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Start-Time Fair Queueing: A Scheduling Algorithm
for Integrated Services Packet Switching Networks

Pawan Goyal, Harrick M. Vin, and Haichen Cheng

Abstract— We present a Start-time Fair Queueing (SFQ) al-
gorithm that is coemputationally efficient and achieves fairness
regardless of variation in a server capacity. We analyze its
single server and end-to-end deadline guarantee for variable
rate Fluctuation Constrained (FC) and Exponentially Bounded
Fluctuation (EBF) servers. To support heterogeneous services and
multiple protocol families in integrated services nefworks, we
present a hierarchical SFQ scheduler and derive ifs performance
bounds, Our analysis demonsirates that SFQ is suitable for
integrated services networks since it: 1) achieves low average
as well as maximum delay for low-throughput applications (e.g.,
interactive audio, telnet, etc.); 2) provides fairmess which is
desirable for VBR video; 3) provides fairness, regardless of varia-
tion in server capacity, for throughput-intensive, flow-controlled
data applications; 4) enables hierarchical link sharing which is
desirable for managing heterogeneify; and 5) is compufationally
efficient.

Index Terms— Fair queueing, integrated services netwerks,
packet scheduling.

. INTRODUCTION

A. Motivation

NTEGRATED services networks are required to support a

variety of applications {e.g., audio and video conferencing,
multimedia information retrieval, fip, telnet, WWW, eic.)
with a wide range of Quality of Service (QoS) requirements.
Whereas continuous media applications such as audio and
video conferencing require the network fo provide QoS guar-
antees with respect to bandwidth, packet delay, and loss;
applications such as telnet and WWW require low packet
delay and loss. Throughput intensive applications like fip,
on the other hand, require network resources to be allocated
such that the throughput is maximized. A network meets
these requirements primarily by appropriately scheduling its
resources.

To determine the characteristics of a suitable scheduling
algorithm, consider the requirements of some of the principal
applications envisioned for integrated services metworks.
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» Audio Applications: To maintain adequate interactivity
for such applications, scheduling algorithms must provide
low average and maximum delay.

» Video Applications: Variable bit rate {VBR) video
sources, which are expected to impose significant
requirements on network resources, have unpredictable
as well as highly variable bit rate requirement at
multiple time-scales [11]. These features impose two
key requirements on network resource management,

—Due to the difficulty in predicting the bit rate re-
quirement of VBR video sources, video channels may
utilize more than the reserved bandwidth. As long as
the additional bandwidth used is not at the expense
of other channels (i.e., if the channel utilizes idle
bandwidth), it should not be penalized in the future,

—Due to multiple time-scale variation in the bit rate
requirement of video sources, to achieve efficient
utilization of resources, a network will have to over-
book available bandwidth. Since such overbooking
may yield persistent congestion, a network should
provide some QoS guarantees even in the presence
of congestion.

Unfair scheduling algorithms, such as Virtual Clock [21],
Delay EDD [5], etc., penalize channels for the use of
idle bandwidth and do not provide bandwidth alloca-
tion guarantee in the presence of congestion [17]. Fair
scheduling algorithms, on the other hand, guarantee that,
regardless of prior usage or congestion, bandwidth would
be allocated fairty [17]. Hence, fair scheduling algorithms
are desirable for video applications.

» Data Applications: To support low-throughput, inter-
active data applications (e.g., telnet), scheduling nlgo-
rithms must provide low average delay. On the other
hand, to support throughput-intensive, flow-controlled
applications in heterogeneous, large-scale, decentralized
networks, scheduling algorithms must allocate bandwidth
fairly [4], [15]. Due to the coexistence of VBR video
sources and data sources in integrated services networks,
the bandwidth available to data applications may vary
significantly over time. Consequently, the fairness prop-
erty of the scheduling algorithm must hold regardless of
variation in server capacity.

Hence, in summary, a suitable scheduling algorithm for

integrated services networks should: 1) achieve low avernge
as well as maximum delay for low throughput applications
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(e.g., interactive audio, telnet, etc.); 2) provide fairness for
VBR video; and 3) provide fairness, regardless of variation in
server capacity, for thronghput-intensive, flow-controfled data
applications. Furthermore, since such networks will support
a wide variety of services and multiple protocol families,
the scheduling algorithm should facilitate hierarchical link
sharing [6], {18]. Finally, to facilitate its implementation in
high-speed networks, it should be computationally efficient.
A scheduling algorithm that achieves these objectives is the
subject of investigation in this paper.

B. Relation to Previous Work

Each unit of data transmission at the network level is a
packet. We refer to the sequence of packets transmitted by a
source as a flow [21]. Each packet within a flow is serviced by
a sequence of servers (or switching elements) along the path
from the source to the destination in the network. Before we
describe fair scheduling algorithms that may be employed by
the servers, let us consider the meaning of fair allocation of
link bandwidth,

Intuitively, allocation of link bandwidth is fair if equal
bandwidth is allocated in every time interval to all the fiows.
This concept generalizes to weighted fairness in which the
bandwidth must be allocated in proportion to the weights
associated with the flows. Formally, if ¢ is the weight of flow
S and W (#y, ty) is the aggregate service (in bits) received by
it in the interval [t;, ¢], then an allocation is fair if, for all
intervals [ty, ¢2] in which both flows f and m are backlogged

Wy(ts, to) _ Wity t2) _
¢f ¢m

Clearly, this is an idealized definition of fairness as it assumes
that flows can be served in infinitesimally divisible units. The
objective of fair packet scheduling algorithms is to ensure that

Wf(t.l: t2) _ W’m(th t2)
¢f Pm

is as close to zero as possible. However, it has been shown in
[8] that if a packet scheduling algorithm guarantees that

Wy(ts, t2) Wity t2)
by bm

0.

< H(f, m)

for all intervals [t;, ¢2] then

1P lgﬂ)
>o(d 4gm
(. m) > 5 (G + 5
where H(f, m) is a function of the properties of flows f
and m, and {§** and {3 denote the maximum lengths of
packets of flow f and m, respectively. The function H(f, m)
is referred to as fairness measure.

Several fair scheduling algorithms that achieve a value of
H(f, m) close to the lower bound have been proposed in
the literature. The earliest known fair scheduling algorithm is
Weighted Fair Queueing (WFQ) [4] (also referred to as Packet-
by-Packet Generalized Processor Sharing (PGPS) [17]). WFQ
was designed to emulate a hypothetical bit-by-bit weighted
round-robin server in which the number of bits of a flow served

691

in a round is proportional to the weight of the flow. Since
packets cannot be serviced a bit at a time, WFQ emulates
bit-by-bit round-robin by scheduling packets in the increasing
order of their departure times in the hypothetical server. To
compute this departure order, WFQ associates two tags—a
start tag and a finish tag—with every packet of a flow.
Specifically, if p} and I} denote the jth packet of flow f
and its length, respectively, and if A(p’}) denotes the arrival
time of packet p} at the server, then start tag S(p}) and finish

tag F(p}) of packet p} are defined as

5@}) = max (oA}, FGF M)} i1 (D
: N
F@p) =S+ 5> izl @
where F(p}) = 0 and v(t) is defined as

do(t) C

= ©))
N ¢
jeB(®)

where C is the capacity of the server and B(t) is the set of
backlogged flows at time ¢ in the bit-by-bit round-robin server.
WFQ then schedules packets in the increasing order of their
finish tags.

The implementation of WFQ requires computation of v(t),
which in furn requires simulation of bit-by-bit round-robin
server in real time. This simulation may require processing
of O(Q) events in a single packet transmission time, where
Q is the number of flows served, and thus is considered
computationally expensive [8]. Furthermore, to retain fairness
when server rate varies over time, the definition of virtual time
will have to be modified. The following examples illustrate that
if the definition of virtual time is not modified and is based on
the assumption that the capacity of a server is constant, then
WFQ becomes unfair over variable rate servers.

Example 1: Let the capacity of the server that WFQ is
emulating be C pkts/s, C > 1. Let the actual server capacity
be 1 pki/s in [0, 1) and C pkt/s in [1, 2). Consider two
flows f and m both of which have unit length packets and
weights of 1 pkt/s. Let flow f send C + 1 packets at time
0. Hence, for flow f, F(p}) = 551 < j < C+ 1. Let
flow m become backlogged at ¢ = 1 and be backlogged
during the interval [1, 2]. Since only flow f is backlogged
during [0, 1), using (3), we get ¥(1) = C. Hence, for flow
m, F(pL) = C + 1. Since WFQ schedules packets in the
increasing order of finish tags, we get: C—1 < Wi(1,2) < C
and Wy, (1, 2) < 1. However, for fair allocation of bandwidth,
We(1, 2) and Wy, (1, 2) should both be C/2. Since C can be
chosen arbitrarily, this example illustrates the unfairness that
can result when the actual capacity is lower than the capacity
being assumed.

A similar example can be constructed for the case when
the actual capacity of the server is higher than the assumed
capacity. Thus, we conclude that to ensure fairness over
variable rate servers, the definition of system virtual time
should be modified to depend on the time varying server
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capacity. This can be achieved by defining v(t) as

() __C(t)
dt > %
JEB(D)

where C(t) is the capacity of server at time ¢. Without a
priori knowledge of C(t), computing v(t) based on the new
definition requires counting the number of bits transmitted
by the server during various intervals as well as continuous
evaluation of v(t). The complexity of these operations makes
the cost of computing v(t) prohibitive. Thus, we conclude
that: 1) if constant rate approximations are employed in
WFQ for variable rate servers, then WFQ is unfair, and 2)
modified WFQ algorithm that may retain fairness over variable
rate servers is computationally prohibitive. Thus, WFQ is
unsuitable for achieving faimess over variable rate servers. As
we will outline in Section IM, to be useful for hierarchical link
sharing {61, [18], a scheduling algorithm must provide faimess
over variable rate servers. Consequently, WFQ is unsuitable
for supporting hierarchical link sharing also.

Fair Queueing based on Start-time (FQS), proposed in [14],
computes start tag and finish tag of a packet exactly as in WFQ.
However, instead of scheduling packets in the increasing order
of finish tags, it schedules packets in the increasing order
of start tags. Although FQS has advantages for processor
scheduting, it is not known to have any advantage over WFQ
for scheduling packets in a network. Moreover, since it utilizes
v(t) as defined in (3), it has disadvantages similar to that of
WFQ.

Self Clocked Fair Queueing (SCFQ), originally proposed
in [3] and later analyzed in [8)], was designed to reduce the
computational complexity of fair scheduling algorithms like
WFQ. SCEQ also schedutes packets in the increasing order
of finish tags. However, it achieves efficiency over WFQ by
approximatiag v{t) with the finish tag of the packet in service
at time £. It has been shown that the value of H(f, m) for

SCEQ is
!max lma:.)
+
( ¢f $m
which is only a factor of two away from the lower bound [8].
The main limitation of SCFQ is that if increases the maximum
delay incurred by the packets significantly. Specifically, if @

is the set of flows served by a server and C its capacity, then
packets of flow f may incur

>
n
nEQANFES |
c

more delay in SCFQ than in WFQ {10]. This may be unac-
ceptably large in many cases.

Frame-based Fair Queueing (FFQ) was designed to retain
the efficiency of SCFQ in computing the start and finish tags
but ensure that the worst-case delay that can be guaranteed to
a packet is the same as in WFQ {20]. The main limitation of
FFQ is that due fo its assumption of constant rate servers, it
is unfair over variable rate servers. Furthermore, its H{f, m)
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value depends on the minimum rate allocated by a server, and
can deviate significantly from the lower bound.

Worst-case-fair weighted Fair Queueing (WF2Q), proposed
in {2}, was designed to improve WFQ’s emulation of hypothet-
ical bit-by-bit round-robin server. To achieve this objective,
WF2Q: 1) utilizes v(t) as defined in (3) and computes start
and finish tags as in WFQ; 2) defines a packet to be eligible
at time ¢ only if its start tag is at most v(¢); and 3) schedules
eligible packets in the increasing order of finish tags. It has
been shown that WF?Q emulates the hypothetical server well
and has an H{f, m) value of

5 E)

¢f ¢'m

see [2]. However, since it utilizes v(t) as defined in (3),
it is computationally inefficient and unsuitable for achieving
fairness over variable rate servers.

WF2Q+ has been recently, independent of our work, pro-
posed to reduce the implementation complexity of WF?Q
while retaining several of its properties (a similar, but not iden-
tical, algorithm termed Starting Potential based Fair Queueing
was proposed in [207) [13. It deﬁnes start tag of packet p’ to
be the finish tag of packet p} , Le, S(pff) = F(p} 1) if
flow f is backlogged on arrival of p}, otherwise, S(p’f) =
max {v[A(p})], F(p} 1)}. The finish tag of a packet and the
set of eligible packets are defined as in WF2Q but v(t) is
defined as v(f) = max{v(r) + ¢t — T, min,en(y S(pk)},
where 7 is the largest time less than ¢ at which a packet
finished service; pX is the packet at the head of the queue
of flow n at time ¢; and B(¢) is the set of backlogged flows
at time t. WF2Q+, like WFQ, schedules eligible packets in
increasing order of finish tags. Although worst-case fairness of
WF2Q+ has been derived, its faimess measure has not been
derived in [11.! To ensure that properties of WF2Q+ hold
over variable rate servers, it has been proposed in {1] that
reference time, instead of real time, should be used in virtaal
time computation. Reference time at real time ¢, Tg(%), is
defined as

W, £)
s,

where C is capacity of the server and W (0, ¢) is the work
done by the server in interval {0, £]. Given no a priori infor-
mation regarding variation in server capacity, it appears that
determining W0, £) will require counting the number of bits
that have been transmitted by the server in the interval [0, ¢};
this computation can be expensive. Furthermore, WF2Q+ has
been studied under the assumption that Z"EQ o, < C,
where € is the minimum capacity of a server. The following
example demonstrates that this assumption is necessary to
ensure fairness of WF2Q+.

Example 2: Let a server serve packets at a constant rate
of K 4 1 pkt/s in [0, 1] and then at the constant rate of 2
pkt/s. Thus, C is 2 pkt/s. Let the server serve X - 2 flows
and let each flow be assigned a weight of 1 pkt/s. Let flows

Trt) =

Y An algorithm that has bounded worst-case-faimess may have unbounded
fairness measure {12].

e et
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1 ..+ K terminate after sending one packet each at time O,
and let flow K + 1 send infinite number of packets. Also
let flow K + 2 send one packet at time ¢ = 1. Now for all
n € (l-- K], F(pl) = 1. The finish tags of flow K + 1
packets are given as F(p}.,;) = j. Since K + 1 packets
are served by time 1, »(1) = Tr(1) = (K + 1)/2. Thus,
F(pk42) = (K + 1)/2 + 1. Since the first packet of flows
1..- K + 1 are eligible at time 0 and WF2Q+ schedules
packets in the increasing order of finish tags, first packet of
flows 1 -+ K 4 1 will be served in the time interval [0, 1].
For ease of exposition of the later part of the schedule, let
g = [(J + 1)/2]. Then, since S(p%,,) = ¢— 1 and »(1) >
g — 1, packets p2- 1 Py 41 are eligible for scheduling
at time 1. Furthermore, since F(p},,) < F(pjy,), in the
interval [1, 1+ (g—1)/2}, ¢—1 packets of flow K +1 will be
scheduled. Thus, in the interval [1, 1+ (g—1)/2] even though
flows K -+1 and K 42 are backlogged, whereas ¢ — 1 packets
of flow K + 1 are served, no packet of flow K + 2 is served.
By choosing K, and hence g, appropriately, the difference in
the service received by flows K 41 and K + 2 can be made
arbitrarily large.

3" ¢; < C may be ensured either by dynamically changing
the weight assignments of flows or by performing admission
control. An algorithm for dynamically changing the weights
or an evaluation of its effects on the fairness propertics have
not been presented in [1]. On the other hand, it may not be
possible to perform admission control for some flow types
(for example, best-effort flows). Furthermore, it may not be
feasible to employ admission control when minimum server
capacity is zero.

WFQ, FQS, SCFQ, FFQ, WF?Q, and WF?Q+ sort and
schedule packets in the increasing order of finish tags. Hence,
per-packet computational complexity is O(log @) where Q is
the number of flows served by the server. To reduce this per-
packet computational complexity, Deficit Round Robin (DRR)
was proposed in [19]. It is a derivative of weighted round-robin
algorithm designed to accommodate variable length packets

of a flow. Although the per-packet computational complexity

of DRR is O(1) per packet, its fairness measure can deviate
arbitrarily from the lower bound. Furthermore, the maximum
delay incurred by packets can be significantly higher than in
WEQ [12].

In summary, the design of a fair scheduling algorithm that
is: 1) computationally efficient; 2) provides fairness regardless
of variation in server capacity; 3) facilitates hierarchical link
sharing; and 4) has good delay properties is an open problem.

C. Research Contributions of this Paper

In this paper, we present the Start-time Fair Queueing
(SFQ) algorithm that is computationally efficient and allocates
bandwidth fairly regardless of admission control as well as
variation in a server rate. We show that it has a fairness

measure of
(5 5)
¢f ¢m
which, on an average, is 11% away from the tighter lower
bound that we derive. We analyze the single server and end-to-
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end deadline guarantee of SFQ. To accommodate links whose
capacity fluctuates over time (for example, flow-controlled and
broadcast medium links), this analysis is carried out for servers
which can be modeled as either Fluctuation Constrained (FC)
or Exponentially Bounded Fluctuation (EBF) servers [16]. To
the best of our knowledge, this is the first analysis of a fair or
a real-time scheduling algorithm for such servers.

To support hierarchical link sharing, we present a hier-
archical SFQ scheduler. We build upon the analysis of FC
and EBF servers and analyze the single server and end-to-
end deadline guarantees of a flow when the link bandwidth is
hierarchically partitioned. We demonstrate that the hierarchical
SFQ scheduler, in addition to supporting heterogeneity, can be
used to achieve separation of delay and thronghput allocation.

The rest of the paper is stractured as follows. We present
SFQ algorithm and analyze its fairness, throughput, single
server deadline guarantee, and end-to-end deadline guaran-
tee in Section Il. We discuss hierarchical link sharing in
Section III and present our implementation of SFQ for an ATM
network interface in Solaris 2.4 environment in Section IV.
Finally, Section V summarizes our results.

II. START-TIME FAIR QUEUEING

In the Start-time Fair Queueing algorithm (SFQ), two
tags—a start tag and a finisk tag—are associated with
each packet. However, unlike WFQ and SCFQ, packets are
scheduled in the increasing order of the start tags of the
packets. Furthermore, v(t) is defined as the start tag of the
packet in service at time ¢. The complete algorithm is defined
as follows.

1) On arrival, a packet p} is stamped with start tag S (p’f),

computed as

5(p}) = max {o[AW})), F} )} @
where F(pj,), the finish tag of packet pﬁ, is defined as

iz1

. . A
FE)=5@p+5- izl s)
where F(p3) = 0 and ¢; is the weight of flow f.

2) Initially the server virtual time is 0. During a busy
pericd, the server virtual time at time ¢, v(t}, is defined
to be equal to the start tag of the packet in service at
time ¢. At the end of a busy period, v(t) is set to the
maximum of finish tag assigned to any packets that have
been serviced by then.?

3) Packets are serviced in the increasing order of the start
tags; ties are broken arbitrarily.

As is evident from the definition, the computation of v(¢) in
SFQ is inexpensive since it only involves examining the start
tag of packet in service. Hence, the computational complexity
of SFQ is the same as SCFQ, which is O(log Q) per packet,
where () is the number of flows at the server.

2Q0bserve that server virtual time changes only when a packet finishes
service. Also, we set v(t) to the maximum of the finish tags of the packets
at the end of busy period only for clarity of proofs; all the start tags as well
as the server virtval time can be equivalently set to zero.
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Traditionally, scheduling algorithms have been analyzed
only for servers whose service rate does not vary over time.
However, service rate of flow-controlled, broadcast medium
and wireless links may fluctuate over time. Fluctuation in
service rate may also occur due to variability in CPU ca-
pacity available for processing packets (for example, a CPU
constrained IP router may not have sufficient CPU capacity
to process packets when routing updates occur). If a server is
shared by multiple types of traffic with some traffic types being
given priority over the other, then for lower priority traffic, the
link appears as a server with fluctuating service rate. In order
to accommodate such scenarios, we analyze SFQ for servers
with bounded fluctuation in service rate.

Two server models, termed Fluctuation Constrained (FC)
server and Exponentially Bounded Fluctuation (EBF) server,
that have bounded fluctuation in service rate and are suitable
for modeling many variable rate servers have been introduced
in {16].> An FC server has two parameters—average rate C
(bits/s) and burstiness §(C) (s). Intuitively, in an FC server,
the time taken to serve packets of aggregate length w in a busy
period can exceed the time taken in an equivalent constant rate
server by at most §(C). Formally,

Definition 1: A server is a Fluctuation Constrained (FC)
server with parameters [C, 8(C')], if the time taken to serve
packets of aggregate length w in a busy period, denoted by
T(w), satisfies

W
< 8 +8(C).
The EBF server is a stochastic relaxation of the FC server.
Intuitively, in an EBF server, the probability of the time
taken to serve packets of aggregate length w in a busy period
deviating by more than v from that in an equivalent constant
rate server, decreases exponentially with . Formally, we have
the following.

Definition 2: A server is an Exponentially Bounded Fluc-
tuation (EBF) server with parameters [C, B, «, §(C)), if the
time taken to serve packets of aggregate length w in a busy
period, denoted by random variable T'(w), satisfies

T(w) (6)

P[T(w)> 2 +6(C)+a] < B, 029 @

C

In what follows, we analyze the fairness of SFQ for any
variable rate server, and its deadline guarantees for FC and
EBF servers. Since a (C, 0) FC server is a constant rate server,
the following analysis is also valid for constant rate servers.
Due to space constraints, we omit the proofs and present them
in [12].

A. Fairness Guarantee

To derive fairness guarantee of SFQ, we need to prove a
bound on

Wf(tl, tz) _ Wm(tlv t?)
¢f ¢7n

3The definitions of FC and EBF servers as presented here are different from
that in [16). Specifically, whereas [16] characterizes the servers by the work
done in a busy period, we characterize the servers by the time taken to serve
packets of length w in a busy period.
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for any interval in which both flows f and m are backlogged.
We achieve this objective by establishing a lower and an upper
bound on W, (t;, t») in Lemmas 1 and 2, respectively.

Lemma 1: 1f flow f is backlogged throughout the interval
[t1, t2], then in an SFQ server

pflva —v1) = 7™ < Wyl t2) ®

where v = v(t;) and v = v(t2).
Lemma 2: In an SFQ server, during any interval [t;, t2]

Wity t2) < pp(ve —vr) + 17 9

where v; = v(t1) and vo = v(t2).

Since unfairness between two flows in any interval is
maximum when one flow receives maximum possible service
and the other minimum service, Theorem 1 follows directly
from Lemmas 1 and 2.

Theorem 1: For any interval [t1, t2] in which flows f and
m are backlogged during the entire interval, the difference in
the service received by two flows at an SFQ server is given as

Wi(ti,ts) Wit ta) < e N L™ (10)
bf Pm ¢r  ¢Pm
Theorem 1 demonstrates that SFQ has an H( f, m) value of
ppax - pmax
br  bm

To evaluate the fairness guarantee of SFQ, we have derived a
lower bound on H(f, m) that is tighter than

1 (l;tnax l;gax )

—_ + _

2 d)f d)m
which was presented in [8]. Specifically, in [12], we have
shown that H(f, m) > L(f, m), where L(f, m) is (¢ + 1)a,

l}nax [max
a=-"—  pBg="1
¢f ’ ¢m

a < S, and ¢ is a positive integer such that ca < 8 < (¢+1)a.
The fairness guarantee of SFQ, on an average, is within 11%
of L(f, m).

There are two important aspects of Theorem 1.

» To establish it, we did not make any assumptions about
the service rate of the server. Hence, it holds regardless
of the characteristics of the server. This demonstrates that
SFQ achieves fair allocation of bandwidth over variable
rate servers, and thus meets a fundamental requirement
of fair scheduling algorithms for integrated services net-
works.

» To establish it, we did not make any assumptions about
the weights; weights are just uninterpreted numbers. In
particular, we did not require any admission control such
as ZHGQ ¢n < C. Since for variable rate servers, C may
not always be defined, as well as it may not be possible
to perform admission control for best-effort flows, this
property is desirable. This is an important difference
between SFQ and algorithms such as WF>Q+ and FFQ.
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B. Deadline Guarantee

In the previous sections, we have not assigned any inter-
pretation to the weight of a flow. To establish the deadline
guarantee of a flow, we will henceforth interpret ¢; as the
rate assigned to flow f and denote ¢y by ry. The SFQ
algorithm, as defined so far, only allocates constant rate to
the packets of a flow. However, due to the multiple time-
scale variation of VBR video, to achieve efficient utilization
of network resources, a server may be required to allocate
variable rate to packets of a video flow. To support variable
rate allocation, we generalize SFQ by extending the definition
of the tags. Let 1" be the rate assigned to packet p} Then

finish tag of packet p}, F(p—}) is defined as
3

. . !
Fe) =500 +L j>1

an
&

Start tag of a packet and the system virtual time are defined
as before.

We show in Sections II-B1 and II-B2 that the generalized
SFQ algorithm provides two types of deadline guarantees to
a packet.

* It guarantees a deadline to a packet based on its expected

arrival time. Specifically, it guarantees that

Lsro(p}) < EAT (p}, 3) + 6}

where LSFQ(p}) is the departure time of packet p ; in
an SFQ server, ﬁ’ depends on l’ and the properties of
the server as well as the other ﬁows at the server, and
EAT (p}, r’ }) is the expected arrival time of packet p}
that has been assigned rate 'r} EAT (p}, ) %) is defined
as

(12

EAT (v}, r})
i1
= max {A(pi}), EAT (0, )+l }(13)
7

where EAT (p}, %) = —0o. Such a guarantee has been
referred to as delay guarantee and is used to provide
various QoS guarantees regardless of the behavior of the
other flows in the network [10].

» It guarantees a deadline to a packet based on its amrival
time and the departure time of the previous packet.
Specifically, it guarantees that

Lsro(#}) < max {Lsro(p} ), AW})} + 6.

Such a deadline guarantee, which we refer to delay-cum-
throughput guarantee, improves upon the performance
bounds determined from delay guarantee when the actual
service received by a flow is better than that guaranteed
by the server.

SFQ provides these deadline guarantees when the server
capacity is not exceeded. To derive the deadline guarantee,
let us formalize the meaning of the term “capacity is not
exceeded.” Let rate function for flow f at virtual time v,

14)

denoted by Ry(v), be defined as the rate assigned to the packet.
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that has start tag less than v and finish tag greater than v.
Formally, .

R ={

Let @ be the set of flows served by the server. Then the
capacity of an FC or EBF server with average rate C is not
exceeded if

% #353[S@) < <F(p})]
0 otherwise.

> Raw)<cC

neQ

v>0. (15)

To derive the delay as well as delay-cum-throughput guarantee
of FC and EBF SFQ servers, we first derive a bound on the
work done by an SFQ server in virtual time interval [vy, vo)
in Lemma 3.

Lemma 3: If the capacity of an FC or EBF server with
parameters [C, 6(C)] or [C, B, a, 6(C)], respectively, is not
exceeded, then the aggregate length of packets that have start
tag at least v; and at most v», and are served in the same busy
period, denoted by W (v, v2), is given by

n=j—k—1 Ih—i-n

WeLw)<C Y, Sm+ ), &=+l (19

n=0 Tf nEQARES
whenever
.k s 4
n =S(p§7 Tf)a V2 = S(p;u T})a
and
n=j—k—1 lk+n
v2—0 = Z k+n'
n=0 Tf

For brevity, we will denote

e
Z G + C + 6(C)
ne€QAnES

by 9;.

1) Delay Guarantee: Theorems 2 and 3 establish the delay
guarantee of SFQ for FC and EBF servers, respectively.

Theorem 2: If the capacity of an SFQ FC server with
parameters [C, 8(C)] is not exceeded, then

LSFQ(p}) < BAT (p}, a7n

Theorem 3: If the capacity of an SFQ EBF server with
parameters [C, B, a, §(C)] is not exceeded, then

PlLsro(r}) < EAT (g}, 1) + 03 +4] > 1 - Be™.
(18)

The delay guarantee derived in Theorems 2 and 3 is
independent of a tie-breaking rule that an SFQ server may use
when more than one packet have the same start tag. Though a
tie-breaking rule does not affect the delay guarantee, it can be
used by a server to achieve different objectives. For example,
a tie-breaking rule may give higher priority to interactive,
low-throughput applications to reduce the average delay.

Theorems 2 and 3 can be used to determine delay guarantee
even when a server has flows with different priorities and

)+ 05
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services them in the priority order (such a scenario may occur
in an integrated services network with different traffic types).

Theorem 2 demonstrates that maximum delay of a packet
in SFQ is smaller than in SCFQ. Specifically, a tight bound
on the departure time of a packet at a constant rate server
employing SCFQ, given in [10], is

i
L i) < BAT (%%, ri b 19
SCFQ(pf)_ (pfa "'"f)'}' Z + 7 (19)
nEQARES Ty

Since 6(C) = 0 for a constant rate server, the difference in
maximum delay that a packet may incur at servers employing
SCFQ and SFQ is

G

7‘} o 20)
Clearly, maximum delay in SFQ is smaller than in SCFQ. To
illustrate numerically, when -rJ = 64 kbrs, l} = 200 bytes
and C = 100 Mb/s, the dlfference is 24.4 ms. If there are K
servers on the path of a flow, this difference increases by a
factor of K. Similarly, the difference increases linearly with
the packet size.

Theorem 2 also shows that, unlike WFQ, the maximum
delay of a packet in SFQ depends on the maximum packet
length of all the flows at the server. However, in spite of
this dependence, SFQ provides lower maximum delay, as
compared to WFQ, to low-throughput flows. To observe this,
consider the difference in the maximum delay experienced by
packet pf, denoted by A(pf) in WFQ and SFQ.

Since WFQ guarantees that packet p’ ¥ will be transmitted by

. B
f max
EAT (p}; 7‘}) + E + =

where [, is the maximum packet length at the server, we get

Ay =t D S
.f = - - - =
7'.Jf ¢ neQanf ¢
Hence, A(p}) > 0 if
i cy
Ty < : . (22)
D, el = b

neQ AES

To gain a quahtatlve understanding of (22), let l = lmax =

7o = Land v} = ry. Then, A(p’) 20ifry < C/(]Qi 1).
That is, max1mum delay of packets of a flow in SFQ is smaller
than in WEQ if the link bandwidth used by the flow is at most
C/(|@] — 1); such a flow is referred to as a low-throughput
flow. This is also illustrated by Fig. 1(a), which plots the
reduction in delay in SFQ for different number of flows and
flow rates, assuming 200 byte packets and link capacity of
100 Mb/s. As the figure shows, whereas the delay reduces for
flows with rate vy < C/(]@] — 1), i.e., low throughput flows,
it increases for flows with rate ry > C/(1Q| — 1), i.e., high
throughput flows. To compare the delay performance of WFQ
and SFQ in an example scenario, consider a network link that
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Fig. 1. (a) Difference in maximum defay in WFQ and SFQ. (b) Comparison
of average delay in WFQ and SFQ.

is servicing 70 flows (possibly video flows) with rate 1 Mb/s
and 200 flows (possibly audio flows) with rate 64 kb/s. In such
a scenario, whereas the maximum delay of the packets of flow
with rate 64 kb/s reduces by 20.39 ms in SFQ, the maximum
delay of 1 Mb/s flows increases by 2.48 ms.

SFQ is also expected to lower the average delay of low-
throughput applications while increasing the average delay of
high-throughput ones. This is because whereas SFQ schedules
packets in the increasing order of start tags, and thereby sched-
ules packets at the earliest possible instant, WFQ schedules
packets in increasing order of finish tag, and thus delays
a packet as long as possible. To validate this hypothesis,
we simulated a switch that was shared by high- and low-
throughput flows carrying Poisson traffic. The link capacity
was 1 Mb/s and the packet size was 200 bytes. Seven high-
throughput flows with average rate 100 kb/s shared the switch
with varying number of low-throughput flows with average
rate 32 kb/s. The number of tow-throughput flows was varied
from two to ten, and the switch was simulated for 1000 s.
Fig. 1(b) compares the average packet delay of low-throughput
flows in WFQ and SFQ at varying levels of link utilization,
As the figure illustrates, the average delay of low-throughput
flows is higher in WFQ than in SFQ; at 80.81% link utilization,
the average delay is 4.7 ms higher in WFQ than in SFQ.

As is evident from the definition of the expected arrival
time, two key properties of the delay guarantee of SFQ for

et o i t

S U
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a flow are: 1) it is independent of the behavior of other
sources at the server, and thereby isolates the flow and 2) it is
independent of a traffic characterization. Whereas the isolation
property enables a server to provide stronger guarantees to
the flow and is desirable when sources may be malicious [4],
independence of delay guarantee from traffic characterization
enables a server to provide various QoS guarantees to flows
conforming to any specification [10]. To enable a network of
servers to provide similar guarantees, we derive end-to-end
delay guarantee in Section II-C1.

2) Delay-cum-Throughput Guarantee: We first establish a
general property of SFQ FC and EBF servers in Theo-
rems 4 and 5, respectively, and then derive their delay-cum-
throughput guarantees in Corollaries 1 and 2.

Theorem 4: If the capacity of an SFQ FC server with
parameters [C, 8(C)) is not exceeded, then

n=j—1 n

Lsro(ph) <t+ Y ;_f? +64
n=k-1

@3

where ¢ > A(p’f') and packet p"? is the first packet in the
queve of flow f at time £.

Theorem 5: If the capacity of an SFQ EBF server with
parameters [C, B, a, §(C)] is not exceeded, then

n=j—1 n
j fi 7 —
r p) <t+ E +6%+y| >21—Be™
’:LSFQ( f) - t n:k—l ‘T? f ’y - ©

@0

where t > A(pﬁ) and packet pf is the first packet in the
queve of flow f at time ¢.

Corollaries 1 and 2 use Theorems 4 and 5, respectively, to
derive the delay-cum-throughput guarantees of SFQ FC and
EBF servers, respectively.

Corollary 1: If the capacity of an SFQ FC server with
parameters [C, §(C)] is not exceeded, then

) ) ) gt
Lsrq(p}) < max{Lsro(@} ), AP))} + é;-l +8% (25

where LSFQ(p‘}) = 0.
Corollary 2: If the capacity of an SFQ EBF server with
parameters [C, B, a, §(C))] is not exceeded, then

P [LSFQ(p:";‘) < max {LSFQ(p:}-—l)a A(p})}

j—1
Tf;—_f+o}+7] >1-Be ™
f

26)

where Lqu(pf}) =0.

To observe the advantages of delay-cum-throughput guar-
antee over delay guarantee, consider a 10 Mb/s constant rate
SFQ server that is serving 10 flows, each with packet size
of 200 bytes and reserved rate 1 Mb/s (i.e., for all flows
n, ri = r, = 1 Mb/s). Let N flows (including flow f) be
continuously backlogged and the rest of the flows send no
packets. Since only N flows are backlogged and all flows

~
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have the same weight, flow f receives an effective throughput
of 10/N Mb/s. Hence, let departure time of p} be

j 200 bytes
}—3— Mbs

Fig. 2 plots the bounds on departure time of packet p’}"’l
obtained using delay guarantee and delay-cum-throughput
guarantee for j > 1 and N = 10 and N = 5. As the figure
illustrates, when all the flows are backlogged, i.e., N = 10, the
bound derived using delay guarantee is tighter. However, when
only five flows are backlogged, i.e., N = 5, then the bound
derived using delay-cum-throughput guarantee is significantly
better. Hence, the delay-cum-throughput guarantee improves
upon the bounds of delay guarantee when the actual service
received by 2 flow is better than the service that has been
guaranteed.

In networks that carry traffic with multiple time-scale vari-
ation (for example, video traffic), many flows will receive
service better than that guaranteed by the network. Hence,
the improved bounds yielded by delay-cum-throughput guar-
antee are desirable. In Section II-C we derive the delay-cum
throughput guarantee of a network of servers and illustrate the
potential utility of the improved bounds yielded by delay-cum-
throughput guarantee for flow controlled data and adaptive
real-time applications.

C. End-to-End Deadline Guarantee

In this section, we utilize the single server deadline guar-
antee to derive delay and delay-cum-throughput guarantee of
a network of servers.

1) End-to-End Delay Guarantee: The objective is to deter-
mine the deadline guarantee of a network of servers based on
the expected arrival time of a packet at the first server on the
path of a flow [10]. To do so, let the ith server along the path
of a flow be denoted as server i. Also, let there be K servers
on the path of a flow and let each of the servers guarantee
a deadline to a packet based on its expected arrival time.
Then, the network guarantees a deadline to a packet based
on its expected arrival time at the Kth server. Observe that
the expected arrival time of a packet at server K is dependent
on departure time of packet at server K — 1, which, in turn,
is dependent on expected arrival time of the packet at server
K — 1. Using this argument recursively, a network of servers
can guarantee a deadline to a packet based on the expected
arrival time of the packet at the first server. This method
has been used in [10] to derive end-to-end delay guarantee
of a network of servers that employ algorithms in the class of
Guaranteed Rate (GR) scheduling algorithms (the framework
presented in [7] can also be employed to study the end-
to-end behavior). However, the end-to-end delay guarantee
presented in [10] assumes that each of the servers provides
a deterministic bound on the departure time of a packet.
Consequently, even though SFQ belongs to GR, the guarantee
is not applicable to a network which may have some SFQ EBF
servers. To analyze such networks, we generalize the method
presented in [10].
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Fig. 2. Bounds derived using delay and delay-cum-throughput guarantee for different mumber of backlogged flows.

Observe that SFQ delay guarantee for both FC and EBF
servers when the server capacity is not exceeded can be
rewritten as

PlLsrq(p}) < EAT (), r3) + 4 + 71 > 1 — Be ™.
@7

Substituting 4 = 9’ B =0, and X = co, yields the delay
8 Fs

guarantee for FC server. Substituting ﬁ’ = 6’ and ) = g,
yields the delay guarantee for EBF servers. Hence we will use
(27) to derive the end-to-end delay guarantee. Furthermore, to
facilitate interoperability with other scheduling algorithms, we
will only require each server on the path of a flow to guarantee
a deadline which is similar to (27). We first relate the expected
arrival time of a packet at adjacent servers in Theorem 6 and
then use it to derive end-to-end delay guarantee in Corollary 3.

Let 7¢ be an upper bound on the propagation delay between
servers ¢ and ¢ + 1. Also, let all the variables of server 7 be
1dennﬁed by superscript ¢, i.e., ,Bf and 7} are identified as 57"

and % i *, respectively. Henceforth in this section, we will refer
to a single flow f, and hence, drop the subscript f from all
the variables.

. Theorem 6: If scheduling algorithm at server ¢ guarantees
that )

PILi(p?) < BATH(p?, v9%) 4 % 4] > 1 — Bie™
(28)

where Li(p’) is the time at which packet p7 departs server
3, then

P[EATi+1(p5, 1) < EATHy/, #%)

+ En{llax {goi} + 1 +'y]>1 Bie™7  (29)

where 7% < min {r¥F, #3321},

Corollary 3: Tf scheduling algorithm at each server on the
path of a flow satisfies {28), and there are K servers on the
paih of the flow, then

a=I
P[LK(pj) S BAT(, #)+ 3 s 8™
n=1

oK1 7] >1-gFe A" (30)
where L¥(p?) is the time at which packet pJ leaves server
K, # = minpgp...x 7" R s ‘1 “lon BK =
Yo=K B, and

K _ 1
T a=K ,
n=1 )"n

To derive Corollary 3, we have only required the scheduling
algorithm at each server to satisfy (28). Hence, any scheduling
algorithm that satisfies (28) (for example, Virtual Clock, WFQ,
and SCFQ) can interoperate to provide end-to-end guarantee.
Furthermore, Corollary 3 can be used for an internetwork of
FC and EBF servers. Finally, the proof method of Theorem
6 and Corollary 3 can be used to derive end-to-end delay
guaraniee even when packet may be fragmented and reassem-
bled in the network. Hence, SFQ can provide guarantees in
heterogeneous internetworking environments.

2) End-to-End Delay-cum-Throughput Guarantee: When
flow is served by a network of servers, a destination knows the
departure time of a packet from the last server. Furthermore,
from the traffic characteristics of a flow, it may also know the
arrival time of a packet at the first server on the path, Hence,
the objective is to determine a bound on the departure time
of a packet from the last server based on its arrival time at

e e fy i T v iy

ey an R i ———— (e < i = N e =



GOYAL ef of.: START-TIME FAIR QUEUEING

the first server and departure time of the previous packet at
the last server.

Observe that SFQ delay-cum-throughput guarantee for both
FC and EBF servers when the server capacity is not exceeded
can be rewritten as

P[Lsro(p}™) < max {Lsro(0}, AW}™)}+ B +1)
>1-Be™. G1)

Substituting

A A
ﬁ}+1 = 4 + 0}+1
T
B = 0, and A = oo, yields the delay-cum-throughput
guarantee for FC server. Substituting

, 14 ,
‘33+1 N + 93t

! 7_} f
and A = « yields the delay-cum-throughput guarantee for
EBF servers. Hence, we will use (31) to derive the end-to-
end delay-cum-throughput guarantee. Furthermore, to facilitate
interoperability with other scheduling algerithms, we will only
require each server on the path of a flow to guarantee a
deadline which is similar to (27).

Let 7¢ denote the lower bound on the propagation delay
between servers 7 and i 4 1. As in the previous section, we
drop the subscript f from all the variables and identify all
variables of ith server by superscript . Theorem 7 establishes
the end-to-end delay-cum-throughput guarantee.

Theorem 7: If there are K servers on the path of a flow,
and each server ¢ guarantees that

P[Li(p'+!) < max {Li(p?), A @)} + 71 49]
21-Ble™" 32)

where Li(p7) is the time at which packet p’ departs server
i, then

P{L"(pf“) < max {LX (pf) — §5-1, ALpit1)}

n=ti A
U Y gl 1o ()
n=1
where
. n=K-—1 . n=i—1
‘I’K—I = Z ,;.k, ‘IJ'_I - E Tk,
n=1 n=1
. n=t . 1
=3B, amd A= ——.
n=1 Z i
n=1 )‘n

If all the servers are FC servers and provide deterministic
guarantee, then (33) simplifies to

L¥ () < max {L¥(p) - §% 7, AV (pH1)}
+ rf( fitLi g1

n=1

(G4
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for ¢ = K. If a destination knows the relationship between the
arrival time of packet p7*! at the first server and departure time
of p7 at the last server (possibly from the traffic characteristics
of the source) and the service received by a flow is better
than that guaranteed by the network, then just like in the case
of a single server, the destination can utilize (34) to derive
bounds on packet delay better than those determined by end-
to-end delay guarantee. In particular, if for all packets p?+1,
L¥(pi) = max {L¥ (p) — Ynz ™" #*, A}(p/+1)}, then by
recursive use of {34), we get

m=k fn=K
LX) < LX)+ ) ( > gty \IIK‘1>. 35)

m=1 \n=1

To observe the advantage of bounds derived using (35),
consider a flow that is served by five servers. Let each server
be a constant rate server with rate C = 10 Mb/s and for ease of
exposition, let there be zero propagation delay between them.
Let each server serve N = 10 flows, each with reserved rate
1 Mb/s and packet size of 200 bytes. Also, let the flow be
continuously backlogged at the first server. Let L (p?) be
given as

(36)

where | = 200 bytes, K = 5, and @ = NI/C. Let 79 =
Mb/s for the first 1000 packets, i.e., let them receive service
better than that guaranteed by the network, and let 77 = 1
Mb/s for 5 > 1000. Fig. 3 plots the bound on the departure
time of packet p** (k = 1, 5, 10) for different values of j
using (35) as well as the end-to-end delay guarantee for this
scenario. As the figure demonstrates, (35) improves upon the
bounds of delay guarantee and tracks the actual arrival time
of packets much more closely.

‘We envision the end-to-end delay-cum-throughput guarantee

to be useful for at least two classes of applications.

« Flow-controlled data applications: Consider a flow con-
trolled data source that reserves a minimum rate at each of
the servers on the path to the destination. To increase its
throughput by taking advantage of statistical multiplexing
of various sources, let the source estimate the bottleneck
rate, which is at least the reserved rate, and send at the
estimated bottleneck rate [15]. Due to the fluctuations in
the bottleneck rate as well as the inherent delay and errors
in the estimation process, such a source may send at a rate
higher than the bottleneck rate. This will lead to queue
build up at the bottleneck server and eventually packet
losses. Let packets p7, ---, p7t* be lost due to buffer
overflow. In the simplest case, a destination can detect
loss of these packets only on amrival of packet pt5+?,
However, if the network provides delay-cum-throughput
guarantee, then the destination can use (35) to determine
a bound on the arrival time of packets p7, --., pitk
and declare them lost if they do not arrive by then. It
can thus detect packet losses earlier than the asrival of
packet p7H5¥+1, The early detection of packet losses can
be used by a destination to “close” the feedback loop
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Fig. 3. Bounds derived using delay and delay-cum-throughput guarantee for different values of 4.

between a source and destination faster and thus improve
the throughput of the source.

» Adaptive, real-time, playback applications: Appli-
cations such as audic and video that can tolerate
discontinuities in playback and adapt their playback point
as per the network congestion, may reserve a minimum
rate and send packets at a higher rate. In such a scenario,
a destination can use the delay-cum-throughput guarantee
to determine a bound on the arrival time of future packets
and use the bounds to suitably adapt the playback point.

The algorithms and protocols that exploit the advantages of
delay-cum-throughput guarantee for these and other applica-
tions is the subject of ongoing research and beyond the scope
of this paper.

D. Discussion

SFQ borrows the concept of “self-clocking” and scheduling
packets in the increasing order of start tags from SCFQ and
FQS, respectively. However, it leads to better performance
than either of the two. SFQ has the same fairmess measure and
implementation complexity as SCFQ but has smaller delay
guarantee. Similarly, whereas FQS is unfair over variable
rate servers and has high implementation complexity, SFQ is
fair over variable rate servers and has lower implementation
complexity. Furthermore, in FQS, since all @ flows can
become active simultaneously, and consequently @) packets
can have the same start tag, the bound on the departure time
of a packet in FQS is at Jeast that in SFQ.

The delay guarantee of SFQ depends on the maximum
packet length of all the flows at the server. In contrast, the
delay guarantee of WFQ) depends only on the flow’s propeirties.
Thus, WFQ provides better isolation of delay guarantee of
a flow. We have shown in [12] that the delay guarantee of

SFQ is similar to that of an online algorithm* that minimizes
unfairness. Furthermore, as we demonstrated in Section 1I-B1,
it is the Jack of isolation of delay guarantee that enables SFQ
to provide lower delay to low throughput flows at the expense
of increased delay 1o high throughput flows. However, if SFQ
is employed to provide a priori specified bounds on packet
delay, then the maximum number of flows as well as their
packet sizes would have to be estimated. In some networking
environments, suich an estimate may be large and consequently
SFQ may not be able to provide lower a priori delay to low
throughput applications. In such a case, low delay to low
throughput flows may be provided by employing the following.
» Fair scheduling algorithms that allocate only rate and have
delay guarantee similar to WFQ. In such a case, low delay
is provided to low throughput flows by reserving higher
rate. This may result into low utilization of the network.
However, the main advantage of such algorithms is that
they have O(1) complexity admission control algorithms.
+ Fair scheduling algorithms that achieve separation of
rate and delay allocation. In such a case, the network
utilization is higher. However, these algerithms have
O(Q) complexity admission control algorithms [7].

For networking environments where either of these two
approaches are preferable over SFQ, we have designed a class
of Fair Airport (FA) algorithms [12]. An algorithm in FA
class combines SFQ with any nonwork-conserving algorithm
in Rate Controlled Service Discipline (RCSD) class [7]. By
appropriately choosing an algorithm from RCSD class, fair
algorithms that either allocate only rate or achieve separation
of rate and delay allocation can be designed. This method
leads to the design of the first fair algorithm that achieves
separation of rate and delay allocation. The property of SFQ

4 An online scheduler is one which does not use the length of packet pf-’“
in making a scheduling decision for packet pf.
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that it does not use the length of a packet in determining
its priority is central to the design of such FA algorithms.
Though FA algorithms have higher implementation complexity
than SFQ, they can be efficiently implemented. Furthermore,
they are fair over FC servers. The detailed presentation of FA
algorithms is beyond the scope of this paper.

To summarize, we have shown that SFQ: 1) achieves low
average as well as maximum delay for low-throughput appli-
cations; 2) provides fairness, regardless of variation in a server
rate; 3) has a fairness measure that, on an average, is within
11% of the lower bound; and 4) is computationally efficient.
In the next section, we show that it enables hierarchical link
sharing, and thus meets all the requirements of a scheduling
algorithm for integrated services networks.

III. HIERARCHICAL LINK SHARING

Hierarchical link sharing is an ideal mechanism for manag-
ing heterogeneity in integrated services networks (6], [18]. It
can be used by a network to support services that provide

heterogeneous QoS as well as multiple protocol families

that support different traffic types and/or congestion control
mechanisms. For example, a network can support hard and
soft real-time as well as best effort services by partitioning the
link bandwidth between them as per the expected requirements
of each of the services. To support high and low reliability
soft real-time services, the bandwidth of soft real-time service
may be further partitioned. Similarly, the bandwidth of the best
effort services may be further partitioned between throughput
intensive and interactive services. Hierarchical link sharing can
also be employed to support a link-sharing service in which the
bandwidth of a link is partitioned among several organizations
and the bandwidth of an organization is recursively partitioned
among its suborganizations [18].

A key advantage of hierarchical link sharing is that it
provides isolation between different services while enabling
similar services to share resources. Hence, incompatible con-
gestion control algorithms can coexist while compatible al-
gorithms reap the benefits of sharing. For example, while
high and low reliability soft real-time services get the benefits
of sharing, the hard real-time service is isolated from the
overbooking that may occur in soft real-time services, and
the congestion control algorithm that may be used by the
best effort services. Hierarchical link sharing also facilitates
use of different resource allocation methods for different
services. This is desirable as hard real-time services may
use a scheduling algorithm that performs well when there
is no overbooking; soft real-time services may prefer to use
a scheduling algorithm that provides QoS guarantees and/or
minimizes deadline violations in presence of overbooking; and
best effort services may use a fair scheduler for throughput
intensive, flow-controlled data applications.

The requirements of hierarchical link sharing are specified
by a tree, referred to as link-sharing structure, in which each
node, other than possibly leaf nodes, denotes an aggregation
of flows [6]. Each node in the tree is referred to as a class and
has a weight associated with it. The objective of a mechanism
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implementing hierarchical link sharing is to distribute the
bandwidth allocated to a class among its subclasses fairly,
ie., in proportion to the weights [18]. This objective can
be achieved by a hierarchical scheduler that considers each
class, other than the leaf classes, as a virtual server and uses a
fair scheduler to schedule the virtual servers. However, as the
following example illustrates, the scheduler used must allocate
bandwidth fairly even over variable rate servers.

Example 3: Consider a link sharing structure in which
classes A and B are subclasses of the root class. Let classes
C and D be subclasses of class A and let each class have
weight 1. Initially, let there be no packets in class B. Hence,
class A gets thé full link bandwidth. When class B also
becomes active, the bandwidth available to class A (and hence
to subclasses C and D) reduces to 50% of the link bandwidth.
Consequently, to fairly partition the bandwidth of class A
between subclasses C and D, the scheduler must be able to
allocate bandwidth fairly over variable rate servers.

Since SFQ allocates bandwidth fairly even over variable
rate servers, it can be employed for achieving hierarchical
link sharing. In what follows, we present a hierarchical SFQ
scheduler.

Hierarchical SFQ scheduler is simple. It uses SFQ to sched-
ule each class; treating each subclass as a flow. The scheduling
of packets occurs recursively: the scheduler for root class
schedules the subclasses; the scheduler of subclasses in turn
schedule their subclasses. If the leaf class is an aggregation of
flows, it schedules flows by employing a leaf class dependent
scheduler (see [9] for an implementation of hierarchical SFQ
scheduler). Since SFQ fairly allocates bandwidth regardless of
the server behavior, this simple recursive hierarchical sched- .
uling ensures that bandwidth allocated to a class is fairly
allocated between the subclasses and thereby achieves the
objective of hierarchical link sharing (a similar hierarchical
WF2Q+ scheduler has been independently presented in [1]).
Moreover, in contrast to link sharing mechanism in [6], it
provides bounds on various performance measures. To derive
bounds on the performance measures, we first prove the
following corollaries of Theorems 4 and 5. Let T¢(w) denote
the time taken to serve flow f packets of aggregate length w
which are served in the same backlogged period of the flow.

Corollary 4: If the capacity of an SFQ FC server with
parameters [C, §(C)] is not exceeded and 7} = 7y for all
packets, then T¢(w) is given as

w [max Jmax
Tpw) S —+LI—-or+ Y E-+6(C) 6D
f f nEQARES

where

B
05 = min {::;— - —é}

and the minimum is over all the flow f packets.
Corollary 5: If the capacity of an SFQ EBF server with
parameters {C, B, a, §(C)] is not exceeded and 1} = ry for
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all packets, then random variable T (w) is given as

inax

I"T +8(C)+9] 21— Be™*7 (38)

>

nEQAnFES

BB
@f = mn {E‘— E}

and the minimum is over all the flow f packets.

Now, consider a class f that is a subclass of the root class.
Let the link be an FC server with parametets {C, §(C)] and
let the set of the subclasses of the root class be denoted by Q.
Then, if class f has been assigned rate r¢, from Corollary 4
we conclude that the virtual server corresponding to f is an
FC server with parameters:

where

Lmax

rr L — oy BT — 4 5(0). 69
Similarly, using Corollary 5, we conclude that if the link is an
EBF server, then the virtual server corresponding to f is an
EBF server. Using the argument recursively, we conclude that
if the link is an FC or EBF server, then each of the virtual
server in the hierarchical structure is an FC or EBF server,
- respectively. Consequently, the bounds on deadline and end-
to-end deadline guarantee of a flow when it is hierarchically
scheduled can be determined as follows.

o Deadline Guarantee. Since each of the virtual servers
is either FC or EBF server, Theorems 2 and 3 can be
used to determine the single server delay guarantee, and
Corollaries 1 and 2 can be used to determine the single
server delay-cum-throughput guarantee of the flows.

¢ End-to-End Deadline Guarantee: Since the single server
deadline guarantee when a flow is hierarchically sched-
uled satisfies (28) and {32), Corollary 3 and Theorem
7 can be used to determine the end-to-end deadline
guarantee.

The above analysis method is general and can be employed
for any fair scheduling algorithm that provides guarantees
similar to SFQ, i.e., bounds on T{(w) over FC and EBF servers.
Furthermore, this analysis is tighter than the analysis presented
in {11, [13]. To observe this, consider a tree with three classes:
two leaf classes and a root class. Let the rate of leaf classes
1 and 2 be 7; and 7o, respectively, and let each of them
contain 2 fiows with equal weights. Let both the leaf classes
be scheduled by SFQ and the Iength of all packets be I. Then,
it can be shown that the best bound on delay of packet p} for
flow f in leaf class 1 using the analysis in {1], [13] is

.y { 21 21
EAT(}T}, E) + (7‘—1 + 5) -+ E. 40)
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In contrast, using our analysis, we get

i r1 2! 21
BAT(p}, 5 )+ 5+ o @)

Hierarchical SFQ scheduler not only achieves the objectives
of hierarchical link sharing, but can also be used to achicve
several other objectives. For example, it can be used to
achieve separation of delay and throughput allocation. Observe
that SFQ does not allocate delay and throughput separately.
However, it may be desirable to do so for some flows, This can
be achieved by aggregating the flows for which separation of
delay and throughput is desirable into one class and then using
a scheduling algorithm that achieves such a separation for
that class. Though conceptually simple, since the throughput
of a class fluctuates over time, the algorithm used must be
able to achieve the separation over variable rate servers, In
Theorem 8, we show that Delay EDD can achieve this over
an FC server. Since the throughput of a class is fluctuation
constrained, Delay EDD can be used to achieve the objective.

We first define Delay EDD and then prove its delay guar-
antee for an FC server. Delay EDD on arrival of packet p’ of

flow f assigns it a deadline, denoted by D{p’ Jr) and schedulcs
packets in increasing order of deadline [5]. D(p’ ]) is defined as

D(p}) = EAT (p}, ) + dy (42)

where dy is the deadline of flow f packets, vy = rf;, and
Iy = .
Theorem 8: If @ is the set of flows serviced by the server

and
3 max {o, [(—t—l‘i")ﬁ] c} <t @)

neQ
and the server is a {C, §(C)] Fluctuation Constrained Delay

Yi>0:

. EDD server, then the time at which the transmission of packet

p‘} is completed, denoted by LEDD(p}) is

Lepp(p}) < D(p}) + "'C +8(C). @)

Due to high computational complexity, it may not be feasible
to employ (43) as the schedulability test. Hence, conditions
stronger than (43) which have lower computational complexity
have been developed in [22]. The theorem holds under the
stronger conditions as well.

IV. IMPLEMENTATION

We have implemented SFQ scheduler for a FORE Systems
ATM network interface in Solaris 2.4 as a streams module
and driver (see Fig. 4). The driver is used to maintain weights
for connections. The module, on the other hand, is used
to schedule packets. We have modified the FORE API for
opening a connection to include the weight of a connection
as its parameters.

To experimentally validate the implementation of the sched-
uler, we initiated three connections with weights 1-3. Each
of the connections terminated after transmitting 500000 4-
kB packets. Fig. 4 shows the throughput received by each
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Fig. 4. (a) SFQ scheduler implementation. (b) Throughput of the connec-

tions,

connection. As it demonstrates, when all the three connections
were active, they received throughput in the ratio 1 : 2 : 3.
When the connection with weight 3 terminated, the throughput
of the other two connections increased but still remained in
the ratio 1 : 2. Finally, when only one connection remained, it
received the full link bandwidth. Observe from Fig. 4 that SFQ
scheduler achieved fair allocation even though the realizable
bandwidth of the interface varied over time. This demonstrates
the feasibility of employing SFQ for scheduling network
interface in operating systems where the processing capacity
available for a network interface varies over time.

V. CONCLUDING REMARKS

In this paper, we presented the Start-time Fair Queueing
(SFQ) algorithm that is computationally efficient, achieves
fairness regardless of variation in a server capacity, and has
fairness guarantee that is close to the best achievable guar-
antee. We analyzed its single server and end-to-end deadline
guarantee for variable rate Fluctuation Constrained {FC) and
Exponentially Bounded Fluctuation (EBF) servers. This is the
first analysis of any fair or real-time scheduling algorithm for
such servers. To support heterogeneous services and multiple
protocol families in integrated services networks, we presented
a hierarchical SFQ scheduler, We derived performance bounds
for flows that are hierarchically scheduled and demonstrated
that our analysis leads to tighter results.

In summary, we demonstrated that SFQ: 1) achieves low
average as well as maximum delay for low throughput applica-
tions (e.g., interactive audio, telnet, etc.); 2) provides fairness
which is desirable for VBR video; 3) provides fairness, regard-
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less of variation in server capacity, for throughput-intensive,
flow-controlled data applications; 4) enables hierarchical link
sharing which is desirable for managing heterogeneity; and 5)
is computationally efficient. Thus, SFQ meets the requirements
of a suitable scheduling algorithm for integrated services
networks.
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