
1

Experimental QoS Performances of Multimedia Applications∗

∗ This work is sponsored by the US DARPA under Contract No. F30602-96-C-0315.

Phil Yonghui Wang, Yechiam Yemini, Danilo Florissi
{yhwang, yemini, df }@cs.columbia.edu

Computer Science Dept
Columbia University, New York, NY10027
Tel: (212) 939-7000 Fax: (212) 939-7181

John Zinky
jzinky@bbn.com
BBN Technologies
10 Moulton Street

Cambridge, MA 02138

Patricia Florissi
patricia@smarts.com

SMARTS
14 Mamaroneck Avenue
White Plains, NY10601

Abstract –Several QoS provisioning mechanisms such as
Differentiated Services (Diffserv) and Integrated Services
(Intserv) have been recently devised and applied to bring
Quality of Service (QoS) to the Internet. This paper studies
end-end QoS performances of two QoS-demanding
applications using different transport protocols. Both
applications are tested in a real network environment, with
end-end QoS provisioning by Intserv. They use QoSockets, a
new extension of QoS specification and management to the
Berkeley sockets. Their performances in terms of throughput,
delay, jitter, and loss are measured under a number of test
cases combining several factors: (1) single or multiple flows,
with or without resource reservations; (2) normal, heavy, or
overloaded scenarios; (3) uni- or bi-directional streams; and
(4) TCP or UDP protocols. The experimental results show that
the performances of two applications with the Intserv resource
reservations are significantly improved, but not always
guaranteed. It is also shown that UDP applications are able to
get the requested QoS while TCP applications may not because
of the nature of its bi-directional traffic flow. The paper
provides detailed interpretation of the results and provides
generic conclusions on application QoS.

 I. INTRODUCTION

Two major mechanisms to support delivery of Quality of
Services (QoS) have been proposed by the IETF:
Differentiated Services (Diffserv) [7] and Integrated
Services (Intserv) [3]. Diffserv is a packet-based priority
service that provides several types of premium or assured
services to meet differentiated needs of network
applications. Intserv is a flow-based resource reservation
service, which employs guaranteed and controlled load
services to support end-end mission-critical services such as
real-time service. Intserv uses RSVP (ReSerVation
Protocol), the resource reservation signaling protocol [2].

This paper deals with the end-end QoS delivery from the
perspective of an application. An application must not only
reserve its required QoS, but also monitor and respond to
the actual QoS delivered because some intermediate
networks may not strictly guarantee the QoS requested.

QoSockets (Quality of Service Sockets) [1] is an
extension of the Berkeley socket mechanisms to support

provisioning and management of end-end QoS. A QoS-
demanding application can use QoSockets to request end-
end service with specified QoS guarantees. The QoS
specifications are used to negotiate and allocate network
resources, as possible -- in a manner that shelters the
application from the underlying resource allocation
mechanisms, and to generate real-time instrumentation to
monitor the actual QoS delivered by the network. This QoS-
management instrumentation enables QoS managers using
SNMP (Simple Network Management Protocol) [13] to
access the automatically generated QoS MIBs (Management
Information Bases) [14]. In particular, an application using
QoSockets can monitor the actual performance and adapt
then to changing network conditions dynamically.

This paper describes experiments in applying QoSockets
for QoS provisioning to two applications. The first is
NetVideo [10], a UDP-based real-time video tool; and the
other is DIRM [6], a TCP-based resource management
middleware for socket-based and CORBA[4]-based
applications. Both applications were originally developed
using sockets and have been easily modified to use
QoSockets and take advantage of its powerful infrastructure.

Each application is tested under three traffic conditions
with varied flow demands and reservation scenarios. Each
has its own testbed, consisting of two sub-networks with
heterogeneous system environments bridged by a
“bottleneck” link between two RSVP-aware routers. Intserv
is used to provide end-end resource reservations in the
network.

The experimental results show that these applications
demanding QoS gain significant performance improvements
through the use of QoSockets. NetVideo runs fairly steadily,
but DIRM has a very complex behavior because its traffic is
bi-directional and of large and varied-size messages, and its
reservations do not cover the entire traffic route.

In addition to the guaranteed data flow, a typical TCP
communication such as DIRM requires a guaranteed
acknowledgement (ACK) flow. QoS provisioning services
are usually unidirectional and present difficulties for the
allocation of the reverse ACK traffic. In general, this fact
makes QoS guarantees for TCP applications more
challenging.

2

This paper is organized as follows. QoSockets is
introduced in Section 2 with its architecture, QoS
characterization model, QoS provisioning, and QoS
management. Section 3 describes two multimedia
applications, NetVideo and DIRM, with their QoS
requirements and experimental environments (testbeds). The
experimental data (throughput, delay, jitter, and loss) are
detailed and discussed in Section 4. Finally, Section 5
presents conclusions on QoS- demanding applications and
QoS provisioning services.

 II. QoSockets

Berkeley sockets are widely used in network
programming, but by themselves do not bring QoS
provisioning to applications. QoSockets [1] extends
Berkeley sockets to enable applications to specify and
manage QoS. QoSockets provides mechanisms to provision
QoS by allocating network resources to applications, and by
monitoring QoS delivery performance in real-time.

Figure 1: QoSockets Architecture

A. Architecture & Operations

The overall architecture of QoSockets is depicted in
Figure 1. An application provides specifications of its
desired QoS. QoSockets compiles the specifications into
respective transport protocols and mechanisms, when
possible. Protocols supported by QoSockets include TCP,
UDP, RSVP, ST-II, and ATM [5]. QoSockets also generates
instrumentation to monitor the QoS delivered to the
application and constructs appropriate QoS Management
Information Bases (MIBs) to access this instrumentation.

QoSockets supports the following functions:
• Connection Establishment: initialize and establish

connections and reserve the application QoS
requirements specified.

• Selection of Protocols: select a specific transport
protocol and bind a socket address to a QoSockets
connection endpoint.

• Monitoring QoS delivery: monitor the QoS performance
of applications communications, and store the sampled
performance statistics into QoS MIBs.

• QoS MIB Access: access values of QoS MIBs using
SNMP-based interfaces.

Figure 2 shows how QoSockets operates above an
underlying RSVP service. QoSockets shelters applications
from the complexity of the interface details of the specific
QoS provisioning mechanism. One could use the same
QoSockets specification for RSVP and ATM.

Figure 2: QoSockets and Intserv/RSVP

Figure 3 shows how QoSockets works with QoS MIBs.
When an application establishes a QoSockets connection,
QoSockets starts collecting the status and performance data
related to the connection and its traffic, including QoS
specifications, connection duration, transmission rates,
delays, etc. It also detects QoS violation by analyzing the
QoS requirements and real collected performance statistics.

Figure 3: QoSockets and MIB

The data stored in the QoS MIBs are accessed inside the
application or from SNMP agents using remote SNMP
network managers. Thus, QoSockets allows applications to
control and adapt to QoS performance by using application
exception handling procedures (locally) or by requiring
assistance from network managers (remotely).

B. QoS Characterization

The main types of QoS attributes in QoSockets are
throughput, delay (and jitter), and reliability. In addition,
QoSockets introduces the coerced flag, to coerce compatible
QoS requirements of the sender and the receiver of a traffic
stream.

1) Throughput

3

QoSockets defines four parameters to represent the
network throughput.
• min_rate: Lower bound of transmission rate;
• max_rate: Upper bound of transmission rate;
• peak_rate: Upper bound of transmission peak rate;
• size: Maximal size of transmitted messages.

Each rate is number of messages conveyed per second.
The throughput is the product of the rate (min_rate,
max_rate, or peak_rate) multiplied by the message size
(bytes). For the ith traffic stream, its throughput is computed
as (in bytes/s):

Minimal: tim = min_ratei × sizei (1a)
Maximal: tiM = max_ratei × sizei (1b)
Peak: tip = peak_ratei × sizeI (1c)

2) Delay & Jitter
QoSockets defines four parameters related to the

transmission delay and jitter.
• min_delay: Lower bound of transmission delay;
• max_delay: Upper bound of transmission delay;
• int_delay: Maximal time elapsing between two received

messages;
• jitter: Maximal delay variance of two consecutive

messages
These parameters are metered in milliseconds.

3) Reliability
QoSockets defines the reliability using three major

parameters.
• loss: Percentage of messages lost;
• rec_time: Maximal time elapsed for recovering a

disrupted connection;
• permt: Permutable flag indicating if messages can be

delivered out of order.
QoSockets also provides other parameters (e.g.,

connection failures) used for monitoring network
reliability.

4) Coerced flags
QoSockets allows both the sender and the receiver of a

stream to define their own QoS parameters. Sometimes, the
QoS parameters at each end conflict with each other and
need to be coerced (downgraded) to a commonly accepted
level. Coerced flags are therefore used to indicate which
parameters should be coerced. If no coercion is requested,
both sender and receiver use their own parameters to request
QoS, which may cause resource allocation failure in case of
incompatibility.

For example, suppose two ends of a traffic stream want
to coerce their peak rates (by setting coerce_peak_rate =
True), and the rates of the sender and the receiver are 64 and
60 KBps (kilobytes per second) respectively. QoSockets
coerces them to the minimal common rate of 60 KBps, and
notifies the new rate to both sender and receiver. The sender
effectively downgrades its peak rate to 60 KBps as a result.

C. QoS Provisioning

QoSockets provides application QoS by requesting
resource allocations of the underlying service providers such
as Intserv, Diffserv, and ATM. The current implementation
includes ATM and RSVP. RSVP, also known as “soft
mode” , is a reservation protocol of Intserv and available for
TCP and UDP traffic (referred here as R-TCP and R-UDP
respectively).

In the soft mode, QoSockets maps the application QoS
requirements to the Intserv QoS, and requests the
reservation to the RSVP daemons at the end hosts of senders
and receivers. The daemons propagate the QoS request to
the resources (hosts and routers) along the flow route. If a
resource reservation succeeds, the application network
communication associated with the reservation may meet its
QoS demands. When a resource reservation fails, QoSockets
returns a message to the application. Combining this
message with the QoS MIB contents, an application can
change its QoS requirement to adapt its reservation to
available resources.

Experience with QoSockets shows that, even when the
reservation succeeds, the end-end effective QoS may drift
from the original negotiated QoS. There are several reasons
for this. (1) Not every intermediate equipment involved
support reservations. For example, it is common that a
workstation requesting an RSVP reservation is in fact
connected to a shared best-effort Ethernet hub and the hub
connected to an RSVP router. (2) Not all applications
comply with their reservations. The application may
actually send more packets than the reservation it requested
and incur possibly large packet delays and losses. (3)
Equipment may fail. Applications have to see disruptions of
QoS and need to choose alternative routes.

 III. QoS APPLICATIONS AND TESTBEDS

This section introduces two multimedia applications: the
real-time video tool NetVideo [10] and the resource
management system DIRM [6]. Their core programs are
respectively NV and IIOPGW (IIOP GateWay, the resource
manager of DIRM), in which the socket application program
interface (API) has been replaced for the QoSockets API.

To investigate issues facing provisioning protocols in
providing QoS, each applications uses a different transport
protocol. NetVideo uses UDP, and DIRM uses TCP.
Moreover, the authors developed the traffic generation
program TG (Traffic Generator) to generate the reference
traffic of TCP or UDP for the tests.

The testbeds of NetVideo and DIRM are similar in
network layout, but very different in how they are used.

4

A. Similarities of the Two Testbeds

The two testbeds are shown respectively in Figure 4
(NetVideo) and Figure 5 (DIRM). Each testbed is not
isolated butrather constructed to be a part of the Columbia
University Computer Science Department network.

1) Network Layout
Each testbed consists of two local sub-networks:

128.59.10.0/24 (Subnet 10) and 128.59.11.0/24 (Subnet 11),
and between them are two Cisco 2514 routers which are
equipped with Cisco IOS 11.2 and provide RSVP support
by Weighted Fair Queuing (WFQ). The two routers are
connected via a serial line (using another sub-network
192.168.1.0/24) to create a “bottleneck” bandwidth (1.5M)
between Subnets 10 and 11.

2) Hosts and Routers
Two hubs connect the hosts, each implementing a

separate sub-network. The two workstation hosts are a Sun
SPARCstation 20 (ws0) and a Sun SPARCstation 5 (ws1),
equipped with the Class Based Queuing (CBQ) patch to
boost their Solaris 2.5.1 kernels with traffic control support.
The Sun RSVP package SolarisRSVP 0.5.0 [8] is also
installed. The two PC hosts are used only in the DIRM
testbed: pc0, which is an IBM Thinkpad 760 (Pentium
166MHz), and pc1, which is a DELL Dimension XPS R400
(Pentium II 400MHz). Both PCs are equipped with Linux
2.0.36 and the Linux port of the RSVP r4.2a3 package [9].
(Although these hosts are not the latest devices, they are fast
enough to manage the traffic and to congest the routers
connected by the low bandwidth serial line).

3) Traffic Flows
In each experiment, two kinds of tunable traffic flows

are generated between the two subnets for comparisons. The
main traffic flow is generated by the pair of NV or IIOPGW
programs while the reference traffic flow is generated by the
pair of TG programs.

The main traffic flow may be reserved (with QoS) or
unreserved (without QoS) and use UDP or TCP transport,
while the reference traffic flow is always unreserved (either
UDP or TCP).

4) Test Cases
A typical test case of an experiment is composed of: (1)

reserved and/or unreserved main traffic flows; (2) normal,
heavy, or overloaded traffic condition; (3) single or multiple
flows; and (4) bi-directional TCP or unidirectional UDP.
(Table 1 in next section lists all the test combinations.)

The Control-Load (CL) service of Intserv is used to
provide applications with QoS (resource reservation).
Otherwise, applications tested without QoS provisioning use
the Best-Effort (BE) service.

5) QoS Performance Monitoring
The NV and IIOPGW applications are monitored by the

QoSockets instrumentation in real time. All of the
performance parameters (including throughput, delay, jitter,
and loss) are sampled at the receiver end of a flow, while the
throughput is sampled at the sender end. Throughput and
loss are computed from total numbers of messages sent and
received, which are sampled and reset every 0.5 second. The
delay and jitter are sampled per message transmitted.

B. NetVideo Testbed

NetVideo [10] is a multimedia tool for the Internet that
captures, transfers, and receives real-time video pictures
using UDP. The proposed version employs the QoSockets
API and requests QoS for UDP transport (R-UDP).

The two NV programs (sender and receiver) run on two
workstations: ws0 and ws1 (see fig 4). Ws1 acts as a video
sender, is equipped with a video camera, and captures real-
time pictures at 30 frames per second, while ws0 acts as a
video receiver and displays those pictures received from
ws1 on the screen. The main traffic flow of NetVideo, is
depicted in Figure 4 along the route marked as “UDP
Traffic” .

Because the NetVideo sender can use bandwidth up to
1024 kilobits per second (kbps), its transmitting rate can be
bigger than 30 frames/s (each frame is roughly 1280 bytes).
In this test, it sends up to 80 frames/s when its bandwidth is
set to 640 kbps.

Figure 4: NetVideo testbed

The two TGs run on the same hosts as the NV sender
and receiver, and create a UDP reference traffic flow in the
same direction as the main traffic flow. The TG sender
sends a 1024-byte message at an approximate rate of
530kbps, but the receiving rate of the TG receiver may vary
under different traffic condition.

1) QoS Requirements
User requirements

Rates: 60~80 frames/s Delay: 0~100 ms
Jitter: <50 ms Loss: <5%

Max frame length: 1280 Byte Recovery time: 5000 ms
Mapped QoSockets parameters

Throughput
min_rate= 60 max_rate=80 peak_rate=100 size=1280

5

Delay
min_delay=0 max_delay=100 int_delay=50

Reliability
rec_time=5000 loss=5 permt=False

Coerced flags
All coerced flags are set to TRUE.

2) Traffic Profiles
NV

Protocol: UDP Network Service: CL or BE
Rate (kbps): 614.4 Peak (kbps): 1024
Message size (B): 1280

TG
Protocol: UDP Network Service: BE
Rate (kbps): 540 Message size (B): 1024

C. DIRM Testbed

DIRM [6] develops a high-level API that allows stream-
based (socket) and object-based (CORBA [4]) applications
to acquire QoS. Per application request, DIRM allocates and
manages network resources (e.g., bandwidth) dynamically
using the IIOPGW resource manager. IIOPGW uses the
QoSockets over TCP (R-TCP) to request the resource
allocation for its stream traffic.

Figure 5 is a typical scenario of DIRM, where Slideshow
is a client-server sample Java application using CORBA.
The Slideshow server, a CORBA object service
implementation on pc1, manages a repository of images.
The Slideshow client, a CORBA client application on pc0,
requests the images through its ORB (Object Request
Broker) and then displays them on the screen. Two IIOPGW
programs on ws0 and ws1 run as IIOP gateways and
establish a “bridge” between the ORBs of pc0 and pc1. The
bridge provides QoS guarantee to the traffic between
Slideshow server and client.

Figure 5: DIRM testbed

When starting, the pc0 client makes an object request for
the image service to its local ORB, which forwards the
request to the ws0 (local) IIOPGW at ws0. Ws0 processes
and transfers it to the ws1 (remote) IIOPGW. Ws1 processes
and transfers it to the pc1 server. Pc1 processes this request
and then requested image to pc0 along the reserve path of
the client request.

The IIOPGWs at ws0 and ws1 make two bandwidth
reservations for the IIOP connections between them. The

main traffic flow between two IIOPGWs is thus protected in
the center of the path transferring images from pc1 (the data
sender) to pc0 (the data receiver). The whole path is labeled
with “TCP Traffic” in Fig. 5 and passes two-way traffic.

Two TG programs also run on ws1 and ws0, and create a
competing TCP stream along the same route as the main
traffic flow. This is the reference traffic flow, without
reservation.

One thing to be mentioned here is that IIOPGW
transmits a whole image each time, from 18 to 58 kilobytes
(KB), and resulting in big bursting rates for the main traffic
flow. Its message size is consequently much bigger than that
of NV (1280 bytes) and TG (1024 bytes).

1) QoS Requirements
User requirements

Slides: 1~3 images/s Delay: 100~500 ms
Jitter: <250 ms Loss: 0
Max message size: 60000 bytes Recovery time: 5000 ms

Mapped QoS parameters
Throughput

min_rate= 1 max_rate=1 peak_rate=3 size= 60KB
Delay

min_delay=100 max_delay=500 int_delay=250
Reliability

rec_time=5000 loss=0 permt=False
Coerced flags
All coerced flags are set to TRUE.

2) Traffic Profiles
I IOPGW

Protocol: TCP Network Service: CL or BE
Rate (kbps): 480 Peak (kbps): 1440
Message size (B): 60000

TG
Protocol: TCP Network Service: BE
Rate (kbps): 540 Message size (B): 1024

 IV. RESULTS AND ANALYSIS

The test performance is monitored in real-time inside
applications, using the QoSockets MIB management of NV
and IIOPGW and the TG monitoring module. The main
parameters studied are throughput, delay, jitter, and loss.
Throughput and loss are computed over time (t), and delay
and jitter are computed per message (m). These measures
are defined in Equations (2)-(5).
• Throughput

Ti(t) = ∑Pi (t) / ti (2)
Where Ti is the throughput (bits/s or bps) during the ith

sampling interval, ∑Pi(t) is the total bits of all received
messages within the ith interval, and ti is the time duration
of the ith interval.
• Loss

 Li (t) = 100 * (1- ∑Ri (t) / ∑Si (t)) (3)

6

Where Li is the loss rate (%) during the ith interval, and
∑Ri(t) and ∑Si(t) are respectively the total numbers of
received and sent messages within the ith interval.
• Delay

Di(m) = ri(m)- si(m) (4)
Where Di is the delay (millisecond) of the ith message

arrived, and ri and si are the arrival and sending timestamps
of the ith message.
• Jitter

 Ji(m) = |Di(m) – Di-1(m)|, while i>0 (5)
Where Ji is the jitter (absolute value in millisecond) of

the ith message, Di and Di-1 are the delays of two
consecutive messages computed from Equation (4).

Each testbed executes three experiments with different
traffic conditions, and is also subject to the background
traffic within the departmental network. (A) Normal,
involving a single flow of NV, IIOPGW or TG, with total
traffic close to 50% of the bottleneck bandwidth (1.5Mbps).
(B) Heavy, involving two flows: one NV or IIOPGW and
one TG, with total traffic close to 80% of the bottleneck. (C)
Overloaded, involving three flows: one NV or IIOPGW and
two TG, with total traffic beyond the bottleneck.

Test NetVideo (NV) DIRM(IIOPGW)
A. One-flow: Normal

A1 NV w/o QoS: UDP IIOPGW w/o QoS: TCP

A2 NV w/ QoS: R-UDP IIOPGW w/ QoS: R-TCP

A3 TG: UDP TG: TCP

B. Two-flow: Heavy

B1 NV w/o QoS and TG IIOPGW w/o QoS and TG

B1a NV w/o QoS: UDP IIOPGW w/o QoS: TCP

B1b TG: UDP TG: TCP
B2 NV w/ QoS and TG IIOPGW w/ QoS and TG

B2a NV w/ QoS: R-UDP IIOPGW w/ QoS:R-TCP

B2b TG: UDP TG: TCP

C. Three-flow: Overloaded

C1 NV w/o QoS and 2 TG IIOPGW w/o QoS and 2 TG

C1a NV w/o QoS: UDP IIOPGW w/o QoS: TCP

C1b TG 1: UDP TG 1: TCP

C1c TG 2: UDP TG 2: TCP

C2 NV w/ QoS and 2 TG IIOPGW w/ QoS and 2 TG

C2a NV w/ QoS: R-UDP IIOPGW w/ QoS:R-TCP

C2b TG 1: UDP TG 1: TCP

C2c TG 2: UDP TG 2: TCP

Table 1 Test cases of NetVideo and IIOPGW experiments

For each traffic condition, each experiment performs 2–
3 tests, as listed in Table 1. For example, two tests, B1 and
B2, study heavy traffic condition. Both B1 and B2 have two
flows (e.g., B1a and B1b). For NetVideo, B1a is the

unreserved main UDP flow generated by NV (without
QoS), B2a is the reserved one (with QoS), while both B1b
and B2b are the reference UDP flows generated by TG
(without QoS).

The measurements of the two experiments are presented
in this section, followed by analysis and discussions. The
figures in this section depict the average experimental data
sampled by NV, IIOPGW and TG. In the throughput figures
(Figures 6 and 9), the light gray column represents an
average value of the flow sender whilst the dark gray
column represents the one of the flow receiver. Two
columns drawn together, one light and the other dark, reflect
the throughput rate difference of a flow in one test. In other
figures (of loss, delay and jitter), only dark columns are
drawn (from the measurements at the receivers).

A. NetVideo
In this experiment (for NV and TG) at least 100

samples of throughput and loss are computed, while
2000–4000 samples of delay and jitter (per message) are
computed (varying for each test).

1) Throughput
Figure 6 shows the average throughput rates (sending

and receiving) for all tested flows. Looking at these rate
columns, the following characteristics about throughput are
concluded.
• For reserved NV flows (A2, B2a and C2a), the sending

and receiving rates match. For unreserved flows of both
NV (A1, B1a and C1a) and TG, their rates do not match
and do show considerable disparity particularly under
overloaded traffic.

• For NV flows, the rates of reserved flows (A2 and B2a)
under normal and heavy traffic conditions are a bit less
than those of unreserved flows (A1 and B1a), due to a
tiny overhead by the Solaris traffic-control kernel
scheduling reserved flows. As expected, under
overloaded traffic condition, the receiving rate of
reserved flow (C2a, 520kbps) is twice that of the
unreserved one (C1a, 250kbps).

• As the traffic condition varies from normal (A), heavy
(B) and overloaded (C), reserved NV flows have steady
throughput rates close to 530kbps, whereas unreserved
NV and TG flows reduce their receiving rates from 570
(A1) to 250 kbps (C1a).

• Under the overloaded traffic condition, the reserved
C2a flow has similar sending and receiving rates
(520kbps), while the unreserved C1a and TG flows
(C1b and C1c, C2b and C2c) do experience significant
disparity between sending and receiving rates.
Moreover, TG flows C2b and C2c become worse and
even experience -200kbps disparity when compared to
flows C1b and C1c, which experience only -120kbps
disparity.

7

(A) Single flow tests (normal), each column group (gray and dark)
represents the sending and receiving rates of one tested flow.

(B) Two-flow tests (heavy), the left 2 column groups represent one NV
and one TG flow rates when NV is tested without QoS whilst the
right 2 groups represent their rates when NV is with QoS.

(C) Three-flow tests (overloaded), the left 3 column groups represent one
NV and two TG flow rates when NV is tested without QoS whilst the
right 3 groups represent their rates when NV is with QoS

Figure 6: Throughput rates of NetVideo flows

2) Loss
Message loss is very dependent on the throughput, and

increases as the gap between sending and receiving rates of
a flow increases. Figure 7 shows the average loss rates for
all tested flows, as sampled at the receiving ends.
• Under normal and heavy traffic conditions, both

reserved and unreserved flows (except A1) do not lose
messages.

• Under the overloaded traffic condition, the reserved
C2a flow has zero loss, while the unreserved C1a gets a
big loss rate (47%) and TG flows have loss rates 25%
(C1b and C1c) and 40% (C2b and C2c).

Figure 7: Message loss rates of NetVideo

3) Delay
Figure 8 shows the average delay values for all flows, as

sampled per message at the receiving ends. From this figure,
one concludes the following.

Figure 8: Message delays of NetVideo

• As the traffic condition varies from normal (A) to
heavy (B) and overloaded (C), reserved NV flows have
steady delays (<30ms), whereas unreserved NV and TG
flows increase sharply their delays.

• Under the overloaded traffic condition, the reserved
C2a has still a low delay (25ms), but the unreserved
C1a and TG (C1b and C1c, C2b and C2c) flows have
delays 10–30 times higher. TG flows C2b and C2c have
delays up to 720 ms, larger than flows C1b and C1c do
(600ms).

4) Jitter
Figure 9 shows the average jitter values for all tested

flows, as computed from message delays at the receiving
ends. Similar to delay, one concludes the following about
jitter.
• As the traffic condition varies from normal (A) to

heavy (B) and overloaded (C), reserved NV flows have
bound jitter (<10ms), whereas unreserved NV and TG
flows increase largely their jitter (e.g., C1a and C1c).

• Under the overloaded traffic condition, similar to the
delay, the reserved C2a has jitter smaller than the
unreserved C1a has. Moreover, different from what
happens for the delay, TG flows (C2b, C2c) have also

NetVideo Throughputs

0

100

200

300

400

500

600

A1 A2 A3

R
at

e
(k

bp
s)

Sending

Receiving

NV w/o QoS NV w/ QoS TG

NetVideo Throughputs

0

100

200

300

400

500

600

C1a C1b C1c C2a C2b C2c

R
at

e
(k

b
p

s)

Sending

Receiving

NV w/ QoSNV w/o QoS TG 1 TG 2 TG 1 TG 2

NetVideo Throughputs

0

100

200

300

400

500

600

B1a B1b B2a B2b

R
at

e
(k

b
p

s)

Sending

Receiving

NV w/ QoSNV w/o QoS TG TG

N e tV id e o L os s

0

5

10

15

20

25

30

35

40

45

50

A 1 A2 A 3 B1 a B 1b B2a B 2b C 1a C1b C 1c C 2a C2 b C 2c
Te s ts

Lo
ss

(%
)

NetVideo Delay

0

100

200

300

400

500

600

700

800

A1 A2 A3 B1a B1b B2a B2b C1a C1b C1c C2a C2b C2c
Tests

Ti
m

e(
m

s)

8

lower jitter for the reserved NV (C2a), when compared
to the flows C1b and C1c. The reserved flow (C2a)
jitter (5ms) is much smaller than that of the unreserved
C1a (115ms), indicating that traffic control for the main
traffic may help in jitter reduction even for the
reference traffic.

Figure 9: Message jitters of NetVideo

B. DIRM

DIRM tests are similar to NetVideo. At least 200
samples of throughput and loss are computed for IIOPGW
and TG while 1000–10000 samples are computed for delay
and jitter. It is noted that no message is lost in all tests
because all flows here are TCP-based.

1) Throughput
The average throughput rates of DIRM tested flows are

shown in Figure 10, and each flow has similar sending and
receiving rates due to TCP control.
• For the reserved IIOPGW flows (A2, B2a and C2a), the

sending and receiving rates match. For unreserved
IIOPGW (A1, B1a and C1a) and TG flows, their rates
do not match completely without QoS provisioning.

• Under normal traffic condition, there is no obvious
difference of throughput rate between the reserved (A2)
and unreserved (A1) IIOPGW flows. But, under heavy
and overloaded traffic conditions, the reserved B2a and
C2a flows have rates higher (20%) than those of the
unreserved B1a and C1a.

• As the traffic condition varies from normal (A) to
heavy (B) and overloaded (C), all of reserved IIOPGW,
unreserved IIOPGW and TG flows reduce somewhat
their throughput rates.

Here one notes that the throughput decreases as the
traffic condition varies from normal to heavy and
overloaded. It is natural that, because of no reservation, TG
flows reduce their throughputs as the network traffic
increases.

But, why do the reserved IIOPGW flows (B2a and C2a)
have their throughput reduced as well? The reason is a bit
complicated, and deferred until the next section
“Discussion”.

(A) Single flow tests (normal), each column group (gray and dark)
represents the sending and receiving rates of one tested flow.

(B) Two-flow tests (heavy), the left 2 column groups represent one
IIOPGW and one TG flow rates when IIOPGW is without QoS whilst
the right 2 groups represent their rates when IIOPGW is with QoS.

(C) Three-flow tests (overloaded), the left 3 column groups represent one
IIOPGW and two TG flow rates when IIOPGW is without QoS whilst
the right 3 groups represent their rates when IIOPGW is with QoS.

Figure 10: Throughput rates of DIRM flows

2) Delay
Figure 11 shows the average delay values sampled from

all tested flows in the DIRM experiment.
• As the traffic condition varies from normal (A) to

heavy (B) and overloaded (C), reserved IIOPGW,
unreserved IIOPGW, and TG flows increase their
delays.

• Under heavy and overloaded traffic conditions, the
reserved IIOPGW (C2a) flow has smaller delay than the
unreserved IIOPGW (C1a). The TG flows have similar
delays (B1b vs. B2b, C1b vs. C2b and C1c vs. C2c).

NetVideo Jitter

0

20

40

60

80

100

120

140

A1 A2 A3 B1a B1b B2a B2b C1a C1b C1c C2a C2b C2c

Tests

T
im

e
(m

s)

IIOPGW Throughputs

0

100

200

300

400

500

600

B 1a B1b B2a B2b

R
at

e
(k

b
p

s)

S ending

Receiving

TGTGIIOPGW w/o QoS IIOPGW w/o QoS

IIOPGW Throughputs

0

100

200

300

400

500

600

C1a C1b C1c C2a C2b C2c

R
at

e
(k

b
p

s)

Sending
Receiving

IIOPGW w/ QoSIIOPGW w/o QoS TG 1 TG 1 TG 2TG 2

IIOPGW Throughputs

0

100

200

300

400

500

600

A 1 A 2 A 3

R
at

e
(k

b
p

s)

Sending

Rec eiving

IIOPGW w/o QoS IIOPGW w/ QoS TG

9

Figure 11: Message delays of DIRM

It is reasonable that both unreserved IIOPGW and TG
increase their delays, as the traffic condition becomes heavy
or overloaded. Why do the reserved IIOPGW flows (B2a
and C2a) have big delays? The reason is that the average
size of IIOPGW messages is 38 KB, much bigger than the
TG message size of 1 KB. One can verify this statement by
noting that, under normal condition, the delays of both
unreserved (A1) and reserved (A2) IIOPGW flows are far
bigger than that of the TG flow (A3). With a reservation the
C2a flow (IIOPGW) has a smaller delay than TG flows C2b
and C2c as expected. Also as expected, TG flows increase
sharply their delays from B2b to C2b and C2c.

Figure 12: Message jitters of DIRM

3) Jitter
Figure 12 shows the average jitter values for all tested

flows.
• As the traffic condition varies from normal (A), heavy

(B) to overloaded (C), reserved IIOPGW, unreserved
IIOPGW, and TG flows increase their jitter.

• Under heavy and overloaded traffic conditions, the
reserved C2a has smaller jitter than the unreserved C1a.
But, unreserved TG flows has similar and small jitter.

Both reserved and unreserved IIOPGW flows have
bigger jitter than TG flows. While TG flow has a fixed
message size (1 KB), an IIOPGW flow message size is not
only bigger (38 KB at average) but also varies from 18 to
58 KB. As a consequence, the transmitting time of an
IIOPGW message is variable and longer than TG, resulting

in a larger jitter. The jitter under normal load shows this fact
because both unreserved (A1) and reserved (A2) IIOPGW
flows have much bigger jitter than TG (A3).

C. Discussions

1) NetVideo
The NetVideo experiments show that the reserved NV

flows have obtained their requested QoS. Even when the
traffic condition shifts from normal to overloaded, the
reserved flows behave steady throughput, with low delay
and jitter, and without message loss. In contrast, the receiver
of the unreserved NV flow C1a receives only 50% of the
sending rate, resulting in 47% message loss.

2) DIRM
The DIRM experiments show a different set of results.

The Intserv reservations improve but do not guarantee the
IIOPGW performances. All traffic flows (reserved or
unreserved IIOPGW and TG) do not experience any
message loss, but their TCP segments may be internally
dropped (and re-transmitted). The drops are used to adjust
the congestion window to reduce the flow throughput as the
traffic load increases.

It is very important to notice, however, that a reserved
DIRM/IIOPGW flow experiences higher throughput and
lower delay and jitter than an unreserved flow, as observed
previously.

DIRM has several aspects that contribute to its worse
QoS performance. (1) DIRM generates bi-directional TCP
traffic whereas NetVideo has only unidirectional UDP. (2)
DIRM/IIOPGW transmits large and variable-size messages
(from 18 to 58 KB) (may cause big burst rate and heavy IP
packet fragmentation), whereas NetVideo transmits similar-
size messages (roughly 1280 bytes). (3) DIRM reservations
cover only the main traffic flow portion and not the entire
traffic route, while NetVideo reservations are all end-end.

Finally, DIRM is a bit more complex than NetVideo.
DIRM integrates a group of programs running on different
platforms: IIOPGW and TG (C/C++) programs on Solaris,
and Slideshow (Java) programs on Linux, while NetVideo
has NV and TG (C/C++) on Solaris.

3) TCP, UDP and QoS Provisioning
There are important reasons why TCP and UDP

protocols affect the QoS of their flows differently. UDP
creates a unidirectional data flow, while TCP creates a bi-
directional flow, one direction for data (originated from the
sender) and the other for ACKs (originated from the
receiver). In fact, the TCP slow-start and congestion
avoidance mechanism [15-17] at the sender end monitors
ACK packets for traffic congestion control, and use this
information to decide the data transmission rate.

Current QoS provisioning services, such as Diffserv and
Intserv/RSVP, protect unidirectional streams. That is the

IIOPGW Delay

0

100

200

300

400

500

600

700

800

A1 A2 A3 B1a B1b B2a B2b C1a C1b C1c C2a C2b C2c

Tests

T
im

e
(m

s)

IIOPGW Jitter

0

50

100

150

200

250

300

350

A 1 A2 A 3 B 1a B 1b B2a B 2b C1a C1b C1c C2a C2b C2c

Te sts

T
im

e
(m

s)

10

main reason why UDP applications like NetVideo get better
QoS. For a TCP application, this one-way resource
provisioning guarantees only the data packets, while the
ACKs are not guaranteed and thus may be delayed or even
lost.

Once ACKs do not arrive in time, the sender slows or
stops transmitting data packets, and even restarts the slow-
start mechanism if delays are larger than the timeout. The
net result is the reduction of the TCP throughput, as
observed in the IIOPGW flow.

 V. CONCLUSIONS

This paper describes two sets of experiments in which
two different applications have been extended to support
QoS using QoSockets and tested in a real network
environment. Their performances provide us an insight of
current Internet QoS behavior and challenges.
• Both UDP and TCP applications benefit from QoS

(e.g., resource reservations) and experience significant
improvement in their performances. Non-QoS flows
may get better performance during light traffic, because
there are no traffic control overheads, but suffer much
worse behavior under heavy or overloaded traffic.

• QoSockets is able to map the generic QoS requirements
of applications, very effectively, onto specific QoS
provisioning mechanisms in a manner transparent to the
applications. In addition, QoSockets generates QoS-
monitoring instrumentation of real-time network
performances, which is very valuable for QoS
assurance, adaptation and management.

• TCP applications demanding QoS need more attention
of both end users and QoS provisioning mechanisms,
because these mechanisms do not guarantee bi-
directional traffic flows. The ACK stream needs
guarantee as the data stream does, otherwise, in case of
ACK delay or loss, the application QoS degrades.

• The DIRM experiment shows that the QoS of an
application is dependent not only on a particular service
but also on its own architecture. If the application
creates bi-directional traffic flows, transmits big size
messages, or includes complex software and hardware
components, the interactions with the QoS provisioning
mechanics have to be carefully designed. Otherwise,
they may impact the overall QoS performance.

Intserv and Diffserv are presently developed as central
QoS provisioning services in current networks. In order for
these mechanisms to become available for network
applications, it is necessary to create appropriate
middleware that can bridge the needs of applications with
network QoS services. QoSockets provides this function
by keeping processing overheads to a minimum (under 1%)
and enabling simple incorporation of access to QoS delivery
within applications, through minimal extensions of common
socket API.

ACKNOWLEDGEMENTS

The authors would like to thank Frank Bronzo at
GTE/BBN Technologies for his contribution in the IIOPGW
implementation.

REFERENCES

[1] Florissi, P., “QuAL: Quality Assurance Language” , Ph.D.
Thesis, Columbia University, 1996

[2] Zhang, L., Berson, S., Herzog, S. and Jamin, S., “Resource
ReSerVation Protocol (RSVP) – Version 1 Function
Specification” , Internet RFC-2205, 1997

[3] Braden, R., Clark, D. and Shenker, S., “ Integrated Services in
the Internet Architecture: Overview” , Internet RFC 1633,
June 1994

[4] Object Management Group, “The Common Object Request
Broker: Architecture and Specification” , Rev. 2.2, Feb. 1998

[5] ATM Forum, “ATM User-Network Interface Specification” ,
Version 3.1, 1994

[6] Zinky, J., Bakken, D. and Schantz R., “Architectural Support
for Quality of Service for CORBA Objects” , Theory and
Practice of Object Systems, January 1997.

[7] Blake, S., Black D., Carlson, M. Davies, E., Wang, Z. and
Weiss, W., “An Architecture for Differentiated Services”,
Internet RFC-2475, Dec. 1998

[8] Sun, Solaris RSVP/CBQ, ftp://playground.sun.com
/pub/rsvp/SolarisRSVP.0.5.0.tar.Z, Mar. 1998

[9] Wang, P.Y., Linux Port Of RSVP R4.2a3,
http://www.cs.columbia.edu/~yhwang/ftp/qos/rsvp, Aug.
1998

[10] Xerox Corporation, NetVideo, Version 3.3, 1994
[11] Demers,A., Keshav, S. and Shenker, S., “Analysis and

simulation of a fair queuing algorithm” , Proc. Of ACM
SIGCOMM, Austin, Texas, September 1989

[12] Floyd, S. and Jacobson, V., “Link-sharing and Resource
Management Models for Packet Networks”, Transaction on
Networking, V.3, N.4, August 1995

[13] SNMPv2 Working Group, “Protocol Operations for Versions
2 of the Simple Network Management Protocol (SNMPv2)”,
Internet RFC-1905, January 1990

[14] SNMPv2 Working Group, “Management Information Base
for Versions 2 of the Simple Network Management Protocol
(SNMPv2)” , Internet RFC-1907, January 1990

[15] Stevens, W., “TCP slow start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms” , Internet RFC
2001, January 1997

[16] Nagle, John, “Congestion Control in IP/TCP Internetworks”,
Internet RFC 896, Januray 1984

[17] Allman, M., Paxson, V. and Stevens, W., “TCP Congestion
Control’ , Internet RFC 2581, April 1999

