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Abstract —Several QoS provisioning mechanisms such as
Differentiated Services (Diffserv) and Integrated Services
(Intserv) have been recently devised and applied to bring
Quality of Service (QoS) to the Internet. This paper studies
end-end QoS performances of two QoS-demanding
applications using different transport protocols. Both
applications are tested in a real network environment, with
end-end QoS provisioning by Intserv. They use QoSockets, a
new extension of QoS specification and management to the
Berkeley sockets. Their performancesin terms of throughput,
delay, jitter, and loss are measured under a number of test
cases combining several factors. (1) single or multiple flows,
with or without resource reservations, (2) normal, heavy, or
overloaded scenarios; (3) uni- or bi-directional streams; and
(4) TCP or UDP protocals. The experimental results show that
the performances of two applications with the Intserv resource
reservations are significantly improved, but not always
guaranteed. It is also shown that UDP applications are able to
get the requested QoS while TCP applications may not because
of the nature of its bi-directional traffic flow. The paper
provides detailed interpretation of the results and provides
generic conclusions on application QoS.

[.  INTRODUCTION

Two major mechanismsto support delivery of Quality of
Services (QoS) have been proposed by the IETF:
Differentiated Services (Diffserv) [7] and Integrated
Services (Intserv) [3]. Diffserv is a packet-based priority
service that provides severa types of premium or assured
services to meet differentiated needs of network
applications. Intserv is a flow-based resource reservation
service, which employs guaranteed and controlled load
services to support end-end mission-critical services such as
red-time service Intserv uses RSVP (ReSerVation
Protocol), the resource reservation signaling protocal [2].

This paper dealswith the end-end QoS delivery from the
perspective of an application. An application must not only
reserve its required QoS, but aso monitor and respond to
the actual QoS ddivered because some intermediate
networks may not strictly guarantee the QoS requested.

QoSockets (Quality of Service Sockets) [1] is an
extension of the Berkeley socket mechanisms to support
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provisioning and management of end-end QoS. A QoS
demanding application can use QoSockets to request end-
end service with specified QoS guarantees. The QoS
specifications are used to negotiate and allocate network
resources, as possible -- in a manner that shelters the
application from the underlying resource allocation
mechanisms, and to generate real-time instrumentation to
monitor the actual QoS delivered by the network. This QoS-
management ingrumentation enables QoS managers using
SNMP (Simple Network Management Protocol) [13] to
access the automatically generated QoS MIBs (Management
Information Bases) [14]. In particular, an application using
QoSockets can monitor the actua performance and adapt
then to changing network conditions dynamically.

This paper describes experiments in applying QoSockets
for QoS provisioning to two applications. The first is
NetVideo [10], a UDP-based real-time video tool; and the
other is DIRM [6], a TCP-based resource management
middleware for socket-based and CORBA[4]-based
applications. Both applications were originaly developed
using sockets and have been easily modified to use
QoSockets and take advantage of its powerful infrastructure.

Each application is tested under three traffic conditions
with varied flow demands and reservation scenarios. Each
has its own testbed, consisting of two sub-networks with
heterogeneous system environments bridged by a
“bottleneck” link between two RSV P-aware routers. Intserv
is used to provide end-end resource reservations in the
network.

The experimental results show that these applications
demanding QoS gain significant performance improvements
through the use of QoSockets. NetVideo runsfairly steadily,
but DIRM has a very complex behavior because its traffic is
bi-directiona and of large and varied-size messages, and its
reservations do not cover the entire traffic route.

In addition to the guaranteed data flow, a typical TCP
communication such as DIRM requires a guaranteed
acknowledgement (ACK) flow. QoS provisioning services
are usudly unidirectiona and present difficulties for the
alocation of the reverse ACK traffic. In generd, this fact
makes QoS guarantees for TCP applications more
chalenging.
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This paper is organized as follows. QoSockets is
introduced in Section 2 with its architecture, QoS
characterization model, QoS provisoning, and QoS
management. Section 3 describes two multimedia
applications, NetVideo and DIRM, with their QoS
requirements and experimental environments (testbeds). The
experimenta data (throughput, delay, jitter, and loss) are
detailed and discussed in Section 4. Finaly, Section 5
presents conclusions on QoS- demanding applications and
QoS provisioning services.

1. QoSockets

Berkeley sockets are widely used in network
programming, but by themsdves do not bring QoS
provisioning to applications. QoSockets [1] extends
Berkeley sockets to enable applications to specify and
manage QoS. QoSockets provides mechanisms to provision
QoS by allocating network resources to applications, and by
monitoring QoS delivery performancein rea-time.
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Figure 1. QoSockets Architecture
A. Architecture & Operations

The overal architecture of QoSockets is depicted in
Figure 1. An application provides specifications of its
desired Q0S. QoSockets compiles the specifications into
respective transport protocols and mechanisms, when
possible. Protocols supported by QoSockets include TCP,
UDP, RSVP, ST-11, and ATM [5]. QoSockets also generates
instrumentation to monitor the QoS delivered to the
application and constructs appropriate QoS Management
Information Bases (MIBs) to access thisinstrumentation.

QoSockets supports the following functions:

e Connection Establishment: initialize and establish
connections and reserve the application QoS
requirements specified.

e Slection of Protocols sdect a specific transport
protocol and bind a socket address to a QoSockets
connection endpoint.

e Monitoring QoS delivery: monitor the QoS performance
of applications communications, and store the sampled
performance statistics into QoS MIBs.

e QoS MIB Access. access values of QoS MIBs using
SNMP-based interfaces.

Figure 2 shows how QoSockets operates above an
underlying RSVP service. QoSockets shelters applications
from the complexity of the interface details of the specific
QoS provisioning mechanisn. One could use the same
QoSockets specification for RSVP and ATM.
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Figure 2: QoSockets and Intserv/RSVP

Figure 3 shows how QoSockets works with QoS MIBs.
When an application establishes a QoSockets connection,
QoSockets starts callecting the status and performance data
related to the connection and its traffic, including QoS
specifications, connection duration, transmission rates,
delays, etc. It also detects QoS violation by analyzing the
QoS requirements and real collected performance statistics.
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Figure 3: QoSockets and MIB

The data stored in the QoS MIBs are accessed inside the
application or from SNMP agents using remote SNMP
network managers. Thus, QoSockets allows applications to
control and adapt to QoS performance by using application
exception handling procedures (locally) or by requiring
assistance from network managers (remotely).

B. QoS Characterization

The main types of QoS attributes in QoSockets are
throughput, delay (and jitter), and reliability. In addition,
QoSockets introduces the coerced flag, to coerce compatible
QoS requirements of the sender and the receiver of a traffic
stream.

1) Throughput



QoSockets defines four parameters to represent the

network throughpuit.

e min_rate: Lower bound of transmission rate;

e max_rate: Upper bound of transmission rate;

e peak rate: Upper bound of transmission peak rate;
e dze: Maximal size of transmitted messages.

Each rate is number of messages conveyed per second.
The throughput is the product of the rate (min_rate,
max_rate, or peak rate) multiplied by the message size
(bytes). For the ith traffic stream, its throughput is computed
as (in bytes/s): _ _ _

Minimal: t', = min_rate x size (1a)
Maximal: t\y =max_rat€ x sizée (1b)
Peak: t,, = peak_ratd x sizée (1¢)

2) Delay & Jitter
QoSockets defines four parameters related to the
trangmission delay and jitter.
e min_delay: Lower bound of transmission delay;
« max_deay: Upper bound of transmission delay;
e int_delay: Maximd time e apsing between two received
MESSages,
o jitter:
messages
These parameters are metered in milliseconds.

Maximal delay variance of two consecutive

3) Reliahility
QoSockets defines the rdiability using three major
parameters.
e loss: Percentage of messages|ogt;
e rec time Maxima time eapsed for recovering a
disrupted connection;
e permt: Permutable flag indicating if messages can be
ddlivered out of order.
QoSockets also provides other parameters (eg.,
connection failures) used for monitoring network
reliability.

4) Coerced flags

QoSockets allows both the sender and the receiver of a
stream to define their own QOS parameters. Sometimes, the
QoS parameters at each end conflict with each other and
need to be coerced (downgraded) to a commonly accepted
level. Coerced flags are therefore used to indicate which
parameters should be coerced. If no coercion is requested,
both sender and receiver use their own parameters to request
QoS, which may cause resource allocation failure in case of
incompatibility.

For example, suppose two ends of a traffic stream want
to coerce their peak rates (by setting coerce peak rate =
True), and the rates of the sender and the receiver are 64 and
60 KBps (kilobytes per second) respectively. QoSockets
coerces them to the minimal common rate of 60 KBps, and
notifies the new rate to both sender and receiver. The sender
effectively downgrades its peak rate to 60 KBps as aresullt.

C. QoSProvisioning

QoSockets provides application QoS by requesting
resource allocations of the underlying service providers such
as Intserv, Diffserv, and ATM. The current implementation
includes ATM and RSVP. RSVP, aso known as “soft
mode’, is areservation protocol of Intserv and available for
TCP and UDP traffic (referred here as R-TCP and R-UDP
respectivey).

In the soft mode, QoSockets maps the application QoS
requirements to the Intserv QoS, and requests the
reservation to the RSV P daemons at the end hosts of senders
and receivers. The daemons propagate the QoS request to
the resources (hosts and routers) along the flow route. If a
resource reservation succeeds, the application network
communication associated with the reservation may meet its
QoS demands. When aresource reservation fails, QoSockets
returns a message to the application. Combining this
message with the QoS MIB contents, an application can
change its QoS requirement to adapt its reservation to
available resources.

Experience with QoSockets shows that, even when the
reservation succeeds, the end-end effective QoS may drift
from the original negotiated QoS. There are several reasons
for this. (1) Not every intermediate equipment involved
support reservations. For example, it is common that a
workstation requesting an RSVP reservation is in fact
connected to a shared best-effort Ethernet hub and the hub
connected to an RSVP router. (2) Not all applications
comply with their reservations. The application may
actually send more packets than the reservation it requested
and incur possibly large packet delays and losses. (3)
Equipment may fail. Applications have to see disruptions of
QoS and need to choose alternative routes.

[11. QoS APPLICATIONS AND TESTBEDS

This section introduces two multimedia applications. the
red-time video tool NetVideo [10] and the resource
management system DIRM [6]. Their core programs are
respectively NV and 11OPGW (11OP GateWay, the resource
manager of DIRM), in which the socket application program
interface (API) has been replaced for the QoSockets API.

To investigate issues facing provisioning protocols in
providing QoS, each applications uses a different transport
protocol. NetVideo uses UDP, and DIRM uses TCP.
Moreover, the authors developed the traffic generation
program TG (Traffic Generator) to generate the reference
traffic of TCP or UDP for thetests.

The testbeds of NetVideo and DIRM are similar in
network layout, but very different in how they are used.



A. Smilarities of the Two Testbeds

The two testbeds are shown respectively in Figure 4
(NetVideo) and Figure 5 (DIRM). Each testbed is not
isolated butrather constructed to be a part of the Columbia
University Computer Science Department network.

1) Network Layout

Each testbed consists of two local sub-networks:
128.59.10.0/24 (Subnet 10) and 128.59.11.0/24 (Subnet 11),
and between them are two Cisco 2514 routers which are
equipped with Cisco 10S 11.2 and provide RSVP support
by Weighted Fair Queuing (WFQ). The two routers are
connected via a serial line (usng another sub-network
192.168.1.0/24) to create a “bottleneck” bandwidth (1.5M)
between Subnets 10 and 11.

2) Hostsand Routers

Two hubs connect the hosts, each implementing a
separate sub-network. The two workstation hosts are a Sun
SPARCstation 20 (ws0) and a Sun SPARCstation 5 (wsl),
equipped with the Class Based Queuing (CBQ) patch to
boost their Solaris 2.5.1 kernd's with traffic control support.
The Sun RSVP package SolarisRSVP 0.5.0 [8] is aso
installed. The two PC hosts are used only in the DIRM
testbed: pcO, which is an IBM Thinkpad 760 (Pentium
166MHz), and pcl, which isa DELL Dimension XPS R400
(Pentium |1 400MHz). Both PCs are equipped with Linux
2.0.36 and the Linux port of the RSVP r4.2a3 package [9].
(Although these hosts are not the latest devices, they are fast
enough to manage the traffic and to congest the routers
connected by thelow bandwidth serial lin€).

3) Traffic Flows

In each experiment, two kinds of tunable traffic flows
are generated between the two subnets for comparisons. The
main traffic flow is generated by the pair of NV or [1OPGW
programs while the reference traffic flow is generated by the
pair of TG programs.

The main traffic flow may be reserved (with Q0S) or
unreserved (without QoS) and use UDP or TCP transport,
while the reference traffic flow is always unreserved (either
UDP or TCP).

4) Test Cases

A typical test case of an experiment is composed of: (1)
reserved and/or unreserved main traffic flows; (2) normal,
heavy, or overloaded traffic condition; (3) single or multiple
flows;, and (4) bi-directional TCP or unidirectiond UDP.
(Table 1in next section lists al the test combinations.)

The Control-Load (CL) service of Intserv is used to
provide applications with QoS (resource reservation).
Otherwise, applications tested without QoS provisioning use
the Best-Effort (BE) service.

5) QoS Performance Monitoring

The NV and [IOPGW applications are monitored by the
QoSockets instrumentation in rea time. All of the
performance parameters (including throughput, delay, jitter,
and loss) are sampled at the receiver end of a flow, while the
throughput is sampled at the sender end. Throughput and
loss are computed from total numbers of messages sent and
received, which are sasmpled and reset every 0.5 second. The
delay and jitter are sampled per message transmitted.

B. NetVideo Testbed

NetVideo [10] is a multimedia tool for the Internet that
captures, transfers, and receives real-time video pictures
using UDP. The proposed version employs the QoSockets
API and requests QoS for UDP transport (R-UDP).

The two NV programs (sender and receiver) run on two
workstations: ws0 and wsl (see fig 4). Ws1 acts as a video
sender, is equipped with a video camera, and captures real-
time pictures at 30 frames per second, while ws0 acts as a
video receiver and displays those pictures received from
wsl on the screen. The main traffic flow of NetVideo, is
depicted in Figure4 aong the route marked as “UDP
Traffic”.

Because the NetVideo sender can use bandwidth up to
1024 kilobits per second (kbps), its tranamitting rate can be
bigger than 30 frames/s (each frameis roughly 1280 bytes).
In thistest, it sends up to 80 frames/s when its bandwidth is
set to 640 kbps.
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Figure 4: NetVideo testbed
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The two TGs run on the same hosts as the NV sender
and receiver, and create a UDP reference traffic flow in the
same direction as the main traffic flow. The TG sender
sends a 1024-byte message at an approximate rate of
530kbps, but the receiving rate of the TG receiver may vary
under different traffic condition.

1) QoS Requirements
User requirements
Rates: 60~80 frameg's Delay: 0~100 ms

Jitter: <50 ms Loss: <5%

Max frame length: 1280 Byte Recovery time: 5000 ms
Mapped QoSockets parameters

Throughput
min_rate= 60 max_rate=80 peak_rate=100 size=1280



Delay

min_delay=0 max_deday=100 int_delay=50
Reliability

rec time=5000 loss=5 permt=Fase
Coer ced flags

All coerced flags are set to TRUE.
2) Traffic Profiles

NV
Protocal: UDP Network Service: CL or BE
Rate (kbps): 614.4 Peak (kbps): 1024
M essage size (B): 1280
TG
Protocal: UDP Network Service: BE

Rate (kbps): 540 Message size (B): 1024

C. DIRM Testbed

DIRM [6] develops a high-level API that alows stream-
based (socket) and object-based (CORBA [4]) applications
to acquire QoS. Per application request, DIRM allocates and
manages network resources (e.g., bandwidth) dynamically
using the 11OPGW resource manager. IlOPGW uses the
QoSockets over TCP (R-TCP) to request the resource
allocation for its stream traffic.

Figure5isatypical scenario of DIRM, where Slideshow
is a client-server sample Java application using CORBA.
The Slideshow server, a CORBA object service
implementation on pcl, manages a repository of images.
The Slideshow client, a CORBA client application on pcO,
requests the images through its ORB (Object Reguest
Broker) and then displays them on the screen. Two [1OPGW
programs on ws0 and wsl run as |IOP gateways and
establish a “bridge” between the ORBs of pcO and pcl. The
bridge provides QoS guarantee to the traffic between
Slideshow server and client.
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Figure 5: DIRM testbed

When starting, the pcO client makes an object request for
the image service to its local ORB, which forwards the
request to the ws0 (local) IHOPGW at ws0. WSO processes
and transfersit to the wsl (remote) [1OPGW. WsL processes
and transfersit to the pcl server. Pcl processes this request
and then requested image to pcO aong the reserve path of
the client request.

The IIOPGWSs a ws0 and wsl make two bandwidth
reservations for the IIOP connections between them. The

main traffic flow between two IlOPGWSs is thus protected in
the center of the path transferring images from pcl (the data
sender) to pcO (the datareceiver). The whole path is labeled
with “TCP Traffic” in Fig. 5 and passes two-way traffic.

Two TG programs also run on wsl and ws0, and create a
competing TCP stream along the same route as the main
traffic flow. This is the reference traffic flow, without
reservation.

One thing to be mentioned here is that 11OPGW
trangmits a whole image each time, from 18 to 58 kilobytes
(KB), and resulting in big bursting rates for the main traffic
flow. Its message size is consequently much bigger than that
of NV (1280 bytes) and TG (1024 bytes).

1) QoS Requirements
User requirements
Slides: 1~3images/'s  Delay: 100~500 ms
Jitter: <250 ms Loss: 0
M ax message size: 60000 bytes Recovery time: 5000 ms

Mapped QoS parameters
Throughput

min_rate= 1 max_rate=1 peak_rate=3 size= 60KB
Delay

min_delay=100 max_dday=500 int_delay=250
Reliability

rec_time=5000 loss=0 permt=False
Coer ced flags

All coerced flags are set to TRUE.

2) Traffic Profiles

11OPGW
Protocol: TCP Network Service: CL or BE
Rate (kbps): 480 Peak (kbps): 1440
M essage size (B): 60000
TG
Protocol: TCP Network Service: BE

Rate (kbps): 540 Messagesize (B): 1024

V. RESULTSAND ANALYSIS

The test performance is monitored in real-time inside
applications, using the QoSockets MIB management of NV
and 1IOPGW and the TG monitoring module. The main
parameters studied are throughput, delay, jitter, and loss.
Throughput and loss are computed over time (t), and delay
and jitter are computed per message (m). These measures
are defined in Equations (2)-(5).

e Throughput
T =3P M/t @

Where T; is the throughput (bits/s or bps) during the ith
sampling interva, Y Pi(t) is the total bits of all received
messages within the ith interval, and t; is the time duration
of theithinterval.

e Loss

Li(®)=100* (- 3R®/2S®) O



Where L; is the loss rate (%) during the ith interval, and
SRi(t) and >S(t) are respectively the total numbers of
received and sent messages within theith interval.

« Delay
Di(m) = ri(m)- s(m) 4

Where D; is the delay (millisecond) of the ith message
arived, and r; and s are the arrival and sending timestamps
of theith message.

o itter
J(m) = |Di(m) — Di.a(m)|, whilei>0  (5)

Where J is the jitter (absolute value in millisecond) of
the ith message, D; and D;; are the deays of two
consecutive messages computed from Equation (4).

Each testbed executes three experiments with different
traffic conditions, and is aso subject to the background
traffic within the departmental network. (A) Normal,
involving a single flow of NV, IIOPGW or TG, with total
traffic close to 50% of the bottleneck bandwidth (1.5Mbps).
(B) Heavy, involving two flows: one NV or 1lOPGW and
one TG, with tota traffic close to 80% of the bottleneck. (C)
Overloaded, invalving three flows: one NV or IlOPGW and
two TG, with total traffic beyond the bottleneck.

Test| NetVideo(NV) |

A. One-flow: Normal

DIRM(IIOPGW)

Al |NV w/o QoS: UDP IIOPGW w/o QoS: TCP
A2 NV w/ QoS: R-UDP IIOPGW w/ QoS: R-TCP
A3 TG: UDP TG: TCP

B. Two-flow: Heavy

B1 |NV w/o QoS and TG IIOPGW w/o QoS and TG
Bla [NV w/o QoS: UDP IIOPGW w/o QoS: TCP
Blb |TG: UDP TG: TCP

B2 |NVw/QoSand TG IIOPGW w/ QoS and TG
B2a |NV w/ QoS: R-UDP IIOPGW w/ QoS:R-TCP
B2b |TG: UDP TG: TCP

C. Three-flow: Overloaded

Cl1 |[NVw/oQoSand2TG |IIOPGW w/o QoSand2TG
Cla [NV w/o QoS: UDP IIOPGW w/o QoS: TCP
Clb |TG 1: UDP TG 1: TCP

Clc |TG2:UDP TG 2: TCP

C2 |NVw/QoSand2TG IIOPGW w/ QoS and 2 TG

C2a

NV w/ QoS: R-UDP

IIOPGW w/ QoS:R-TCP

C2b

TG 1: UDP

TG 1: TCP

C2c

TG 2: UDP

TG 2: TCP

Table 1 Test cases of NetVideo and [1OPGW experiments

For each traffic condition, each experiment performs 2—
3 tests, aslisted in Table 1. For example, two tests, B1 and
B2, study heavy traffic condition. Both B1 and B2 have two
flows (eg., Bla and Blb). For NetVideo, Bla is the

unreserved main UDP flow generated by NV (without
QoS), B2a is the reserved one (with QoS), while both Blb
and B2b are the reference UDP flows generated by TG
(without Qo0S).

The measurements of the two experiments are presented
in this section, followed by andysis and discussions. The
figures in this section depict the average experimental data
sampled by NV, I1OPGW and TG. In the throughput figures
(Figures 6 and 9), the light gray column represents an
average value of the flow sender whilst the dark gray
column represents the one of the flow receiver. Two
columns drawn together, one light and the other dark, reflect
the throughput rate difference of a flow in one test. In other
figures (of loss, delay and jitter), only dark columns are
drawn (from the measurements at the receivers).

A. NetVideo

In this experiment (for NV and TG) at least 100
samples of throughput and loss are computed, while
20004000 samples of delay and jitter (per message) are
computed (varying for each test).

1) Throughput
Figure 6 shows the average throughput rates (sending

and receiving) for all tested flows. Looking at these rate

columns, the following characteristics about throughput are
concluded.

e For reserved NV flows (A2, B2a and C2a), the sending
and receiving rates match. For unreserved flows of both
NV (A1, Blaand Cla) and TG, their rates do not match
and do show considerable disparity particularly under
overloaded traffic.

e For NV flows, therates of reserved flows (A2 and B2a)
under normal and heavy traffic conditions are a bit less
than those of unreserved flows (A1l and Bla), dueto a
tiny overhead by the Solaris traffic-control kernel
scheduling reserved flows. As expected, under
overloaded traffic condition, the receiving rate of
reserved flow (C2a, 520kbps) is twice that of the
unreserved one (Cla, 250kbps).

e Asthe traffic condition varies from normal (A), heavy
(B) and overloaded (C), reserved NV flows have steady
throughput rates close to 530kbps, whereas unreserved
NV and TG flows reduce their receiving rates from 570
(A1) to 250 kbps (C1la).

e Under the overloaded traffic condition, the reserved
C2a flow has similar sending and receiving rates
(520kbps), while the unreserved Cla and TG flows
(C1b and Clc, C2b and C2c) do experience significant
disparity between sending and receiving rates.
Moreover, TG flows C2b and C2c become worse and
even experience -200kbps disparity when compared to
flows C1b and Clc, which experience only -120kbps
disparity.
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Figure 6: Throughput rates of NetVideo flows

2) Loss
Message loss is very dependent on the throughput, and
increases as the gap between sending and receiving rates of

a flow increases. Figure 7 shows the average loss rates for

al tested flows, as sampled at thereceiving ends.

e Under normal and heavy traffic conditions, both
reserved and unreserved flows (except Al) do not lose
messages.

e Under the overloaded traffic condition, the reserved
C2aflow has zero loss, while the unreserved Clagetsa
big loss rate (47%) and TG flows have loss rates 25%
(C1b and C1c) and 40% (C2b and C2c).

NetVideo Loss

Loss (%)

A1 Az A3 Bla  Blb B82a 820 Cla cib  clc c2a czb  cze
Tests

Figure 7: Message loss rates of NetVideo

3) Delay

Figure 8 shows the average delay values for al flows, as
sampled per message at the receiving ends. From this figure,
one concludes the following.
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Figure 8: Message delays of NetVideo

e As the traffic condition varies from norma (A) to
heavy (B) and overloaded (C), reserved NV flows have
steady delays (<30ms), whereas unreserved NV and TG
flows increase sharply their delays.

e Under the overloaded traffic condition, the reserved
C2a has 4till alow delay (25ms), but the unreserved
Claand TG (Clb and Clc, C2b and C2c) flows have
delays 10-30 times higher. TG flows C2b and C2c have
delays up to 720 ms, larger than flows C1b and Clc do
(600ms).

4) Jitter
Figure 9 shows the average jitter values for al tested

flows, as computed from message delays at the receiving

ends. Similar to delay, one concludes the following about
jitter.

e As the traffic condition varies from norma (A) to
heavy (B) and overloaded (C), reserved NV flows have
bound jitter (<10ms), whereas unreserved NV and TG
flowsincreaselargely their jitter (e.g., Claand Clc).

e Under the overloaded traffic condition, Smilar to the
delay, the reserved C2a has jitter smaler than the
unreserved Cla has. Moreover, different from what
happens for the delay, TG flows (C2b, C2¢) have also



lower jitter for the reserved NV (C2a), when compared
to the flows Clb and Clc. The reserved flow (C2a)
jitter (5ms) is much smaller than that of the unreserved
Cla(115ms), indicating that traffic control for the main
traffic may help in jitter reduction even for the
reference traffic.

NetVideo Jitter
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Figure 9: Message jitters of NetVideo
B. DIRM

DIRM tests are similar to NetVideo. At least 200
samples of throughput and loss are computed for [1OPGW
and TG while 1000-10000 samples are computed for delay
and jitter. It is noted that no message is lost in dl tests
because al flows here are TCP-based.

1) Throughput

The average throughput rates of DIRM tested flows are
shown in Figure 10, and each flow has smilar sending and
receiving rates due to TCP contral.

e For thereserved IIOPGW flows (A2, B2a and C2a), the
sending and receiving rates match. For unreserved
IIOPGW (A1, Bla and Cla) and TG flows, their rates
do not match completely without QoS provisioning.

« Under norma traffic condition, there is no obvious
difference of throughput rate between the reserved (A2)
and unreserved (A1) 1OPGW flows. But, under heavy
and overloaded traffic conditions, the reserved B2a and
C2a flows have rates higher (20%) than those of the
unreserved Blaand Cla.

e As the traffic condition varies from norma (A) to
heavy (B) and overloaded (C), all of reserved |1OPGW,
unreserved 1IOPGW and TG flows reduce somewhat
their throughput rates.

Here one notes that the throughput decreases as the
traffic condition varies from norma to heavy and
overloaded. It is natural that, because of no reservation, TG
flows reduce their throughputs as the network traffic
increases.

But, why do the reserved 11OPGW flows (B2a and C2a)
have their throughput reduced as well? The reason is a hit
complicated, and deferred until the next section
“Discussion”.
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Figure 10: Throughput rates of DIRM flows

2) Delay
Figure 11 shows the average delay values sampled from
aII tested flowsin the DIRM experiment.
As the traffic condition varies from norma (A) to
heavy (B) and overloaded (C), reserved [IOPGW,
unreserved 1IOPGW, and TG flows increase their
delays.

e Under heavy and overloaded traffic conditions, the
reserved I|OPGW (C24) flow has smaller delay than the
unreserved 1lOPGW (Cla). The TG flows have similar
delays (B1b vs. B2b, Clb vs. C2b and Clcvs. C2c).
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Figure 11: Message delays of DIRM

It is reasonable that both unreserved ITOPGW and TG
increase their delays, as the traffic condition becomes heavy
or overloaded. Why do the reserved 11OPGW flows (B2a
and C2a) have big ddlays? The reason is that the average
size of IIOPGW messages is 38 KB, much bigger than the
TG message size of 1 KB. One can verify this statement by
noting that, under norma condition, the delays of baoth
unreserved (Al) and reserved (A2) IIOPGW flows are far
bigger than that of the TG flow (A3). With areservation the
C2a flow (IIOPGW) has a smdler delay than TG flows C2b
and C2c as expected. Also as expected, TG flows increase
sharply their delays from B2b to C2b and C2c.
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Figure 12: Messagejitters of DIRM

3) Jitter
Figure 12 shows the average jitter values for all tested
flows.

e Asthe traffic condition varies from normal (A), heavy
(B) to overloaded (C), reserved 11OPGW, unreserved
IHOPGW, and TG flows increase their jitter.

e Under heavy and overloaded traffic conditions, the
reserved C2ahas smaller jitter than the unreserved Cla.
But, unreserved TG flows has similar and small jitter.

Both reserved and unreserved [IOPGW flows have
bigger jitter than TG flows. While TG flow has a fixed
message size (1 KB), an IOPGW flow message size is not
only bigger (38 KB at average) but also varies from 18 to
58 KB. As a consequence, the tranamitting time of an
IHTOPGW message is variable and longer than TG, resulting

in alarger jitter. Thejitter under normal load shows this fact
because both unreserved (A1) and reserved (A2) [HOPGW
flows have much bigger jitter than TG (A3).

C. Discussions

1) NetVideo

The NetVideo experiments show that the reserved NV
flows have obtained their requested QoS. Even when the
traffic condition shifts from norma to overloaded, the
reserved flows behave steady throughput, with low delay
and jitter, and without message loss. In contrast, the receiver
of the unreserved NV flow Cla receives only 50% of the
sending rate, resulting in 47% message | oss.

2) DIRM

The DIRM experiments show a different set of results.
The Intserv reservations improve but do not guarantee the
IIOPGW performances. All traffic flows (reserved or
unreserved IIOPGW and TG) do not experience any
message loss, but their TCP segments may be internaly
dropped (and re-tranamitted). The drops are used to adjust
the congestion window to reduce the flow throughput as the
traffic load increases.

It is very important to notice, however, that a reserved
DIRM/IIOPGW flow experiences higher throughput and
lower delay and jitter than an unreserved flow, as observed
previoudly.

DIRM has several aspects that contribute to its worse
QoS performance. (1) DIRM generates bi-directionad TCP
traffic whereas NetVideo has only unidirectiona UDP. (2)
DIRM/IIOPGW transmits large and variable-size messages
(from 18 to 58 KB) (may cause big burst rate and heavy IP
packet fragmentation), whereas NetVideo transmits similar-
size messages (roughly 1280 bytes). (3) DIRM reservations
cover only the main traffic flow portion and not the entire
traffic route, while NetVideo reservations are all end-end.

Finaly, DIRM is a hit more complex than NetVideo.
DIRM integrates a group of programs running on different
platforms. IOPGW and TG (C/C++) programs on Solaris,
and Sideshow (Java) programs on Linux, while NetVideo
has NV and TG (C/C++) on Solaris.

3) TCP, UDP and QoSProvisioning

There are important reasons why TCP and UDP
protocols affect the QoS of their flows differently. UDP
creates a unidirectional data flow, while TCP creates a bi-
directiond flow, one direction for data (originated from the
sender) and the other for ACKs (originated from the
receiver). In fact, the TCP dow-start and congestion
avoidance mechanism [15-17] at the sender end monitors
ACK packets for traffic congestion control, and use this
information to decide the data transmission rete.

Current QoS provisioning services, such as Diffserv and
Intserv/RSVP, protect unidirectional streams. That is the



main reason why UDP applications like NetVideo get better
QoS. For a TCP application, this one-way resource
provisioning guarantees only the data packets, while the
ACKs are not guaranteed and thus may be delayed or even
lost.

Once ACKSs do not arrive in time, the sender dows or
stops tranamitting data packets, and even restarts the slow-
start mechanism if delays are larger than the timeout. The
net result is the reduction of the TCP throughput, as
observed in the ITOPGW flow.

V. CONCLUSIONS

This paper describes two sets of experiments in which
two different applications have been extended to support
QoS using QoSockets and tested in a red network
environment. Their performances provide us an insight of
current Internet QoS behavior and challenges.

e Both UDP and TCP applications benefit from QoS
(e.g., resource reservations) and experience significant
improvement in their performances. Non-QoS flows
may get better performance during light traffic, because
there are no traffic control overheads, but suffer much
worse behavior under heavy or overloaded traffic.

e QoSocketsis able to map the generic QOS requirements
of applications, very effectively, onto specific QoS
provisioning mechanismsin a manner transparent to the
applications. In addition, QoSockets generates QoS-
monitoring instrumentation of rea-time network
performances, which is very valuable for QoS
assurance, adaptation and management.

e TCP applications demanding QoS need more attention
of both end users and QoS provisioning mechanisms,
because these mechanisms do not guarantee bi-
directiond traffic flows. The ACK sream needs
guarantee as the data stream does, otherwise, in case of
ACK delay or loss, the application QoS degrades.

e The DIRM experiment shows that the QoS of an
application is dependent not only on a particular service
but aso on its own architecture. If the application
creates bi-directiona traffic flows, transmits big size
messages, or includes complex software and hardware
components, the interactions with the QoS provisioning
mechanics have to be carefully designed. Otherwise,
they may impact the overal QoS performance.

Intserv and Diffserv are presently developed as centrd
QoS provisioning services in current networks. In order for
these mechanisms to become avalable for network
applications, it is necessary to create appropriate
middleware that can bridge the needs of applications with
network QoS services. QoSockets provides this function
by keeping processing overheads to a minimum (under 1%)
and enabling simple incorporation of access to QoS delivery
within applications, through minimal extensons of common
socket API.
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