next few packets
to transmit. (In an ATM interface each virtual channel (VC)
separately signals its need for more packets.) The third event
occurs when the network processor informs the scheduler
of changes in the allocation of bandwidth among users. The
fourth event is a timer event, needed for certain scheduling
algorithms. The processor can also initiate messages to the
network processor. Some packet handling algorithms such as
random early detection (RED) [12] require the scheduler to
notify the network processor when a packet is discarded.

Any link-layer-based scheduling (such as that required by
ATM) is done separately by a link-layer scheduler after the
packet scheduler has passed the packet on for transmission.
For example, our OC-12c ATM line cards support an ATM
scheduler that can schedule up to 8000 ATM VC’s per
interface, each with its own QoS parameters for constant bit
rate (CBR), variable bit rate (VBR), or unspecified bit rate
(UBR) service.

VI. THE NETWORK PROCESSOR

The network processor is a commercial PC motherboard
with a PC1 interface. This motherboard uses a 21064 Alpha
processor clocked at 233 MHz. The Alpha processor was
chosen for ease of compatibility with the forwarding engines.
The motherboard is attached to a PC1 bridge, which gives it
access to all function cards and also to a set of registers on
the switch allocator board.

The processor runs the 1.1 NetBSD release of UNIX.
NetBSD is a freely available version of UNIX based on the

246

4.4 Berkeley Software Distribution (BSD) release. The choice
of operating system was dictated by two requirements. First,
we needed access to the kernel source code to customize
the IP code and to provide specialized PC1 drivers for the
line and forwarding engine cards. Second, we needed a BSD
UNIX platform because we wanted to speed the development
process by porting existing free software such as gated [IO]
to the MGR whenever possible and almost all this software is
implemented for BSD UNIX.

VII. MANAGING ROUTING AND FORWARDING TABLES

Routing information in the MGR is managed jointly by the
network processor and the forwarding engines.

All routing protocols are implemented on the network
processor, which is responsible for keeping complete routing
information. From its routing information, the network pro-
cessor builds a forwarding table for each forwarding engine.
These forwarding tables may be all the same, or there may be
different forwarding tables for different forwarding engines.

One advantage of having the network processor build the
tables is that while the network processor needs complete
routing information such as hop counts and whom each route
was learned from, the tables for the forwarding engines need
simply indicate the next hop. As a result, the forwarding tables
for the forwarding engines are much smaller than the routing
table maintained by the network processor.

Periodically, the network processor downloads the new
forwarding tables into the forwarding engines. As noted ear-
lier, to avoid slowing down the forwarding engines dur-
ing this process, the forwarding table memory on the for-
warding engines is split into two banks. When the network
processor finishes downloading a new forwarding table, it
sends a message to the forwarding engine to switch memory
banks. As part of this process, the Alpha must invalidate
its on-chip routing cache, which causes some performance
penalty, but a far smaller penalty than having to continuously
synchronize routing table updates with the network proces-
sor.

One of the advantages of decoupling the processing of
routing updates from the actual updating of forwarding tables
is that bad behavior by routing protocols, such as route
flaps, does not have to affect router throughput. The network
processor can delay updating the forwarding tables on the
forwarding engines until the flapping has subsided.

VIII. ROUTER STATUS

When this paper went to press, all of the router hardware
had been fabricated and tested except for the interface cards,
and the majority of the software was up and running. Test cards
that contained memory and bidding logic were plugged into
the switch to simulate interface cards when testing the system.

Estimating latencies through the router is difficult, due
to a shortage of timing information inside the router, the
random scheduling algorithm of the switch, and the absence
of external interfaces. However, based on actual software
performance measured in the forwarding engine, observations

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 3, JUNE 1998

when debugging hardware, and estimates from simulation, we
estimate that a 128-B datagram entering an otherwise idle
router would experience a delay of between 7 and 8 LLS. A
I-kB datagram would take 0.9 LLS longer. These delays assume
that the header is processed in the forwarding engine, not the
network processor, and that the Alpha has handled at least a
few datagrams previously (so that code is in the instruction
cache and branch predictions are correctly made).

IX. RELATED WORK AND CONCLUSIONS

Many of the features of the MGR have been influenced
by prior work. The Bell Laboratories router [2] similarly
divided work between interfaces, which moved packets among
themselves, and forwarding engines, which, based on the
packet headers, directed how the packets should be moved.
Tantawy and Zitterbart [33] have examined parallel IP header
processing. So too, several people have looked at ways to
adapt switches to support IP traffic [24], [27].

Beyond the innovations outlined in Section II-B, we believe
that the MGR makes two important contributions. The first
is the MGR’s emphasis on examining every datagram header.
While examining every header is widely agreed to be desirable
for security and robustness, many had thought that the cost of
IP forwarding was too great to be feasible at high speed. The
MGR shows that examining every header is eminently feasible.

The MGR is also valuable because there had been con-
siderable worry that router technology was failing and that
we needed to get rid of routers. The MGR shows that router
technology is not failing and routers can continue to serve as
a key component in high-speed networks.

ACKNOWLEDGMENT

The authors would like to thank the many people who
have contributed to or commented on the ideas in this paper,
including J. Mogul and others at Digital Equipment Corpora-
tion’s Western Research Lab, S. Pink, J. Touch, D. Ferguson,
N. Chiappa, M. St. Johns, G. Minden, and members of the
Internet End-To-End Research Group chaired by B. Braden.
The anonymous TON reviewers and the TON Technical Editor,
G. Parulkar, also provided very valuable comments which
substantially improved this paper.

REFERENCES

“Alpha 2 I I64 Microprocessor,” Hardware Reference Manual, Digital
Equipment Corporation, Burlington, MA, Apr. 1995.
A. Asthana, C. Delph, H. V. Jagadish, and P. Krzyzanowski, “Toward a
gigabit IP router,” J. High Sprvd Networks, vol. I, no. 4, pp. 2X1-288,
1992.
F. Baker, “Requirements for IP version 4 routers; RFC-I X12,” Internet
Request For Comments, vol. 1812, June 1995.
B. Braden, D. Borman, and C. Partridge, “Computing the internet
checksum; RFC 107 I,” Internet Request,for Comments, vol. IO7 I, Sept.
1988.

[5] S. Bradner and A. Mankin, IPng: Internet Protocol Next Generation.
New York: Addison-Wesley, 1995.

[6] A. Brodnik, S. Carlsson, M. Degermark, and S. Pink, “Small forwarding
tables for fast routing lookups, ” in Proc. ACM SIGCOMM’97, Cannes,
France, Sept. 1997, pp. 3-14.

PARTRIDGE et ~1.: 50-Gh/s IP ROUTER 241

[71

F-31

[91

[101

1111

tw

[I31

r141

[I51

[I61

u71

U81

t191

Lw

P11

WI

P31

v41

WI

WI
P-4

WI

Wl

[301

1311

1321

t331

1341

N. Chiappa, “Data packet switch using a primary processing unit to
designate one of a plurality of data stream control circuits to selectively
handle the header orocessina of incomina oackets in one data nacket
stream,” US Paten; 5 249 292, Sept. 28, i$93.

Craig Partridge (M’88-SM’91) received the A.B.,
MSc., and Ph.D. degrees from Harvard University,
Cambridge, MA.

S. Deerina and R. Hinden, “Internet protocol, version 6 (IPv6); RFC-
He is a Principal Scientist with BBN Technolo-

gies, Cambridge, MA, where he is the Technical
Leader for the MultiGigabit Router. He is also a
Consulting Assistant Professor at Stanford Univer-
sity, Stanford, CA.

1883,” In&-net Request for Comments, vol. 1883, Jan. 1996.
A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of
a fair queueing algorithm,” in internetwork: Research and Experience,
vol. 1, no. 1. New York: Wiley, Sept. 1990, pp. 3-6.
M. Fedor, “Gated: A multi-routing protocol daemon for UNIX,” in Proc.
1988 Summer USENZX ConjI, San Francisco, CA, 1988, pp. 365-376.
D. C. Feldmeier, “Improving gateway performance with a routing-table
cache,” in Pmt. IEEE INFOCOM’88, New Orleans, LA, Mar. 1988,
pp. 298-307.

Philip P. Carvey (M’79) received the B.S.E.E. degree from the Illinois Insti-

S. Floyd and V. Jacobson, “Random early detection gateways for con-
tute of Technology, Chicago, and the M.S.E.E. degree from the Massachusetts

gestion avoidance,” IEEE/ACM Trans. Networking, vol. I, pp. 397413,
Institute of Technology, Cambridge.

Aug. 1993.
He is Vice President of Engineering with Avici Systems, Inc., Chelmsford,

S. A. Heimlich, “Traffic characterization of the NSFNET national
MA, where he is building a terabit switch router. Previously, he was with

backbone,” in Proc. Winter 1990 USENZX Co@, Washington, DC, Jan.
BBN Technologies, Cambridge, MA, as Division Engineer, and with Ztel as
Vice President of Research.

1990, pp. 207-227.
R. Jain, “A comparison of hashing schemes for address lookup in
computer networks,” IEEE Trans. Commun., vol. 40, pp. 1570-1573,
Oct. 1992.
R. Jain and S. Routhier, “Packet trains: Measurements and a new model
for computer network traffic,” IEEE J. Select. Areas Commun., vol. 4,

Ed Burgess, photograph and biography not available at the time of publi-

k? ??~~&?!~d ‘z?N. Serpanos,

cation

“Two dimensional round robin
schedulers for packet switches with multiple input queues,” IEEE/ACM
Trans. Networking, vol. 2, pp. 471-482, Oct. 1994.
H. R. Lewis and L. Denenbere. Data Structures & Their Alnorithms.
T,ekm& I-Iia3ty,C~~c1~~~~~j.

Incremental updating of the Internet
checksum; RFC-1141,” Znternet Requests,for Comments, vol. 1141, Jan.
1990.
N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, and M. Horowitz,
“The tiny tera: A packet switch core,” ZEEE Micro, vol. 17, pp. 26-33,
Jan. 1997.
M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input versus output
queueing on a space-division packet switch,” ZEEE Trans. Commun.,
vol. COM-35, pp. 1347-1356, Dec. 1987.
N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” in Proc. ZEEE ZNFOCOM’96,
San Francisco, CA, Mar. 1996, pp. 296-302.
J. C. Mogul and S. E. Deering, “Path MTU discovery; RFC-I 191,”
Internet Request for Comments, vol. 1191, Nov. 1990.
R. Ahuja, B. Prabhakar, and N. McKeown, “Multicast scheduling for
input-queued switches,” IEEE .I. Select. Areas Commun., vol. 15, pp.
85.5-866, May 1997.
P. Newman, “IP switching and gigabit routers,” IEEE Commun. Mag.,
vol. 30, pp. 64-69, Feb. 1997.
C. Partridge, “How slow is one gigabit per second?,” ACM Compur.
Commun. Rev., vol. 21, no. 1,
-9 G&bit Networking. i4

p. 44-53, Jan. 1990.
ew York: Addison-Wesley, 1994.

G. Parulkar, D. C. Schmidt, and J. Turner, “IP/ATM: A strategy for
integrating IP with ATM,” in Proc. ACM SIGCOMM’95 (Special Issue
ofACM Comput. Commun. Rev.), vol. 25, no. 4, pp. 49-59, Oct. 1995.
D. Plummer, “Ethernet address resolution protocol: Or converting net-
work protocol addresses to 48.bit Ethernet address for transmission on
ethernet hardware,” Internet Requestfor Comments, vol. 826, Nov. 1992.
A. Rijsinghani, “Computation of the Internet checksum via incremental
update; RFC-1624,” Internet Request for Comments, vol. 1624, May
1994.
J. Robinson, “The Monet switch,” in Znternet Research Steering Group
Workshop Architectures for Very-High-Speed Networks; RFC-I 152,
Cambridge, MA, Jan. 24-26, 1990, p. 15.
R. L. Sites, Alpha Architecture Reference Manual. Burlington, MA:
Digital Press, 1992.
Y. Tamir and H. C. Chi, “Symmetric crossbar arbiters for VLSI
communications switches,” IEEE Trans. Parallel Distrib. Syst., vol. 4,
pp. 13-27, Jail. 1993.
A. Tantawy and M. Zitterbart, “Multiprocessing in high-performance IP
routers,” in Protocols for High-Speed Networks, 111 (Proc. IFIP 6.1/6.4
Workshop). Stockholm, Sweden: Elsevier, May 13-15, 1992.
M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable
high speed IP routing lookups, ” in Proc. ACM SIGCOMM’97, Cannes,
France, Sept. 14-18, 1997, pp. 25-37.

Isidro Castineyra received the MS. and Ph.D. degrees from the Massachu-
setts Institute of Technology, Cambridge.

He is currently with the Internet Research Department, BBN Technologies,
Cambridge, MA, as a Senior Scientist. His research centers on network
resource management and routing.

Tom Clarke received the B.S. degree from the Massachusetts Institute of
Technology, Cambridge.

He is currently with Avici Systems, Inc., Chelmsford, MA, as a Principal
Engineer, working on high-performance Internet routers. Previously he was
with BBN Technologies, Cambridge, MA, as a Principal Engineer, working
on the MultiGigabit router.

Lise Graham, photograph and biography not available at the time of pub-
lication.

Michael Hathaway, photograph and biography not available at the time of
publication.

Phil Herman, photograph and biography not available at the time of pub-
lication

Allen King received the B.A., M.A., and E.E. degrees from the Massachusetts
Institute of Technology, Cambridge.

He is currently with at Avici Systems, Inc., Chelmsford, MA, as a Con-
sulting Engineer, where he is the Architect for the toroidal mesh interconnect
of their terabit switch router. Prior to this, he was with BBN Technologies,
Cambridge, MA, as a Senior Scientist, where he designed portions of the
MultiGigabit Router and butterfly-type multiprocessor systems.

248 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6. NO. 3, JUNE 1998

Steve Kohalmi received the B.S. degree from Syracuse University, Syracuse, Joshua Seeger received the B.A. degree from the University of Rochester,
NY, and the MS. degree from the University of New Hampshire, Durham. Rochester, NY, and the Ph.D. degree in mathematics from Temple University.

He is with BBN Technologies, Cambridge, MA, as a Senior Engineer, where Philadelphia, PA.
he is responsible for IP and ATM QoS implementation of the MultiGigabit He is with BBN Technologies, Cambridge, MA, as Director of Internet-
router. work Research. His research interests have included multivariate probability

distributions, error correction coding, routing algorithms for large networks,
and network performance management.

Tracy Ma, photograph and biography not available at the time of publication

Michael Sollins, photograph and biography not available at the time of
publication.

John Mcallen received the A.B degree from Harvard University, Cambridge,
MA.

He is a Software Engineer with BBN Technologies, Cambridge, MA,
developing software and firmware for the MultiGigabit Router Forwarding
Engine. Prior to this, he was with Digital and Sun Microsystems, where he
worked on various network, processor, and cluster design projects.

‘kevor Mendez received the B.S. degree from the Massachusetts Institute of
Technology, Cambridge, MA.

He is currently with Cisco Systems, Cambridge, MA, as a Software
Engineer. He was with BBN Technologies, Cambridge, MA, as a Scientist.

Walter C. Milliken (S’74-M’78) received the B.S. degrees (E.E. and C.S.)
from Washington University, St. Louis, MO, and the M.S. degree from
Stanford University, Stanford, CA.

He is with BBN Technologies, Cambridge, MA, as a Division Scientist,
where he is the Software and System Design Leader for the MultiGigabit
Router.

Steve Starch received the B.S. degree in physics from the State University
of New York, Stony Brook, in 1972.

He is with the Internetwork Research Department, BBN Technologies,
Cambridge, MA, as an Area Manager with management responsibilities for
research and development programs in such areas as high-speed routing and
advanced satellite networking.

Benjamin Tober received the B.A. degree from Brandeis University,
Waltham, MA.

He is with BBN Technologies, Cambridge, MA, as a a Staff Engineer.

Gregory D. Troxel received the S.B., S.M., E.E., and Ph.D. degrees from the
Massachusetts Institute of Technology, Cambridge

He is a Senior Scientist with BBN Technologies, Cambridge, MA, where he
is the Technical Leader for the QoS-Capable Bilevel Multicast Router project.

Ronald Pettyjohn (M’96) received the S.B.E.E. and S.M.E.E. degrees from
the Massachusetts institute of Technology, Cambridge.

He is presently with Argon Networks, Littleton, MA. Prior to this, he was
with BBN Technologies, Cambridge, MA, as a Lead Scientist, where he led the

David Waitzman received the B.S. degree from Carnegie-Mellon University,

group responsible for the implementation of the quad-SONET-OCI2C/ATM
Pittsburgh, PA.

line-card.
He is with D.E. Shaw & Company, L.P., Cambridge, MA, as a Software

Developer on their Farsight online brokerage project. He was previously
with BBN Technologies, Cambridge, MA, where he concentrated on network
management.

John Rokosz (S’92-M’95) received the A.B. degree from Harvard University,
Cambridge, MA.

He is with the Internet Research Department, BBN Technologies, Cam-
bridge, MA, where he leads hardware research activities and is the Hardware Scott Winterble, photograph and biography not available at the time of
Manager for the MultiGigabit Router. publication.

