
690 IEEEIACM TRANSACTIONS ON NETWORKING. VOL. 5. NO. 5. OCTOBER 1997

Start-Time Fair Queueing: A Scheduling Algorithm
for Integrated Services Packet Switching Networks

Pawan Goyal, Hmick M. Vin, and Haichen Cheng

Abstract-We present a Start-time Fair Qneueing (SFQ) al-
gorithm that is computationally efficient and achieves fairness
regardless of variation in a server capacity. We analyze its
single server and end-to-end deadline guarantee for variable
rate Fluctuation Constrained (FC) and Exponentially Bounded
Fluctuation (EBF) servers. To support heterogeneous services and
multiple protocol families in integrated services networks, we
present a hierarchical SFQ scheduler and derive ifs performance
bounds. Our analysis demonstrates that SFQ is suitable for
integrated services networks since itz 1) achieves low average
as well as maximum delay for low-throughput applications (eg.,
interactive audio, telnet, etc.); 2) provides fairness which is
desirable for VBR video; 3) provide fairness, regardless of varia-
tion in server capacity, for throughput-intensive, flow-controlled
data applications; 4) enables hierarchical link sharjng which Is
desirable for managing heterogeneity; and 5) is computationalIy
efficient.

Index Terms- Fair queueiug, integrated services networks,
packet scheduling.

1. INTRODUCTION

I NTEGRATED services networks are iequired to support a
variety of applications {e.g., audio and video conferencing,

multimedia information retrieval, ftp, telnet, WWW, etc.)
with a wide range of Quality of Service (QoS) requirements.
Whereas continuous media applications such as audio and
video conierencing require the network to provide QoS guar-
antees with respect to bandwidth, packet delay, and loss;
applications such as telnet and WWW require Iow packet
delay and loss. Throughput intensive applications like ftp,
on the other hand, require network resources to be aIIocated
such that the throughput is maximized. A network meets
these requirements primariIy by appropriately scheduling its
resources.

To determine the characteristics of a suitable scheduling
algorithm, consider the requirements of some of the principal
applications envisioned for integrated services networks.

Manuscript received August 8, 1996; revised April 28, 1997; approved by
IEEE/ACM TRANSKTIONS ON NETWJRK~NG Editor S. Floyd. This work was
supported in par& by IBM Graduate Fellowship, IBM Faculty Development
Award, Intel, the National Science Foundation (Research Initiation Award
CCR-9409666 and under CAREER award CCR-9624757). NASA, Mitsubishi
Ekctric Research Laboratories (MERL), and Sun Microsystems, Inc. An
earlier version of this paper appeared in Proc. ACM SIGCOMM’96.

The authors are with the Distributed Multimedia Computing Laboratory,
Department of Computer Sciences, University of Texas at Austin, Austin, TX
78712 USA (e-mail: {pawang,vin,hccheng]@cs.utexas.edu).

Publisher Item Identifier S 1063~6692(97)07053-2.

8 Audio Applications: To maintain adequate interactivity
for such applications, scheduling algorithms must provide
low average and maximum delay.

l Wdeo Applications: Variable bit rate (VBR) video
sources; which are expected to impose significant
requirements on network resources, have unpredictable
as well as highly variable bit rate requirement at
multiple fime-scales [ll]. These features impose two
key requirements on network resource management,

-Due to the difficulty in predicting the bit rate re-
quirement of VBR video sources, video channels may
utilize more than the reserved bandwidth. As long as
the additional bandwidth used is not at the expense
of other channels (Le., if the channel utilizes idle
bandwidth), if should not be penalized in the future,

-Due to multiple time-scale variation in the bit rate
requirement of video sources, to achieve efficient
utilization of resources, a network will have to ovcr-
book available bandwidth. Since such overbooking
may yield persistent congestion, a network should
provide some QoS guarantees even in the presence
of congestion.

Unfair scheduling algorithms, such as Virtual Clock [21],
Delay EDD [S], etc., penalize channels for the use of
idle bandwidth and do not provide bandwidth alloca-
tion guarantee in the presence of congestion [17], Fair
scheduling algorithms, on the other hand, guarantee that,
regardless of prior usage or congestion, bandwidth would
be allocated fairly [17]. Hence, fair scheduling algorithms
are desirable for video applications.

l Data Applications: To support low-throughput, inter-
active data applications [e.g., t&et), scheduling algo-
rithms must provide low average delay. On the other
hand, to support throughput-intensive, flow-controlled
applications in heterogeneous, large-scale, decentralized
networks, scheduling algorithms must allocate bandwidth
fairly [4], [15]. Due to the coexistence of VBR video
sources and data sources in integrated services networks,
the bandwidth available to data applications may vary
significantly over time. Consequently, the fairness prop
erty of the scheduling algorithm must hold regardless of
variation in server capacity.

Hence, in summary, a suitable scheduling algorithm for
integrated services networks should: 1) achieve low average
as well as maximum delay for low throughput applications

1063-6692197SlO.oD 0 1997 IEEE

GOYAL crd.: START-TIME FAIR QUEUEING

(e.g., interactive audio, telnet, etc.); 2) provide fairness for
VBR video; and 3) provide fairness, regardless of variation in
server capacity, for throughput-intensive, flow-controlled data
applications. Furthermore, since such networks will support
a wide variety of services and multiple protocol families,
the scheduling algorithm should facilitate hierarchical link
sharing [6], [Is]. Finaliy, to facilitate its implementation in
high-speed networks, it should be computationally efficient.
A scheduling algorithm that achieves these objectives is the
subject of investigation in this paper.

B. Relation to Previous Work

Each unit of data transmission at the network level is a
packet. We refer to the sequence of packets transmitted by a
source as afloru 1211. Each packet within a fiow is serviced by
a sequence of servers (or switching elements) along the path
from the source to the destination in the network. Before we
describe fair scheduling algorithms that may be employed by
the servers, Iet us consider the meaning of fair allocation of
link bandwidth.

Intuitively, allocation of link bandwidth is fair if equal
bandwidth is allocated in every time interval to all the flows.
This concept generalizes to weighted fairness in which the
bandwidth must be allocated in proportion to the weights
associated with the flows. Formally, if dr is the weight of flow
f and Ftr~(tr, tz) is the aggregate service (in bits) received by
it in the interval [tr, ta], then an allocation is fair if, for all
intervals [tr, ta] in which both flows f and m are backlogged

Clearly, this is an idealized definition of fairness as it assumes
that flows can be served in infinitesimally divisible units. The
objective of fair packet scheduling algorithms is to ensure that

is as close to zero as possible. However, it has been shown in
[8] that if a packet scheduling algorithm guarantees that

for all intervals [tr, ta] then

m, 4 2

where H(f, .mm) is a function of the properties of flows f
and ,m., and 13” and I:” denote the maximum lengths of
packets of flow f and m, respectively. The function H(f, m)
is referred to as fairness measure.

Several fair scheduling algorithms that achieve a value of
H(f, m,) close to the lower bound have been proposed in
the literature. The earliest known fair scheduling algorithm is
Weighted Fair Queueing (WFQ) [4] (also referred to as Packet-
by-Packet Generalized Processor Sharing (PGPS) [17]). WFQ
was designed to emulate a hypothetical bit-by-bit weighted
round-robin server in which the number of bits of a flow served

691

in a round is proportional to the weight of the flow. Since
packets cannot be serviced a bit at a time, WFQ emulates
bit-by-bit round-robin by scheduling packets in the increasing
order of their departure times in the hypothetical server. To
compute this departure order, WFQ associates two tags-a
start tag and a finish tfg-with every packet of a flow.
Specifically, if P; and $ denote the jth packet of ffow f
and its length, respectively, and if A($;) denotes the arrival
time of packet fli at the server, then start tag SW;) and finish
tag F(pjf) of packet $i are defined as

where F(&) = 0 and v(t) is defined as

dv(t)= c

LB C 4+i
(3)

XBW

where C is the capacity of the server and B(t) is the set of
backlogged flows at time t in the bit-by-bit round-robin server.
WFQ then schedules packets in the increasing order of their
finish tags.

The implementation of WFQ requires computation of w(t),
which in tutu requires simulation of bit-by-bit round-robin
server in real time. This simulation may require processing
of O(Q) events in a single packet transmission time, where
Q is the number of flows served, and thus is considered
computationally expensive 181. Furthermore, to retain fairness
when server rate varies over time, the definition of virtual time
will have to be modified. The following examples illustrate that
if the definition of virtual time is not modified and is based on
the assumption that the capacity of a server is constant, then
WFQ becomes unfair over variabIe rate servers.

Example I: Let the capacity of the server that WFQ is
emulating be C pkts/s, C > 1. Let the actual server capacity
be 1 pkt/s in [0, 1) and C pkt/s in [l, 2). Consider two
flows f and m both of which have unit length packets and
weights of 1 pkt/s. Let flow f send C + 1 packets at time
0. Hence, for flow f, F(pjf) = j; 1 2 j 5 C + 1. Let
flow m become backlogged at t = 1 and be backlogged
during the interval [l, 21. Since only flow f is backlogged
during [0, 1), using (3), we get v(l) = C. Hence, for flow
m, F(&) = C + 1. Since WFQ schedules packets in the
increasing order of finish tags, we get: C- 1 5 Wf(l, 2) < C
and W,(1, 2) < 1. However, for fair allocation of bandwidth,
Wf(1, 2) and Wm(l, 2) should both be C/2. Since C can be
chosen arbitrarily, this example illustrates the unfairness that
can result when the actual capacity is lower than the capacity
being assumed.

A similar example can be constructed for the case when
the actual capacity of the server is higher than the assumed
capacity. Thus, we conclude that to ensure fairness over
variable rate servers, the definition of system virtual time
should be modified to depend on the time varying server

692

capacity. This can be achieved by defining u(t) as

where C(t) is the capacity of server at time t. Without a
priori knowledge of C(f), computing v(t) based on the new
definition requires counting the number of bits transmitted
by the server during various intervals as well as continuous
evaluation of v(t). The complexity of these operations makes
the cost of computing v(t) prohibitive. Thus, we conclude
that: 1) if constant rate approximations are employed in
WFQ for variabIe rate servers, then WFQ is unfair, and 2)
modified WFQ algorithm that may retain fairness over variable
rate servers is ComputationalIy prohibitive. Thus, WFQ is
unsuitable for achieving fairness over variable rate servers. As
we will outline in Section III, to be useful for hierarchical link
sharing [6], [I8], a scheduling algorithm must provide fairness
over variable rate servers. Consequently, WFQ is unsuitable
for supporting hierarchical link sharing aIso.

Fair Queueing based on Start-time (FQS), proposed in [14],
computes start tag and finish tag of a packet exactIy as in WFQ.
However, instead of scheduling packets in the increasing order
of finish tags, it schedules packets in the increasing order
of start tags. Although FQS has advantages for processor
scheduling, it is not known to have any advantage over WFQ
for scheduling packets in a network. Moreover, since it utilizes
a(t) as defined in (3), it has disadvantages similar to that of
WQ.

Self Clocked Fair Queueing (SCFQ), originaIly proposed
in [33 and later analyzed in 183, was designed to reduce the
computational complexity of fair scheduling algorithms like
WFQ. SCFQ also schedules packets in the increasing order
of finish tags. However, it achieves efficiency over WFQ by
approximating v(t) with the finish tag of the packet in service
at time t. It has been shown that the value of H(f, m) for
SCFQ is

(!r+EJ

which is only a factor of two away from the lower bound [S].
The main limitation of SCFQ is that it increases the maximum
delay. incurred by the packets significantly. Specifically, if &
is the set of flows served by a server and C its capacity, then
packets of flow f may incur

c Pax 72 n~QAn#f _
c

more delay in SCFQ than in WFQ [IO’J. This may be unac-
ceptably large in many cases.

Frame-based Fair Queueing (??!?Q) was designed to retain
the efficiency of SCFQ in computing the start and finish tags
but ensure that the worst-case delay that can be guaranteed to
a packet is the same as in WFQ 120). The main limitation of
F??Q is that due to its assumption of constant rate servers, it
is unfair over variable rate servers. Furthermore, its H(f, m)

IEEElACM TRANSACTIONS ON NETWORKING. ifOL. 5, NO. 5, OCTOBER t997

value depends on the minimum rate allocated by a server, nnd
can deviate significantty from the lower bound.

Worst-case-fair weighted Fair Queueing (WF*Q), proposed
in [2], was designed to improve WFQ’s emulation of hypothet-
ical bit-by-bit round-robin server. To achieve this objective,
WF*Q: 1) utilizes w(t) as defined in (3) and computes start
and finish tags as in WFQ; 2) defines a packet to he eligible
at time t only if its start tag is at most v(t>; and 3) schedules
eligible packets in the increasing order of finish tags. It has
been shown that WF2Q emulates the hypothetical server well
and has an H(f, m) value of

(TE+E)

see 123. However, since it utilizes w(t) as defined in (3),
it is computationally inefficient and unsuitable for achieving
fairness over variable rate servers.

wF2Q+ has been recently, independent of our work, pro-
posed to reduce the implementation complexity of WF2Q
while retaining several of its properties (a similar, but not iden-
tical, algorithm termed Starting Potential based Fair Queucing
was proposed in [20]) [l]. It defines start tag of packet bf to
be the finish tag of packet $‘, i.e., S(pjf) = P($;-I), If
flow f is backlogged on arrival of 6; otherwise, S(d) =
ma,x (v[Aojf)], F($‘)). The finish tag of a packet and the
set of eligible packets are defined as in WF2Q but v[b) is
defined as v(t) = max(w(r) + t - 7, minrcEB(t) S(&)),
where 7 is the largest time less than t at which a packet
finished service; pz is the packet at the head of the queue
of fI DW n at time t; and B(t) is the set of backlogged flows
at time t. WF2Q+, like WF2Q, schedules eIigible packets in
increasing order of finish tags. Although Ivorst-casefnirtress of
WF2Q+ has been derived, its fairness measure has not been
derived in [l].’ To ensure that properties of WF*Q+ hold
over variable rate servers, it has been proposed in [l] that
reference time, instead of real time, should be used in virtual
time computation. Reference time at real time f, Tn(t>, is
defined as

T&) = !!!y

where C is capacity of the server and W(O, t) is the work
done by the server in interval [fl, tl. Given no a priori infor-
mation regarding variation in server capacity, it appenrs thnt
determining W(0, f) will require counting the number of bits
that have been transmitted by the server in the interval (0, 41;
this computation can be expensive. Furthermore, WF2Q+ has
been studied under the assumption that xnEQ (b,, 5 c,
where C is the minimum capacity of a server. The following
example demonstrates that this assumption is necessary to
ensure fairness of WF2Q-!-.

Example 2: Let a server serve packets at a constant rate
of K + 1 pktis in [O, I’j and then at the constant rate of 2
pktfs. Thus, C is 2 pkt/s. Let the server serve K + 2 flows
and let each flow be assigned a weight of 1 pktis. Let flows

’ An algorithm that has bounded worst-case-fairness mny hnec unbouedcd
fairness measure [121.

GOYAL ct nl,: START-TIME FAIR QUEUElNG

1 . . * K terminate after sending one packet each at time 0,
and let flow I< + 1 send infinite number of packets. Also
let flow Ir’ + 2 send one packet at time f = 1. Now for all
I?.. E [l - -. Ic], P(pk) = I. The finish tags of flow K + 1
packets are given as Fwl<+,) = j. Since K + 1 packets
are served by time 1, v(l) = Ta(l) = (K + 1)/2. Tlms,
F(pii+.& = (K + 1)/2 + 1. Since the first packet of flows
1 . e. Ir’ + 1 are eligible at time 0 and WF2Q+ schedules
packets in the increasing order of finish tags, first packet of
flows 1 *** I< + 1 will be served in the time interval [O, 11.
For ease of exposition of the later part of the schedule, let
q = I(# + 1)/2l. Then, since S(pk+,) = q - 1 and v(l) >
4 - 1, packets p&,,, - -. , &(+I are eligible for scheduling
at time 1. Furthermore, since F(pT<.+,) < P(&.+,), in the
interval [l, 1 + (q - 1)/2), q - 1 packets of flow K + 1 will be
scheduled. Thus, in the interval [l, 1 + (q - 1)/2] even though
flows K + 1 and K + 2 are backlogged, whereas q - 1 packets
of flow I< + 1 are served, no packet of Aow K + 2 is served.
By choosing K, and hence q, appropriately, the difference in
the service received by flows K + 1 and K + 2 can be made
arbitrarily large.

C $i 2 C may be ensured either by dynamically changing
the weight assignments of flows or by performing admission
control. An algorithm for dynamically changing the weights
or an evaluation of its effects on the fairness properties have
not been presented in [l]. On the other hand, it may not be
possible to perform admission control for some flow types
(for example, best-effort flows). Furthermore, it may not be
feasible to employ admission control when minimum server
capacity is zero.

WFQ, FQS, SCFQ, FFQ, WF2Q, and WF2Q+ sort and
schedule packets in the increasing order of finish tags. Hence,
per-packet computational complexity is O(log Q) where Q is
the number of flows served by the server. To reduce this per-
packet computational complexity, Deficit Round Robin @RR)
was proposed in [191. It is a derivative of weighted round-robin
algorithm designed to accommodate variabIe length packets
of a flow. Although the per-packet computational complexity
of DRR is O(1) per packet, its fairness measure can deviate
arbitrarily from the lower bound. Furthermore, tbe maximum
delay incurred by packets can be significantly higher than in
WFQ [12].

In summary, the design of a fair scheduling algorithm that
is: 1) computationally efficient; 2) provides fairness regardless
of variation in server capacity; 3) facilitates hierarchical link
sharing; and 4) has good delay properties is an open problem.

C. Research Contributions of this Paper

In this paper, we present the Start-time Fair Queueing
(SFQ) algorithm that is computationally efficient and allocates
bandwidth fairIy regardless of admission control as well as
variation in a server rate. We show that it has a fairness
measure of

(“F#y ; CJ

which, on an average, is 11% away from the tighter lower
bound that we derive. We analyze the single server and end-to-

693

end deadline guarantee of SFQ. To accommodate links whose
capacity fluctuates over time (for example, flow-controlled and
broadcast medium links), this analysis is carried out for servers
which can be modeled as either Fluctuation Constrained (FC)
or Exponentially Bounded Fluctuation (EBF) servers 1161. To
the best of our knowledge, this is the first analysis of a fair or
a real-time scheduling algorithm for such servers.

To support hierarchical link sharing, we present a hier-
archical SFQ scheduler. We build upon the analysis of FC
and EBF servers and analyze the single server and end-to-
end deadline guarantees of a flow when the link bandwidth is
hierarchically partitioned. We demonstrate that the hierarchical
SFQ scheduler, in addition to supporting heterogeneity, can be
used to achieve separation of delay and throughput allocation.

The rest of the paper is structured as follows. We present
SFQ algorithm and analyze its fairness, throughput, single
server deadline guarantee, and end-to-end deadline guaran-
tee in Section II. We discuss hierarchical link sharing in
Section III and present our implementation of SFQ for an ATM
network interface in Solaris 2.4 environment in Section IV.
Finally, Section V summarizes our results.

II. START-TIME FAIR QUEUEING
Iu the Star-time Fair Queueing algorithm (SFQ), two

tags-a start tag and a finish tag-are associated with
each packet. However, unlike WFQ and SCFQ, packets are
scheduled in the increasing order of the start tags of the
packets. Furthermore, u(t) is defined as the start tag of the
packet in service at time t. The complete algorithm is defined
as follows.

1) On arrival, a packet p$ is stamped with start tag SW;),
computed as

SW;) = m=(4A(pi,>l, J’(P;-‘)} j 2 1 (4)

where F(pif), the finish tag of packet p$ is defined as

F(p$ = S(pif) + g j>l

where F(p:) = 0 and r#~f is the weight of flow f.
2) Initially the server virtual time is 0. During a busy

period, tbe server virtual time at time t, w(t), is defined
to be equal to the start tag of the packet in service at
time t. At the end of a busy period, u(t) is set to the
maximum of finish tag assigned to any packets that have
been serviced by then?

3) Packets are serviced in the increasing order of the start
tags; ties are broken arbitrarily.

As is evident from the definition, the computation of v(t) in
SFQ is inexpensive since it only involves examining the start
tag of packet in service. Hence, tbe computational complexity
of SFQ is the same as SCFQ, which is O(log Q) per packet,
where Q is the number of flows at the server.

‘Observe that server virtual time changes only when a packet finishes
service. Also, we set z’(t) to the maximum of the finish tags of the packets
at the end of busy period only for clarity of proofs; all the start tags as well
as the server virtual time can be equivalently set to zero.

694 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5. NO. 5. OCTOBER 1997

Traditionally, scheduling algorithms have been analyzed
only for servers whose service rate does not vary over time.
However, service rate of flow-controlled, broadcast medium
and wireless links may fluctuate over time. Fluctuation in
service rate may also occur due to variability in CPU ca-
pacity available for processing packets (for example, a CPU
constrained IP router may not have sufficient CPU capacity
to process packets when routing updates occur). If a server is
shared by multiple types of traffic with some traffic types being
given priority over the other, then for lower priority traffic, the
link appears as a server with fluctuating service rate. In order
to accommodate such scenarios, we analyze SFQ for servers
with bounded fluctuation in service rate.

Two server models, termed Fluctuation Constrained (FC)
server and Exponentially Bounded Fluctuation (EBF) server,
that have bounded fluctuation in service rate and are suitable
for modeling many variable rate servers have been introduced
in [16].” An FC server has two parameters-average rate C
(bits/s) and burstiness S(C) (s). Intuitively, in an FC server,
the time taken to serve packets of aggregate length w in a busy
period can exceed the time taken in an equivalent constant rate
server by at most S(C). Formally,

Dejinition 1: A server is a Fluctuation Constrained (FC)
server with parameters [C, S(C)], if the time taken to serve
packets of aggregate length w in a busy period, denoted by

for any interval in which both flows f and m are backlogged.
We achieve this objective by establishing a lower and an upper
bound on Wf (ti , TV) in Lemmas 1 and 2, respectively.

Lemma I: If flow f is backlogged throughout the interval
[ti, tz], then in an SFQ server

$f(Y2 - Q> - ,y < wf(tl, t2) (8)

where 11~ = ti(ti) and 112 = 2i(t2).
Lemma 2: In an SFQ server, during any interval [ti, t2]

Wf(tl, t2) i 43f(U2 - w) f yx (9)

where u1 = v(ti) and ~2 = I.
Since unfairness between two flows in any interval is

maximum when one flow receives maximum possible service
and the other minimum service, Theorem 1 follows directly
from Lemmas 1 and 2.

Theorem I: For any interval [t 1: t2] in which Aows f and
m are backlogged during the entire interval, the difference in
the service received by two flows at an SFQ server is given as

Theorem 1 demonstrates that SFQ has an H(f; m) value of

T(w), satisfies

The EBF server is a stochastic
Intuitively, in an EBF server,

l;lax I ,y.

t S(C). (6) 4f &I

relaxation of the FC server.
To evaluate the fairness guarantee of SFQ, we have derived a

the probability of the time
lower bound on H(f, m) that is tighter than

taken to serve packets of aggregate length u1 in a busy period
deviating by more than y from that in an equivalent constant
rate server, decreases exponentially with y. Formally, we have
the following.

Definition 2: A server is an Exponentially Bounded Fluc-
tuation (EBF) server with parameters [C, B, (v, S(C)], if the
time taken to serve packets of aggregate length w in a busy
period, denoted by random variable T(w), satisfies

F[T(w) > ; + b(C) + Y] 5 4e?Y, 0 5 Y. (7)

In what follows, we analyze the fairness of SFQ for any
variable rate server, and its deadline guarantees for FC and
EBF servers. Since a (C, 0) FC server is a constant rate server,
the following analysis is also valid for constant rate servers.
Due to space constraints, we omit the proofs and present them
in [12].

A. Fairness Guarantee

To derive fairness guarantee of SFQ, we need to prove a
bound on

‘The definitions of FC and EBF servers as presented here are different from
that in [16]. Specifically, whereas [16] characterizes the servers by the work
done in a busy period, we characterize the servers by the time taken to serve
packets of length u‘ in a busy period.

which was presented in [S]. Specifically, in [12], we have
shown that H(f; m,) > L(f, m), where L(f, m) is (c + l)a,

1”‘“”
f

~“‘“X

o=- li3=3 4.f ’ Tn.

ct 5 p, and c is a positive integer such that co < ,8 < (c+ 1)~.
The fairness guarantee of SFQ, on an average, is within 11%

of L(f, m).
There are two important aspects of Theorem 1.
.

.

To establish it, we did not make any assumptions about
the service rate of the server. Hence, it holds regardless
of the characteristics of the server. This demonstrates that
SFQ achieves fair allocation of bandwidth over variable
rate servers, and thus meets a fundamental requirement
of fair scheduling algorithms for integrated services net-
works.
To establish it, we did not make any assumptions about
the weights; weights are just uninterpreted numbers. In
particular, we did not require any admission control such
as CoEQ d,, 5 C. Since for variable rate servers, C may
not always be defined, as well as it may not be possible
to perform admission control for best-effort flows, this
property is desirable. This is an important difference
between SFQ and algorithms such as WF2Q+ and FFQ.

GOYAL ad: START-TIME FAIR QUEUEING

B. Deadline Guarantee

In the previous sections, we have not assigned any inter-
pretation to the weight of a flow. To establish the deadline
guarantee of a flow, we will henceforth interpret 4f as the
rate assigned to flow f and denote 4f by r-f. The SFQ
algorithm, as defined so far, only allocates constant rate to
the packets of a flow. However, due to the multiple time-
scale variation of VBR video, to achieve efficient utilization
of network resources, a server may be required to allocate
variable rate to packets of a video flow. To support variable
rate allocation, we .generalize SFQ by extending the definition
of the tags. Let tif be the rate assigned to packet $ Then
finish tag of packet p$ F(pif) is defined as

Start tag of a packet and the system virtual time are defined
as before.

We show in Sections II-B1 and II-B2 that the generalized
SFQ algorithm provides two types of deadline guarantees to
a packet.

l It guarantees a deadline to a packet based on its expected
arrivaZ time. Specifically, it guarantees that

JSFQ(P;) 5 EAT (I$, $1 + P; (12)

where LsFQ($~) is the departure time of packet pf in
an SFQ server, 0; depends on 1: and the properties of
the server as well as the other flows at the server, and
EAT (pi, 4) is the expected arrival time of packet fjf
that has been assigned rate of. EAT (p$ $i) is defined
as

EAT ($1 r;)

= maJi A($) f’ EAT (#-I 9-l) + f ’ f

where EAT (p$, 3) = -co. Such a guarantee has been
referred to as d&y guarantee and is used JO provide
various QoS guarantees regardless of the behavior of the
other flows in the network [lo].

. It guarantees a deadline to a packet based on its arrival
time and the departure time of the previous packet.
Specifically, it guarantees that

&SFQ(P~) 2 mm {&wQ(pj;1)l A@;)) + Pi. (14

Such a deadline guarantee, which we refer to delay-cum-
tiwcmgl~put guarantee, improves upon the performance
bounds determined from delay guarantee when the actual
service received by a flow is better than that guaranteed
by the server.

SFQ provides these deadline guarantees when the server
capacity is not exceeded. To derive the deadline guarantee,
let us formalize the meaning of the term “capacity is not
exceeded.” Let rate function for flow f at virtual time ZI,
denoted by Rf(v), be defined as the rate assigned to the packet.

695

that has start tag less than ‘u and finish tag greater than 21.
Formally,

Rf (u) =
1

6 if 3j 3 FYI+) I 0 < wgl
0 otherwise.

Let Q be the set of flows served by the server. Then the
capacity of an FC or EBF server with average rate C is not
exceeded if

To derive the delay as well as delay-cum-throughput guarantee
of FC and EBF SFQ servers, we first derive a bound on the
work done by an SFQ server in virtual time interval [q, ~a]
in Lemma 3.

Lemma 3: If the capacity of an FC or EBF server with
parameters [C, b(C)] or [C, B, (Y, S(C)], respectively, is not
exceeded, then the aggregate length of packets that have start
tag at least ~1 and at *most 212, and are served in the same busy
period, denoted by W(vr, vz), is given by

whenever

%=s~& +, v2 = s@i,,Tif),

and
n=j-k-1 p+n

v2 -u1= c
f

k+n’
n.=o Tf

For brevity, we will denote

c
E . max p

nEQAn#f
%+6+6(C)

by 0;.
1) Delay Guarantee: Theorems 2 and 3 establish the delay

guarantee of SFQ for FC and EBF servers, respectively.
The~re~7z 2: If the capacity of an SFQ FC server with

parameters [C, S(C)] is not exceeded, then

kQolif) 2 EAT (P$ 4, + 6;. (17)

Theorem 3: If the capacity of an SFQ EBF server with
parameters [C, B, tr, S(C)] is not exceeded, then

P[&~Q(f.$) s EAT (p$ 6) + 6’; + r] 2 1 - Be-aY.

(18)

The delay guarantee derived in Theorems 2 and 3 is
independent of a tie-breaking rule that an SFQ server may use
when more than one packet have the same start tag. Though a
tie-breaking rule does not affect the delay guarantee, it can be
used by a server to achieve different objectives. For example,
a tie-breaking rule may give higher priority to interactive,
low-throughput applications to reduce the average delay.

Theorems 2 and 3 can be used to determine delay guarantee
even when a server has flows with different priorities and

696

services them in the priority order (such a scenario may occnx
in an integrated services network with different traffic types).

Theorem 2 demonstrates that maximum deIay of a packet
in SFQ is smaller than in SCFQ. Specifically, a tight bound
on the departnre time of a packet at a constant rate server
employing SCFQ, given in [lO], is

Since S(C) = 0 for a constant rate server, the difference in
maximum delay that a packet may incur at servers employing
SCFQ and SFQ is

lj li
f f

-7 - -.
c

cw
Tf

Clearly, maximum delay in SFQ is smaller thap in SCFQ. To
illustrate numerically, when flf = 64 kb/s, l$ = 200 bytes
and C = 100 Mbls, the difference is 24.4 ms. If there are K
servers on the path of a flow, this difference increases by a
factor of X. Similarly, the difference increases linearly with
the packet size.

Theorem 2 also shows that, unlike WFQ, the maximum
delay of a packet in SFQ depends on the maximum packet
length of all the flows at the server. However, in spite of
this dependence, SFQ provides lower maximum delay, as
compared to WFQ, to low-throughput fIows. To observe this,
consider fhe difference in thy maximum delay experienced by
packet $-, denoted by A&$), in WFB and SFQ.

Since WFQ guarantees that packet p; will be transmitted by

EAT@, T-$) + -$ + +
f

where I,, is the maximum packet length at the server, we get

Hence, A(p$) L 0 if

nEQAn#f

To gain a qualitative understanding of (22), let 1: = I,, =
lFa = 1 and Y$ = T-J. Then, Avj) > 0 if ?-f 5 C/&j\ - 1).
That is, maximum deIay of packets of a ff ow in SFQ is smaller
than in WFQ if the link bandwidth used by the flow is at most
C/(lQI - 1); such a flow is referred to as a low-throughput
flow. This is also illustrated by Fig. I(a), which plots the
reduction in delay in SFQ for different number of flows and
Aow rates, assuming 200 byte packets and link capacity of
100 Mb/s. As the figure shows, whereas the defay redpces for
flows with rate of < C/(jQ\ - l), i.e., low throughput flows,
it increases for flows with rate rf 2 C/(/Q1 - l), i.e., high
throughput flows. To compare the delay performance of WFQ
and SFQ in an example scenario, consider a network link that

IEEIYACM TRANSACT’IONS ON NETWORKING. VOL. 5. NO. 5. OCTOI3ER 1997

(b)

Fig. I. (a) Difference in maximum delay in WFQ and SFQ. (b) Compnrison
of avenge delay in WFQ and SFQ.

is servicing 70 flows (possibly video flows) with rate 1 Mb/s
and 200 flows [possibly audio flows) with rate 64 kbls. In such
a scenario, whereas the maximum delay of the packets of flow
with rate 64 kb/s reduces by 20.39 ms in SFQ, the maximum
delay of 1 Mb/s flows increases by 2.48 ms.

SFQ is also expected to lower the average delay of low-
throughput applications while increasing the average deIny of
high-throughput ones. This is because whereas SFQ schedules
packets in the increasing order of start tags, and thereby sched-
uies packets at the earliest possible instant, WFQ schedules
packets in increasing order of finish tag, and thus delays
a packet as long as possible. To validate this hypothesis,
we simuIated a switch that was shared by high- and Iow-
throughput Bows carrying Poisson traffic. The link capacity
was I Mb/s and the packet size was 200 bytes. Seven high-
throughput flows with average rate 100 kbls shared the switch
with varying riumber of low-throughput flows with average
rate 32 kb/s. The number of low-throughput flows was vnried
from two to ten, and the switch was simulated for 1000 s.
Fig. l(b) compares the average packet delay of low-throughput
flows in WFQ and SFQ at varying IeveIs of link ufilizntlon.
As the figure illustrates, the average delay of low-throughput
flows is higher in WFQ than in SFQ; at 80.81% link utiljzation,
the average delay is 4.7 ms higher in WFQ than in SFQ.

As is evident from the definition of the expected arrival
time, two key properties of the delay guarantee of SFQ for

GOYAL ct al.: START-TIME FAIR QUEUEING

a flow are: 1) it is independent of the behavior of other
sources at the server, and thereby isolates the flow and 2) it is
independent of a traffic characterization. Whereas the isolation
property enables a server to provide stronger guarantees to
the flow and is desirable when sources may be malicious [4],
independence of delay guarantee from trafiic characterization
enables a server to provide various QoS guarantees to flows
conforming to any specification [lo]. To enable a network of
servers to provide similar guarantees, we derive end-to-end
delay guarantee in Section II-Cl.

2) Delay-czzzn-Tlzrouglut Guarantee: We first establish a
general property of SFQ FC and EBF servers in Theo-
rems 4 and 5, respectively, and then derive their delay-cum-
throughput guarantees in Corollaries 1 and 2.

Tlzeorent 4: If the capacity of an SFQ FC server with
parameters [C, S(C)] is not exceeded, then

n=j-1 12

LsFq(ljf)~~+ c ++e; (23)
n&-l

where t 2 A@;) and packet p$ is the first packet in the
queue of flow f at time t.

Tlreorern 5: If the capacity of an SFQ EBF server with
parameters [C, B, a, S(C)] is not exceeded, then

where t 1 A@;) and packet p> is the first packet in the
queue of flow f at time t.

Corollaries 1 and 2 use Theorems 4 and 5, respectively, to
derive the delay-cum-throughput guarantees of SFQ FC and
EBF servers, respectively.

Corollary I: If the capacity of an SFQ FC server with
parameters [C, S(C)] is not exceeded, then

p-1

where LsF&.$) = 0.
Corollazy 2: If the capacity of an SFQ EBF server with

parameters [C, B, o, S(C)] is not exceeded, then

(26)

where Ls&py) = 0.
To observe the advantages of delay-cum-throughput guar-

antee over delay guarantee, consider a 10 Mb/s constant rate
SFQ server that is serving 10 flows, each with packet size
of 200 bytes and reserved rate 1 Mb/s (i.e., for all flows
n, rc = r, = 1 Mb/s). Let N flows (including flow f) be
continuously backlogged and the rest of the flows send no
packets. Since only N flows are backlogged and all flows

697

have the same weight, fiow f receives an effective throughput
of 10/N Mb/s. Hence, let departure time of flf be

-200 bytes
310 a

E Mb/s

Fig. 2 plots the bounds on departure time of packet $2’
obtained using delay guarantee and delay-cum-throughput
guarantee for j 2 1 and N = 10 and N = 5. As the figure
illustrates, when all the flows are backlogged, i.e., N = 10, the
bound derived using delay guarantee is tighter. However, when
only five flows are backlogged, i.e., N = 5, then the bound
derived using delay-cum-throughput guarantee is significantly
better. Hence, the delay-cum-throughput guarantee improves
upon the bounds of delay guarantee when the actual service
received by a flow is better than the service that has been
guaranteed.

In networks that carry traffic with multiple time-scale vari-
ation (for example, video traffic), many flows will receive
service better than that guaranteed by the network. Hence,
the improved bounds yielded by delay-cum-throughput guar-
antee are desirable. In Section II-C we derive the delay-cum
throughput guarantee of a network of servers and illustrate the
potential utility of the improved bounds yielded by delay-cum-
throughput guarantee for fiow controlled data and adaptive
real-time applications.

C. End-to-End Deadline Guarantee

In this section, .we utilize the single server deadline guar-
antee to derive delay and delay-cum-throughput guarantee of
a network of servers.

I) End-to-End Delay Gzzarantee: The objective is to deter-
mine the deadline guarantee of a network of servers based on
the expected arrival time of a packet at the first server on the
path of a flow [lo]. To do so, let the ith server along the path
of a flow be denoted as server i. Also, let there be K servers
on the path of a tiow and let each of the servers guarantee
a deadline to a packet based on its expected arrival time.
Then, the nehvork guarantees a deadline to a packet based
on its expected arrival time at the Kth server. observe that
the expected arrival time of a packet at server K is dependent
on departure time of packet at server K - 1, which, in turn,
is dependent on expected arrival time of the packet at server
K - 1. Using this argument recursively, a network of servers
can guarantee a deadline to a packet based on the expected
arrival time of the packet at the first server. This method
has been used in [lo] to derive end-to-end delay guarantee
of a network of servers that employ algorithms in the class of
Guaranteed Rate (GR) scheduling algorithms (the framework
presented in [7] can also be employed to study the end-
to-end behavior). However, the end-to-end delay guarantee
presented in [lo] assumes that each of the servers provides
a deterministic bound on the departure time of a packet.
Consequently, even though SFQ belongs to GR, the guarantee
is not applicable to a network which may have some SFQ EBF
servers. To analyze such nehvorks, we generalize the method
presented in [lo].

698 IEEE/ACM TRANSACIIONS ON NETWORKING. VOL. 5, NO. 5,OCl.ODBR I997

400 500 600
Packet number

Fig. 2. Bounds derived using delay and delay-cum-throughput guaraatee for different number of backlogged flows.

Observe that SFQ delay guarantee for both FC and EBF CoraIlary 3: If scheduling algorithm at each server on the
servers when the server capacity is not exceeded can be path of a flow satisfies (28), and there are Ii servers on the
rewritten as path of the flow, then

P[LsFQ($~~) 5 EAT {p$ 6) t ,B; + 712 I- Be-X7s ?B=K

(27) I= ~“b-8

Substituting j3; = I!??, 3 = 0, and X = co, yields the delay
guarantee for FC server. Substituting & = 0; aud X = o, +q”-’ + 7 2 I- ijirre-YAK (30)
yields the deIay guarantee for EBF servers. Hence, we will use 1
(27) to derive the end-to-end delay guarantee. Furthermore, to
facilitate interoperability with other scheduling algorithms, we

where i,“(pj) is the time at which pack:t $ F server

will only require each server on the path of a tlow to guarantee
K, 7?j = min,E[l...x] 7?jl*, !PK-l = Cnzl - r”, Gr2 =

a deadline which is similar to (27). We first relate the expected CEEf B”, and

arrival time of a packet at adjacent servers in Theorem 6 and
then use it to derive end-to-end delay guarantee in Corollary 3.

Let 7; be an upper bound on the propagation delay between
servers i and i + 1. Also, let all the variables of server i be
identified by superscript i, i.e., @$ and tij are identified as 4 i
and T$’ ‘, respectively. Henceforth in this section, we wiIl refer
to a single flow f, and hence, drop the subscript f from all
the variables.

Theorem 6: If scheduling algorithm at server i guarantees
that ’

where L”(pi) is the time at which packet pi departs server
i, then

+ nETlaxjl (fin9 ‘} -k 2 $ y 2 1 - BiemXiY (2% . . . I
where +hi 5 min (Tj,i, ,j,i+l),

To derive Corollary 3, we have only required the scheduling
algorithm at each server to satisfy (28). Hence, any scheduling
algorithm that satisfies (28) (for example, Virtual Clock, WFQ,
and SCFQ) can interoperate to provide end-to-end guarantee.
Furthermore, Corollary 3 can be used for an internetwork of
FC and EBF servers. Finally, the proof method of Theorem
6 and Corollary 3 can be used to derive end-to-end delay
guarantee even when packet may be fragmented and reassem-
bled in the network. Hence, SFQ can provide guarantees in
heterogeneous intern&working environments.

2) End-to-End Delay-alm-T~~ro~~g~t~l~l Gltaruntee: When n
flow is served by a netivork of servers, a destination knows the
departure time of a packet from the last server. Furthermom,
from the traffic characteristics of a flow, it may also know the
arrival time of a packet at the first server on the path. Hence,
the objective is to determine a bound on the departure time
of a packet from the last server based on its arrival time at

GOYAL cl of.: START-TIME FAIR QUEUEING 699

the first server and departure time of the previous packet at
the last server.

Observe that SFQ delay-cum-throughput guarantee for both
FC and EBF servers when the server capacity is not exceeded
can be rewritten as

P[&FQ($‘) I ma {~s~&$, 4$1)> + By + rl
2 1 - Be-“‘. (31)

Substituting

B = 0, and X = co, yields the delay-cum-throughput
guarantee for FC server. Substituting

B;il=!i+++l

and X = a yields the delay-cum-throughput guarantee for
EBF servers. Hence, we will use (31) to derive the end-to-
end delay-cum-throughput guarantee. Furthermore, to facilitate
interoperability with other scheduling algorithms, we will only
require each server on the path of a flow to guarantee a
deadline which is similar to (27).

Let $ denote the lower bound on the propagation delay
between servers i aud i + 1. As in the previous section, we
drop the subscript f from all the variables aud identify all
variables of ith server by superscript i. Theorem 7 establishes
the end-to-end delay-cum-throughput guarantee.

Tlleorenz 7: If there are K servers on the path of a flow,
and each server i guarantees that

P[L’[#+‘) 5 max {L”(g), A”(@‘)} + /?j+lVi + r]
2 1 - f&y-~*- (32)

where Li(#) is the time at which packet pi departs server
i, then

where
n=K--I n&--I @K-l = c F”, p-1 = Tk, c
n=l n=l

n=i

@i =
c

B*, and Ai = &.
?a=1

c
1

Tt=l 5;;;

If all the servers are FC servers and provide deterministic
guarantee, then (33) simplifies to

I,“(#+‘) < max{Lr’(pj) - GK-‘, d’(#+l))
n=K

for i = K. If a destination knows the relationship between the
arrival time of packet pi+’ at the first server and departure time
of pi at the last server (possibly from the traffic characteristics
of the source) and the service received by a flow is better
than that guaranteed by the network, then just like in the case
of a single server, the destination cau utilize (34) to derive
hounds on packet delay better than those determined by end-
to-end delay guarantee. In particular, if for all packets pi+l,
LKcpi) = max{LK(pi) - CzIf-’ i”, dl(pi+l)), then by
recursive use of (34), we get

m=k n=K

L”cpi’“) 5 I;“(#) + c
(

c pi++ + !ilK-l . (35)
m=l ?a=1 1

To observe the advantage of bounds derived using (35),
consider a flow that is served by five servers. Let each server
be a constant rate server with rate C = 10 Mb/s aud for ease of
exposition, let there be zero propagation delay between them.
Let each server serve N = 10 flows, each with reserved rate
1 Mb/s and packet size of 200 bytes. Also, let the flow be
continuously backlogged at the first server. Let LK(pi) be
given as

(36)

where 1 = 200 bytes, K = 5, and a! = NJ/C. Let rj = 2
Mb/s for the first 1000 packets, i.e., let them receive service
better than that guaranteed by the network, and let rj = 1
Mb/s for j > 1000. Fig. 3 plots the bound on the departure
time of packet #+k {x7 = 1, 5,10) for different values of j
using (35) as well as the end-to-end delay guarantee for this
scenario. As the figure demonstrates, (35) improves upon the
bounds of delay guarantee and tracks the actual arrival time
of packets much more closely.

We envision the end-to-end delay-cum-throughput guarantee
to be useful for at least two classes of applications.

l Flow-controlled data applications: Consider a flow con-
trolled data source that reserves a minimum rate at each of
the servers on the path to the destination. To increase its
throughput by taking advantage of statistical multiplexing
of various sources, let the source estimate the bottleneck
rate, which is at least the reserved rate, and send at the
estimated bottleneck rate [IS]. Due to the Auctuations in
the botdeneck rate as well as the inherent delay and errors
in the estimation process, such a source may send at a rate
higher than the bottleneck rate. This will lead to queue
build up at the bottleneck server and eventually packet
losses. Let packets pi, . e . , pi+k be lost due to buffer
overflow. In the simplest case, a destination can detect
loss of these packets only on arrival of packet pi+kfl.
However, if the network provides delay-cum-throughput
guarantee, then the destination can use (35) to determine
a bound on the arrival time of packets pi, .a., pi+”
and declare them lost if they do not arrive by then. It
can thus detect packet losses earlier than the arrival of
packet pi+M1. The early detection of packet losses can
be used by a destination to “close” the feedback loop

3

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5. NO. 5. OCTODBR 1997

Delay Guarantee -
Delay-cum-throughput k=l ----
Delay-cumlhrougfiput I(=5 -.---.

Delay-cum-thmughpul k=lO -

600 1000 1200 1400 1600 1800 2000
Packet number

Fig. 3. Bounds derived using delay and delay-cum-throughput guarantee for different values of k.

between a source and destination faster and thus improve
the throughput of the source.

l Adaptive, real-time, playback applicaGons: Appli-
cations such as audio and video that can tolerate
discontinuities in playback and adapt their playback point
as per the network congestion, may reserve a minimum
rate and send packets at a higher rate. In such a scenario,
a destination can use the delay-cum-throughput guarantee
to determine a bound on the arrival time of future packets
and use the bounds to suitably adapt the playback point.

The algorithms and protocols that exploit the advantages of
delay-cum-throughput guarantee for these and other applica-
tions is the subject of ongoing research and beyond the scope
of this paper.

D. Discussion

SFQ borrows the concept of “self-clocking” and scheduling
packets in the increasing order of start tags from SCFQ and
FQS, respectively. However, it leads to better performance
than either of the two. SFQ has the same fairness measure and
implementation complexity as SCFQ but has smaller delay
guarantee. Similarly, whereas FQS is unfair over variable
rate servers and has high implementation complexity, SFQ is
fair over variable rate servers and has lower implementation
complexity. Furthermore, in FQS, since all Q flows can
become active simultaneously, and consequently Q packets
can have the same start tag, the bound on the departure time
of a packet in FQS is at least that in SFQ.

The delay guarantee of SFQ depends on the maximum
packet length of all the flows at the server. In contrast, the
delay guarantee of WFQ depends only on the flow’s properties.
Thus, WFQ provides better isolation of delay guarantee of
a flow. We have shown in [12] that the delay guarantee of

SFQ is similar to that of an online algorithm4 that minimizes
unfairness. Furthermore, as we demonstrated in Section U-31,
it is the lack of isolation of delay guarantee that enables SFQ
to provide lower delay to low throughput flows at the expense
of increased delay to high throughput flows. However, if SFQ
is employed to provide a priori specified bounds on pncket
deIay, then the maximum number of flows as well as their
packet sizes would have to be estimated. In some networking
environments, such an estimate may be large and consequently
SFQ may not be able to provide lower a priori deIay to low

throughput applications. In such a case, low delay to low
throughput flows may be provided by employing the following.

l Fair scheduling algorithms that allocate only rate and have
deIay guarantee similar to WFQ. In such a case, low delay
is provided to low throughput flows by reserving higher
rate. This may result into low utilization of the network.
However, the main advantage of s&h algorithms is that
they have O(1) complexity admission control algorithms.

l Fair scheduling algorithms that achieve separation of
rate and delay allocation. In such a case, the network
utilization is higher. However, these algorithms have
O(Q) complexity admission control algorithms [7].

For networking environments where either of these two
approaches are preferable over SFQ, we have designed a class
of Fair Airport (FA) algorithms [12]. An algorithm in FA
class combines SFQ with any nonwork-conserving algorithm
in Rate Controlled Service Discipline (RCSD) class [7]. By
appropriately choosing an algorithm from RCSD class, fair
algorithms that either allocate only rate or achieve separation
of rate and deIay allocation can be designed. This method
leads to the design of the first fair algorithm that achieves
separation of rate and delay aIlocation. The property of SFQ

4An online scheduler is one which does not USC rhc length of gackct #I
in making a scheduling decision for packet 1);.

GOYAL er al.: START-TIME FAIR QUEUEING

that it does not use the length of a packet in determining
its priority is central to the design of such FA algorithms.
Though FA algorithms have higher implementation complexity
than SFQ, they can be efficiently implemented. Furthermore,
they are fair over FC servers. The detailed presentation of FA
algorithms is beyond the scope of this paper.

To summarize, we have shown that SFQ: 1) achieves low
average as well as maximum delay for low-throughput appli-
cations; 2) provides fairness, regardless of variation in a server
rate; 3) has a fairness measure that, on an average, is within
11% of the lower bound; and 4) is computationally efficient.
In the next section, we show that it enables hierarchical link
sharing, and thus meets all the requirements of a scheduling
algorithm for integrated services networks.

III. HIERARCHICAL LINK SHARING

Hierarchical link sharing is an ideal mechanism for manag-
ing heterogeneity in integrated services networks [6], [NJ. It
can be used by a network to support services that provide
heterogeneous QoS as well as multiple protocol families
that support different traffic types and/or congestion control
mechanisms. For example, a network can support hard and
soft real-time as we11 as best effort services by partitioning the
link bandwidth between them as per the expected requirements
of each of the services. To support high and low reliability
soft real-time services, the bandwidth of soft real-time service
may be further partitioned. Similarly, the bandwidth of the best
effort services may be further partitioned between throughput
intensive and interactive services. Hierarchical link sharing can
also be employed to support a link-å service in which the
bandwidth of a link is partitioned among several organizations
and the bandwidth of an organization is recursively partitioned
among its suborganizations [1X].

A key advantage of hierarchical link sharing is that it
provides isolation between different services while enabling
similar services to share resources. Hence, incompatible con-
gestion control algorithms can coexist while compatible al-
gorithms reap the benefits of sharing. For example, while
high and low reliability soft real-time services get the benefits
of sharing, the hard real-time service is isolated from the
overbooking that may occur in soft real-time services, and
the congestion control algorithm that may be used by the
best effort services. Hierarchical link sharing also facilitates
use of different resource allocation methods for different
services. This is desirable as hard real-time services may
use a scheduling algorithm that performs well when there
is no overbooking; soft real-time services may prefer to use
a scheduling algorithm that provides QoS guarantees and/or
minimizes deadline violations in presence of overbooking; and
best effort services may use a fair scheduler for throughput
intensive, flow-controlled data applications.

The requirements of hierarchical link sharing are specified
by a tree, referred to as link-sharing structure, in which each
node, other than possibly leaf nodes, denotes an aggregation
of flows [6]. Each node in the tree is referred to as a class and
has a weight associated with it. The objective of a mechanism

701

implementing hierarchical link sharing is to distribute the
bandwidth allocated to a class among its subclasses fairly,
i.e., in proportion to the weights [18]. This objective can
be achieved by a hierarchical scheduler that considers each
class, other than the leaf classes, as a virtual server and uses a
fair scheduler to schedule the virtual servers. However, as the
following example illustrates, the scheduler used must allocate
bandwidth fairly even over variable rate servers.

fiumple 3: Consider a link sharing structure in which
classes A and B are subclasses of the root class. Let classes
C and D be subclasses of class A and let each class have
weight 1. Initially, let there be no packets in class B. Hence,
class A gets the full link bandwidth. When class B also
becomes active, the bandwidth available to class A (and hence
to subclasses C and D) reduces to 50% of the link bandwidth.
Consequently, to fairly partition the bandwidth of class A
between subclasses C and D, the scheduler must be able to
allocate bandwidth fairly over variable rate setiers.

Since SFQ allocates bandwidth fairly even over variable
rate servers, it can be employed for achieving hierarchical
link sharing. In what follows, we present a hierarchical SFQ
scheduler.

Hierarchical SFQ scheduler is simple. It uses SFQ to sched-
ule each class; treating each subclass as a flow. The scheduling
of packets occurs recursively: the scheduler for root class
schedules the subclasses; the scheduler of subclasses in turn
schedule their subclasses. If the leaf class is an aggregation of
flows, it schedules flows by employing a leaf class dependent
scheduler (see [9] for an implementation of hierarchical SFQ
scheduler). Since SFQ fairly allocates bandwidth regardless of
the server behavior, this simple recursive hierarchical sched- .
uling ensures that bandwidth allocated to a class is fairly
allocated between the subclasses and thereby achieves the
objective of hierarchical link sharing (a similar hierarchical
WF*Q+ scheduler has been independently presented in [I]).
Moreover, in contrast to link sharing mechanism in [6], it
provides bounds on various performance measures. To derive
bounds on the performance measures, we first prove the
following corollaries of Theorems 4 and 5. Let Tf(w) denote
the time taken to serve flow f packets of aggregate length w
which are served in the same bacldogged period of the flow.

CuroZZary 4: If the capacity of an SFQ FC server with
parameters (C, S(C)] is not exceeded and T$ = rf for all
packets, then Tf(w) is given as

T.(w) 5 w

Imax

G+L-
1 max

rj
af + c

TIEQAT+f

+ + 6(C) (37)

and the minimum is over all the flow f packets.
CoroZZury 5: If the capacity of an SFQ EBF server with

parameters [C, B, Q, S(C)] is not exceeded and tif = rf for

all packets, then random variable Tf(w) is given as

[

pax
P Tf(w) $+f_-q

f-f

4- S(C) + 7 I 2 1 - BeBaY (38)

where

and the minimum is over a11 the Aow f packets.
Now, consider a class f that is a subclass of the root class.

Let the Iink be an FC server with parameters fC, S(C)] and
let the set of the subclasses of the root class be denoted by Q.
Then, if class f has been assigned rate of, from Corollary 4
we conclude that the virtual server corresponding to f is au
FC server with parameters:

c
max L pax

rf, I --af+ nEQnn#f
c

+6(C) . 1 (391
Tf

Similarly, using Corollary 5, we conclude that if the link is an
EBF server, then the virtual server corresponding to f is an
EBF server. Using the argument recursively, we conclude that
if the link is an FC or EBF server, then each of the virtual
server in the hierarchical structure is an FC or EBF server,
respectively. Consequently, the bounds on deadline and end-
to-end deadline guarantee of a flow when it is hierarchically
schedmed can be determined as follows.

Deadfine Guaran&e: Since each of the virtual servers
is either FC or EBF server, Theorems 2 and 3 cart be
used to determine the singIe server deIay guarantee, and
Corollaries 1 and 2 can be used to determine the single
server delay-cum-throughput guarantee of the Bows.
E&to-End Deadlke Guararztee: Since the single server
deadline guarantee when a flow is hierarchically sched-
uled satisfies (28) and (321, Corollary 3 and Theorem
7 can be used to determine the end-to-end deadline
guarantee.

The above analysis method is general and can be employed
for any fair scheduling algorithm that provides guarantees
similar to SFQ, i.e., bounds on T(w) over FC and EBF servers-
Furthermore, this analysis is tighter than the analysis presented
in cl], [131. To observe this, consider a tree with three classes:
two Ieaf classes and a root class. Let the rate of leaf classes
1 and 2 be ~1 and ~2, respectively, and Iet each of them
contain 2 flows with equal weights. Let both the leaf classes
be scheduled by SFQ and the length of all packets be 1. Then,
it can be shown that the best bound on delay of packet p; for
flow f in leaf class 1 using the analysis in [l], [13] is

IEEE/ACM TRANSA~IONSONNETWORKI~G.VOL.5.N0,5,OCTOBER 1997

In contrast, using our analysis, we get

21 21
EAT j+,$ +c+z. (1 (413

Hierarchical SFQ scheduler not only achieves the objectives
of hierarchical link sharing, but can also be used to achieve
several other objectives. For example, it can be used to
achieve separation of delay and throughput allocation. Observe
that SFQ does not allocate delay and throughput separately.
However, it may be desirable to do so for some flows, This can
be achieved by aggregating the flows for which separation of
delay and throughput is desirable into one class and then using
a scheduling algorithm that achieves such a separation for
that class. Though conceptually simple, since the throughput
of a class fluctuates over time, the algorithm used must be
able to achieve the separation over variable rate servers, In
Theorem 8, we show that Delay EDD can achieve this over
an FC server. Since the throughput of a class is fluctuation
constrained, DeIay EDD can be used to achieve the objective

We first define Delay EDD and then prove its delay gunr-
antee for an FC server. Delay EDD on arrival of packet flj of
flow f assigns it a deadline, denoted by D(p;), and schedules
packets in increasing order of deadline [S]. D(p;) is defined as

(421

where df is the deadline of flow f packets, rf = r$ and
Ef = 1;.

T’horem 8: If Q is the set of flows serviced by the server
and

Vt>O: zmax{O, [(t-~)Tnl$}5~ (43)

and the server is a [C, S(C)] Fluctuation Constrained D&y
EDD server, then the time at which the!ransmission of packet
9; is completed, denoted by LEDD&), is

Due to high ComputationaI complexity, ii may not be feasible
to employ (43) as the schedulability test. Hence, conditions
stronger than (43) which have lower computational complexity
have been developed in [22]. The theorem holds under the
stronger conditions as wel1.

IV. IMPLEMENTATION

We have implemented SFQ scheduler for a FORE Systems
ATM network interface in Solaris 2.4 as a streams module
and driver (see Fig. 4). The driver is used to maintain weights
for connections. The module, on the other hand, is used
to schedule packets. We have modified the FORE API for
opening a connection to include the weight of a connection
as its parameters.

To experimentally validate the implementation of the sched- ;
uler, we initiated three connections with weights 1-3. Each 9
of the connections terminated after transmitting 500000 4- j
kB packets. Fig. 4 shows the throughput received by each i

GOYAL CI al.: START-TIME FAIR QUEUEING

I ATM Device Drivsr
I

(a)

Fig. 4. (a) SFQ scheduler implementation. (b) Throughput of the COME-

tions.

connection, As it demonstrates, when all the three connections
were active, they received throughput in the ratio 1 : 2 : 3.
When the connection with weight 3 terminated, the throughput
of the other two connections increased but still remained in
the ratio 1 : 2. Finally, when only one connection remained, it
received the full link bandwidth. Observe from Fig. 4 that SFQ
scheduler achieved fair allocation even though the realizable
bandwidth of the interface varied over time. This demonstrates
the feasibility of employing SFQ for scheduling network
interface in operating systems where the processing capacity
available for a network interface varies over time.

V. CONCLUDING REMARKS

In this paper, we presented the Start-time Fair Queueing
(SFQ) algorithm that is computationally efficient, achieves
fairness regardless of variation in a server capacity, and has
fairness guarantee that is close to the best achievable guar-
antee. We analyzed its single server and end-to-end deadline
guarantee for variable rate Fluctuation Constrained (FC) and
Exponentially Bounded Fluctuation (EBF) servers. This is the
first analysis of any fair or real-time scheduling algorithm for
such servers. To support heterogeneous services and multiple
protocol families in integrated services networks, we presented
a hierarchical SFQ scheduler. We derived performance bounds
for flows that are hierarchically scheduled and demonstrated
that our analysis leads to tighter results.

In summary, we demonstrated that SFQ: 1) achieves low
average as well as maximum delay for low throughput applica-
tions (e.g., interactive audio, telnet, etc.); 2) provides fairness
which is desirable for VBR video; 3) provides fairness, regard-

703

less of variation in server capacity, for throughput-intensive,
flow-controlled data applications; 4) enables hierarchical link
sharing which is desirable for managing heterogeneity; and 5)
is computationally efficient. Thus, SFQ meets the requirements
of a suitable scheduling algorithm for integrated services
networks.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers and S. FIoyd for their constructive comments that have
improved the presentation of the paper.

REFERENCES

[I] J. C. R. Bennett and H. Zhang. “Hierarchical packet fair queuing
algorithms,” in Pmt. .VGCOMM?V, Aug. 1996. pp. 143-156.

121 WF*Q: Worst-case fair weighted fair queuing,” in Pm.
%%OM’96, Mar. 1996, pp. 120-127.

[3] J. Davin and A. Heybey, “‘A simulation study of fair queueing and policy
enforcement,” Comprrter Comnruu. Rev., vol. 20, no. 5. pp. 23-29. Oct.
1990.

[4] A. Demers. S. Keshav, and S. Shenker. “‘Analysis and simulation of
a fair queueing algorithm,” in Proc. ACM SIGCOMM, Sept. 1989, pp.
t-12.

[5] D. Fenari and D. C. Verma, “‘A scheme for real-time channel establish-
ment in wide-area nehvorks,” IEEE J. Select. Areas Counnun., vol. 8.
no. 3, pp. 368-379, Apr. 1990.

[6] S. Floyd and V. Jacobson, ‘Link-sharing and resource management
models for packet networks:’ IEEELACM Trans. Networking, vol. 3,
pp. 365386, Aug. 1995.

[7] L. Georgiadis. R. Guerin, V. Peris. and K N. Sivarajan. “Efficient
network QoS provisioning based on per node traffic shaping,” in Proc.
INFOCOM’96, Mar. 1996, pp. 102-110.

[gl S. 3. Golestani, “‘A self-clocked fair queueing scheme for high speed
-applications,” in Proc. INFOCOM’94, Apr. 1994. pp. 636-646.

[9] P. Goyal, X. Guo. and H. M. Vin. ‘A hierarchical CPU scheduler
for multimedia operating systems,” in Proc. Opera@ Sysi. Design
Implemenr. (OSD1’96). Seattle, Oct. 1996, pp. 107-122.

[lo] P. Goyal and H. M. Vin, “Generalized guaranteed rate scheduling
algorithms: A framework,” in IEEELACM Trans. Networking, to appear.
Also available as Tech. Rep. TR95-30. Dept. Comput. Sci.. Univ. Texas
at Austin.

Ull -. “Network algorithms and protocol for multimedia servers,” in
Proc. INFOCOM’96, Mar. 1996, pp. 1371-1379.

[12] P. Goyal, H. M. Vin, and H. Cheng, “Start-time fair queuing: A
scheduling algorithm for integrated services packet switching networks,”
Tech. Rep. TR-96-02, Dept. Comput. Sci.. Univ. Texas at Austin, Jan.
1996. Available via URL http~/www.cs.utexa.edo/users/dmcl.

1131 -. ‘%art-time fair queuing: A scheduling algorithm for integrated
services packet switching networks,” in Proc. ACMSIGCOMM’96. Aug.
1996, pp. 157-168. -

1141 A. Greenbern and N. Madras. “‘How fair is fair aueuina.” J ACM, vol. - -
39, no. 3, pi. 56&598. July 1992.

_ I

1151 S. Keshav, ‘A control-theoretic approach to flow control.” in Proc. ACM
SIGCOMM’91. 1991. pp. 3-15.

1161 K. Lee, “‘Performance bounds in communication networks with variable-
rate links,” in Proc. ACM SIGCOMM’95, 1995. pp. 126-136.

[17] A. K. Pa&h. “A generalized processor sharing approach to flow control
in in@rated services networks,” Ph.D. thesis, Dent. Elec. Eng. Comput.
Sci.. MIT, 1992.

- -

I181 S. Shenker, L. Zhang, and D. Clark, “A scheduling service - -
mode1 and a sch&ling architecture for an jntegrated
services packet networks,’ available via anonymous ftp from
ftp://ftp.parc.xerox.com/pub/archfin.ps, 1995.

1191 M. Shreedhar and G. Varghese. “Efficient fair queuing using deficit
round robin,” in PIW~. ACM SIGCOMM’95, 1995. pp. 231-242.

[20] D. Stiliadis. ‘Trafgc scheduling in packet-switched networks: Analysis,
design and implementation,” Ph.D. thesis, Dept. Cornput- Sci. Eng.,
Univ. Calif.. Santa Croz, 1996.

[21] L. Zhang. “VirmalClock: A new traffic control algorithm for packet
switching networks,” in Proc. ACM SIGCOMM’90, Aug. 1990. pp.
19-29.

[22] Q. Zheng and K. Shin, “On the ability of establishing real-time channels
in point-to-point packet-switching networks.” IEEE Trans. Cornmn.,
vol. 42. pp. 1096-1105. Mar. 1994.

I

Pawan Goyal. for a photograph and biography, see p. 571 of the August Haichen Cheng received the MS. degree in computer sciences from the
I997 issue of this TRANSAC~ONS. University of Texas at Austin.

;

..-.-,
‘- .’ !
-“. :,;,

His resiarch interests are in computer networks and operating systems. He
is currently working at nuView, inc., Dallas, TX.

Hat-rick M. Vin, for a photograph and biography, see p. 571 of the August
1997 issue of this TRANSACXIONS.

