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Abstract

We present a movel approach to building and deploying
network protocols. The approach is based on mobile code,
demand loading, and caching techniques. The architec-
ture of our system allows new protocols to be dynamaically
deployed at both routers and end systems, without the
need for coordination and without unwanted interaction
between co-existing protocols.

In this paper, we describe our architecture and its real-
1zation wn a prototype implementation. To demonstrate
how to exploit our architecture, we present two simple
protocols that operate within our prototype to introduce
multicast and mobility services into a network that ini-
tially lacks them.

1 Introduction

The performance of modern distributed computing is
heavily dependent upon the network services used to
move information among machines. Curiously, however,
the evolution of these services has been much slower than
the evolution of almost any other part of the environment
on which computing systems are built.

The slow evolution is attributable neither to a lack of
need nor to a lack of innovative ideas. In the case of
IP, for example, changes are underway to better support
multimedia applications, as well as to accommodate a
larger number of potentially mobile hosts [4, 2, 3, 14].
Unfortunately, though agreement on the need for these
changes was reached many years ago, they are still not
fully deployed.

The problem is that the current process of changing
network protocols is both lengthy and difficult. It re-
quires standardization, since internetworking protocols
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are the basis of interoperability. This means that years
may elapse between the time the need becomes appar-
ent and the time consensus is reached on how to address
that need. Furthermore, once the new protocol has been
accepted, deployment is difficult. It must be done man-
ually and in a backwards compatible fashion, since there
is no automatic mechanism for upgrading functionality
or dealing automatically with multiple protocols.

This paper presents a new approach to network service
innovation that addresses all of these problems. The
essence of our approach is to standardize a commu-
nication model (rather than individual communication
protocols) that allows uncoordinated deployment of co-
existing protocols. We have developed an active network
[16, 17] toolkit, called ANTS!, in which new protocols are
automatically deployed at both intermediate nodes and
end systems by using mobile code techniques. Our archi-
tecture views the network as a (somewhat restricted) dis-
tributed programming system, and provides a program-
ming language-like model for expressing new protocolsin
terms of operations at nodes. Compared with alternative
systems in which new protocols may be formed by select-
ing from a library of components, e.g., the x-kernel [9],
ANTS provides the greater flexibility that accompanies a
programming language and the convenience of dynamic
deployment.

In the next section of this paper, we present the ANTS
protocol architecture. We then demonstrate how the ar-
chitecture can be exploited by presenting simple proto-
cols that support multicast and mobility, two directions
in which IP is currently being extended. This is followed
by a discussion of our prototype implementation of the
the ANTS architecture. We then contrast our system with
related work, and offer conclusions and suggestions for
further work.

1See http://www.sds.lcs.mit.edu/activeware.



2 ANTS Protocol Architecture

An AnTS-based network consists of an interconnected
group of nodes that execute the ANTS runtime; the nodes
may be connected across the local or wide area and by
point-to-point or shared medium channels. The system
builds on the link layer services of the channels to provide
network layer services to distributed applications.

Unlike IP, the network service provided by ANTS is not
fixed — it is flexible. Different applications are able to
introduce new protocols into the network by specifying
the routines to be executed at network nodes that for-
ward their messages. Applications may customize net-
work processing to suit their needs by pushing processing
into the network — either processing that is traditionally
performed at end-systems or novel kinds of processing
that only make sense in the context of active networks.

In designing ANTS, we set three goals for network proto-
col innovation. All describe more flexible forms of inno-
vation than are currently achieved in the Internet.

e The nodes of the network must simultaneously sup-
port a variety of network protocols providing differ-
ent services.

e The architecture must support the construction of
new protocols by mutual agreement among inter-
ested parties, rather than requiring new protocols
to be registered in a centralized manner. We do not
expect all users to construct new protocols directly,
but rather to choose between protocols offered by
third party software vendors.

e The architecture must support the dynamic deploy-
ment of new protocols, since it is unreasonable to
take portions of the network “off-line” in order to
configure nodes to support new protocols — espe-
cially as the scale of the network increases.

Our architecture meets these goals through the use of
three key components.

e The packets found in traditional networks are re-
placed by capsules that refer to the processing to be
performed on their behalf.

e Routers and end nodes are replaced by active nodes
that execute capsule processing routines and main-
tain their associated state.

e A code distribution mechanism ensures that pro-
cessing routines are automatically and dynamically
transfered to those nodes where they are needed.
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2.1 Protocols and Capsules

To make use of programmable network elements, we re-
quire a model for combining forwarding routines at in-
dividual nodes into a pattern of behavior — a protocol —
that defines the processing to occur across the network
as a whole. Further, the model must separate patterns
of behavior from each other.

In ANTS, we do this using capsules, code groups, and
protocols. The relationships between these entities is
illustrated in Figure 1.

e A capsule is a generalized replacement for a packet.
Its most important architectural function is to in-
clude a reference to the forwarding routine to be
used to process the capsule at each active node.
Some forwarding routines are “well-known” in that
they are guaranteed to be available at every active
node. These primarily include routines for common
case processing, i.e., unreliable data transfer with
standard routing, and for bootstrapping network
services, such as the code distribution scheme to be
described shortly. Other routines are “application-
specific.” Typically, they will not reside at every
node, but must be transfered to a node by the code
distribution scheme before capsules of that type can
be processed for the first time.

e A code group is a collection of related capsule types
whose forwarding routines are transferred as a unit
by the code distribution system.

e A protocol is a collection of related code groups that
are treated as a single unit of protection by the ac-



tive nodes. Thus protocols are the units by which
the network as a whole is customized by applica-
tions. Capsules belonging to the same protocol will
typically manipulate shared information within the
network.

Capsule Format

The format of capsules as they are carried across link-
layer channels is sketched in Figure 2. Each capsule car-
ries an identifier for its protocol and particular capsule
type within that protocol. The identifier is based on a
fingerprint (e.g., the MD5 message digest) of the proto-
col code. It is used for demultiplexing to a forwarding
routine in the same sense as the Ethernet type and IP
version and protocol fields.

That the capsule identifier is derived from the code de-
scription of the protocol of which it is a part is crucial
for two reasons:

e It greatly reduces the danger of protocol spoofing.
When a node receives code that purports to cor-
respond to a particular capsule type, it can easily
verify for itself (without trusting external parties)
that the code is indeed what it purports to be.

e It allows protocols and capsule types to be allocated
quickly and in a decentralized fashion, since their
identifier depends only on a fingerprint of the pro-
tocol code. One need only choose a hash function
with a sufficiently large range to make the probabil-
ity of a collision extremely low.

The remainder of the capsule format is comprised of a
shared header that contains fields common to all cap-
sules, a type-dependent header that may be updated
as the capsule traverses the network, and a payload.
The important components of the shared header are
source and destination addresses and information about
resource limits to be enforced by nodes.

2.2 Active Nodes

A key difficulty in designing a programmable network is
to allow nodes to execute user-defined programs while
preventing unwanted interactions. Not only must the
network protect itself from runaway protocols, but it
must offer co-existing protocols a consistent view of the
network and allocate resources among them.

Our approach has been to execute protocols within a
restricted environment that limits their access to shared
resources. Active nodes play this role in our architecture.

They export a set of primitives for use by application-
defined processing routines, which combine these primi-
tives using the control constructs of a programming lan-
guage. They also supply the resources shared between
protocols and enforce constraints on how these resources
may be used as protocols are executed. We describe our
node design along these two lines.

Node Primitives

We chose an initial set of primitives based on our experi-
ence with a predecessor system [20]. This work suggests
that a relatively small set of primitives is sufficient to
express a number of different and useful forwarding rou-
tines. We support the categories of node primitives listed
below. There are also some obvious additions (namely
authentication, fingerprinting, compression, etc.) that
we have not had the time to experiment with yet.

e cnwironment access, to query the node location,
state of links, routing tables, local time and so forth;

e capsule manipulation, with access to both header
fields and payload;

e control operations, to allow capsules to create other
capsules and forward, copy or discard themselves;

e node storage, to manipulate a soft-store of
application-defined objects that are held for a short

interval.

The set of primitives available at active nodes is im-
portant because it determines the kinds of processing
routines that can be deployed by applications. For ex-
ample, without the ability to store and access node state,
individual capsule programs would be unable to commu-
nicate with each other. Further, the compactness and
execution efficiency of capsule programs is affected by
these primitives. Both are enhanced if the primitives
are a good match for the processing, and degraded oth-
erwise. For example, the neighbors at a given node may
be found either by walking the entire routing table look-
ing for adjacent nodes, or by asking the question directly
of the node, depending on which topological queries are
supported. The direct query can be represented com-
pactly and executed efficiently as a built-in node primi-
tive, while the other program cannot.

Execution Model

Our execution model is based on the assumption that
the primary purpose of the computation done within
an active network is facilitating communication. Con-
sequently, our model is optimized to support a general-
ized form of packet forwarding rather than more general



computation. More specifically, it has the following char-
acteristics:

e The forwarding routine of a capsule is set at the
sender and may not change as it traverses the net-
work; nor may capsules belonging to one proto-
col create capsules belonging to a different protocol
within the network. Given this, one user may not
control the processing of another user’s capsules in
unintended ways.

e Not all nodes of the network need execute a partic-
ular forwarding routine. Some nodes may elect not
to, depending on their available resources and secu-
rity policies, in which case they perform “default”
IP-like forwarding on these capsules instead. Ad-
ditionally, forwarding routines may self-select nodes
at which it is useful to perform their specialized pro-
cessing depending on the location of the node and
its capabilities.

e Since forwarding routines may be defined by un-
trusted users, they are limited in their capabili-
ties. In particular, like traditional forwarding rou-
tines, they are expected to run to completion lo-
cally and within a short time, and their memory
and bandwidth consumption is bounded by a TTL-
like scheme.

e The data that a capsule may access while in the
network is determined by the protocol to which it
belongs. By default, only capsules belonging to the
same protocol may share state. Further, once cre-
ated, a protocol is closed in that new types of cap-
sule that purport to belong to it in order to manip-
ulate its data in a different manner are disallowed.

When a capsule arrives at a node, its associated pro-
cessing routine is run to completion (unless it exceeds
its resource limit). The routine processes the payload of
the capsule and initiates any further actions, e.g., for-
warding, that are necessary. Unlike more general mo-
bile agent systems, the node provides no support for mi-
grating computations at arbitrary points during execu-
tion. Instead, processing routines may update capsule
fields and enter application-defined information into the
shared node soft-store. Together, these mechanisms al-
low the construction of computations that evolve their
behavior as they traverse the network.

During capsule processing, active nodes are responsi-
ble for the integrity of the network and handle any
errors that arise. Since capsule processing resembles
a distributed programming system in which there are
many legitimate users with small tasks, authentication
and other traditional security schemes are likely to be
too heavyweight to be used for common-case forwarding
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Figure 3: Demand Loading of Code Groups

programs. Instead, we rely on the safety mechanisms
of mobile code technologies (e.g., sandboxing and Java
bytecode verification) to execute untrusted routines ef-
ficiently in a contained manner. Conversely, the occa-
sional use of primitives that manipulate shared logical
resources, e.g., updates to the default routing tables,
must be authenticated.

This model is not yet sufficient, however, to ensure that
the network is robust, nor that its resources are allo-
cated in an intended manner. For these purposes, we
incorporate additional mechanisms to limit the physical
resources consumed by capsule programs, both at indi-
vidual nodes and across many nodes.

We associate with each capsule a resource limit that
functions as a generalized TTL (Time-To-Live) field.
This limit is carried with the capsule and decremented by
nodes as resources are consumed; only nodes may alter
this field, and nodes discard capsules when their limit
reaches zero. In order to reason about total resource
bounds, care must be taken to transfer resources when
one capsule creates another inside the network: the re-
sources allocated to each created capsule must be strictly
less than those of the creating capsule.

It is straightforward to charge for resources as they are
consumed. Processing time and link bandwidth are allo-
cated by time and capsule quanta, respectively; node
memory is allocated by cached objects, since caching
converts memory into a renewable resource. We hope,
however, that it will prove feasible to enforce static lim-
its at nodes with a scheme similar to [5] or by using
proof-carrying code techniques [12].



2.3 Code Distribution

The third component of our architecture is a code dis-
tribution system. Given a programmable infrastructure,
a mechanism is needed for propagating program defini-
tions to where they are needed. A good scheme must
be efficient, adapt to changes in node connectivity, and
limit its activity so that the network remains robust.

Many different mechanisms are possible. At one ex-
treme, programs may be carried within every capsule.
This scheme is only suited to transferring extremely
short programs when bandwidth is not at a premium.
At the other extreme, programs may be pre-loaded into
all nodes that may require them by using an out-of-band
or management channel prior to using a new protocol.
This scheme is not suited to our goals of rapid and de-
centralized deployment.

Instead, our approach has been to couple the transfer
of code with the transfer of data as an in-band func-
tion. We believe this has several advantages. It lim-
its the distribution of code to where it is needed, while
adapting to node and connectivity failures. It improves
startup performance and facilitates short-lived protocols
by overlapping code distribution with its execution. It
further suits our research goals by allowing customized
processing to be expressed at a fine granularity, i.e., per
capsule rather than per application session.

We have designed a scheme that loads code on demand
and caches it to improve performance in the expected
common case of flows, i.e., sequences of capsules that fol-
low the same path and require the same processing. At
end-systems, applications may begin to use a new proto-
col at any time by registering the code definition at their
local node. Capsules of the new type may then be in-
jected into the network and received from it. As capsules
travel through nodes of the network, a lightweight pro-
tocol is used to transfer the capsule programs incremen-
tally from one node to the next, where they are cached
for future use. For this purpose, capsules must be orga-
nized into code groups according to their dependencies.
If one type of capsule refers to another type, their defi-
nitions are grouped for joint transfer.

A sequence of events that illustrates the operation of
this demand loading protocol is listed below and shown
in Figure 3.

1. Capsules identify their type and the protocol to
which they belong as they travel. This information
is immutable for a given instance of a capsule.

2. When a capsule arrives at a node, a cache of proto-
col code is checked. If the required code is not all
present, a load request for the missing portion based

on the capsule type and protocol is sent to the “pre-
vious” node, i.e., the node from which the capsule
arrived. The capsule execution is suspended, await-
ing the code, for a finite time.

3. When a node receives a load request that it can
answer, it does so immediately. It sends load re-
sponses that contain the portion of protocol code
that is implicated.

4. When a node receives a load response, it incorpo-
rates the code into its cache. If the required code
is now all present, it wakes sleeping capsules. If
the required responses are not forthcoming, sleep-
ing capsules are discarded without further action.

This scheme has some important properties. First, the
reliance of a node on the “previous” node is designed to
draw code from a source node along the network paths
where it is needed. As many capsules are transferred,
a region is grown, within which the same processing is
invoked repeatedly and code transfer is no longer nec-
essary. If network paths change, then code transfer will
resume in order to adapt to the new connectivity.

Second, the connectionless nature of the scheme is de-
signed to provide rapid loading without concern for reli-
ability. There are two reasons a load request might fail:

1. The requested code might not be available at the
node to which the load request is directed, or

2. Network congestion might cause the loss of capsules.

Requests for code are caused by the arrival of a capsule.
Since these requests are always directed at the node that
sent the capsule to the requesting node, it is highly prob-
able that the code is in the code cache of the node receiv-
ing the request. The main source of failure is, therefore,
likely to be network congestion. This is the reason that
we have not elected to use a higher-level connection, e.g.,
TCP, for code delivery. In the unlikely event that a load
request fails, the capsule that provoked the request is
lost. In this case, protocol-specific higher-level process-
ing at the end-systems is used to provide whatever level
of reliability is appropriate.

3 Programming with ANTS

To demonstrate how we intend our architecture to be
used, we describe two simple protocols that introduce
multicast and mobility services into an ANTS network
that initially lacks them. We chose these examples be-
cause they represent two areas of widespread interest in
which the Internet community is currently dealing with
the difficulties of innovating protocols.



Mobi | e Dat a foreign

agent

hone

agent Regi ster

Sdest™
: v — =soft-state dest
{ horre), avay)

Figure 4: Mobile Capsule Paths

// on entry:

//  home = home agent

//  next = node at which to register
//  forward = address to be registered

// go to foreign and then home agent

if (n.address() !'= next) {
n.routefornode(this, next);
return;

}

// insert a forwarding address
n.put(src, new W_N(forward), IDLE);

// after doing foreign, do home

if (n.address() != home) {
forward = next; next = home;
n.routefornode(this, next);

}

Figure 5: Mobile Register Capsule

The presented protocols were written and tested using
the Java-based prototype implementation of ANTS de-
scribed in Section 4. In developing the protocols, it
was not our intent to present new and better solutions
to these particular problems. Our goal was merely to
demonstrate how our approach may be used to write pro-
tocols that address these kinds of problems in a number
of different ways, depending on application requirements
rather than relying on a “one size fits all” solution. That
is, we wish to show that ANTS facilitates protocol con-
struction and deployment, not that the particular prob-
lems of mobility and multicast are straightforward.

3.1 Mobile Hosts

We introduce support for mobile hosts into an ANTS net-
work with a Mobile protocol composed of two cooper-
ating capsule types. One type of capsule is sent by the

// look up forwarding record
W_N £f = (W_N)n.get(dst);

// if found, update our route
if (£ != null) next = f.node;

// and continue on our way

if (n.address() != next)
n.routefornode(this, next);

if (n.address() == dst)
n.delivertoapp(this, dpt);

Figure 6: Mobile Data Capsule

mobile host to register forwarding information while it
is roaming. The second is used by other hosts to send
messages to the mobile host. To be consistent with mo-
bility schemes, we use the notion of home and foreign
agents. The home agent is used to intercept messages at
the base location of the mobile host. The foreign agent
is used as a “care of” address to reach the mobile host
while it is away from its base. The paths of these two
types of capsule is shown in Figure 4 and their code in

Figures 5 and 6.

Mobile hosts that are roaming periodically send
Register capsules to their home agent via a local for-
eign agent. The program carried by this capsule updates
forwarding addresses cached at the home and foreign
agents. In each, an updated forwarding pointer is en-
tered into the node cache; the home agent forwards to
the foreign agent, and the foreign agent to the current
mobile location. At the home agent, Register capsules
are silently discarded, having established their forward-
ing pointers within the network. As the mobile moves,
old forwarding pointers will either be supplanted by fresh
information or evicted from the cache after a brief inter-
val.

To communicate with the mobile host, other hosts send
Mobile Data capsules that make use of this forwarding
information. This capsule program is directed by default
routing towards the base location of the mobile. If the
mobile is at home, the capsule will reach it and be deliv-
ered. If the mobile is roaming, the capsule will discover
a forwarding pointer as it traverses the home agent, and
follow it to the foreign agent. There, it will find a fur-
ther pointer to the current mobile location and so be
delivered.

Despite the simplicity of this scheme, it provides the es-
sential feature of mobility: hosts may be reached as they
move without introducing another layer of addressing.
There are also some interesting comparisons with Mo-
bile IP [14]. First, it is not necessary to confine mobile
forwarding information to the edges of the network. To
facilitate shortcut routing, mobile updates may enter for-



// on entry:

// group = multicast group

// sender = multicast sender
// reverse = last visited node

// look up forwarding record
W_JAN m = (W_JAN)n.get(group, sender);

// or make a new one if necessary
if (m == null) {

m = new W_JAN();

n.put(group, sender, m, IDLE);

// are we at an intermediate node?
add: if (reverse '= 0) {
if (m.nodes == null) {

// start a new list

m.nodes = new W_N[1];

m.nodes[0] = reverse;
} else {

// does it contain our info?
for (int i = 0; i < m.nodes.length; i++)
if (m.nodes[i] == reverse) break add;

// if not, add it

int len = m.nodes.length;

W_N[] nn = new W_N[len+1];
System.arraycopy(m.nodes,0,nn,0,len);
nn[len] = reverse; m.nodes = nn;

3
}

// need to refresh upstream entry?
long time = n.time();

if (time - m.time < RATE) returnm;
m.time = time;

// if so, update route and continue

if (n.address() != sender) {
reverse = n.address();
n.routefornode(this, sender);

}

Figure 7: Multicast Subscribe Capsule

warding pointers at any node, and messages from other
nodes will follow them like a trail of crumbs once their
paths cross. Second, because our approach is based on
innovation rather than backwards-compatibility, a differ-
ent protocol is used to reach stationary and potentially
mobile hosts. This poses no bootstrapping problem how-
ever: it is straightforward to select which protocol to use
in the first place with a directory service, e.g., in the
same manner that the selection of IPv4 versus IPv6 is
being incorporated into the DNS [7] for the IPv6 transi-
tion.
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Figure 8: Multicast Capsule Paths

// look up forwarding record
W_JAN m = (W_JAN)n.get(group, sender);

// must find it to continue
if (m !'= null) {
if (m.nodes '= null) {

// send a copy every way
for (int i = 0; i < m.nodes.length; i++)
n.routefornode(this, m.nodes[i]);
} else

// or deliver to application
n.delivertoapp(this, dpt);

Figure 9: Multicast Data Capsule

3.2 Multicast

We introduce a basic Multicast protocol, resembling
IP multicast [4], composed of two cooperating capsule
types?. One type of capsule is sent to subscribe to a
group, and the other carries the multicast message itself.

Applications that wish to receive messages sent to a
given group by a particular sender periodically send
Subscribe capsules towards the sender. The program
carried by this capsule installs (or refreshes) forwarding
pointers that are cached in each router it traverses; for-
warding information sent by different nodes is merged to
form a distribution tree. To multicast to the group, the
sender node sends a Multicast Data capsule that sim-
ply routes itself along the distribution tree. The paths
of these capsules are shown in Figure 8 and the code in
Figures 7 and 9.

The Subscribe program begins by looking up the for-

2Readers familiar with IP multicast will note that our multicast
provides a somewhat different service. This is discussed after the
scheme is presented.



warding record for the group in the node cache, creating
a fresh record if none is found. To separate this forward-
ing record from other multicast session information in
the cache, the record is stored under a key that is the
combination of the group and sender addresses. Once
the forwarding record is located, a “reverse” pointer in
the direction of the subscriber is merged into the for-
warding record. Leaf subscriber nodes are indicated by
empty forwarding lists.

The forwarding method of the Multicast Data capsule
makes use of the forwarding records it finds at nodes,
sending a copy of itself along every indicated “reverse”
path found in the record at each node. If no forwarding
information can be found, the capsule is discarded. At
end-systems, where there is an empty forwarding record,
the capsule delivers itself to an application.

Together, these capsule programs implement an unre-
liable multicast protocol with the central property of
network-based multicast: efficient use of bandwidth.
The service differs from IP multicast in two significant
respects. First, the scheme is localized to the nodes using
the protocol, and does not require that multicast-capable
routers be separately identified or organize themselves
into a tree. Second, it provides a different multicast
primitive, since members subscribe to the combination
of a group and sender. This choice is typical of the flex-
ibility that ANTS offers protocol developers. If multiple
senders are needed, then multiple distribution trees may
be formed by having members subscribe to each of the
senders. Alternatively, the sender may be considered the
root of a core-based tree [1], with messages routed up the
tree towards the root and down other branches.

4 Prototype Implementation

We have been experimenting with a prototype imple-
mentation of the ANTS architecture®. The implemen-
tation was designed primarily to allow us to evaluate
the suitability of our approach to creating and deploy-
ing protocols. We have used it to test and debug the
Mobile and Multicast protocols discussed in this pa-
per, as well as a number of other protocols developed
in our group, e.g.,a high performance reliable multicast
developed by Lehman [10], a TCP SYN-flooding defense
protocol developed by Van [19], and an auction service
developed by Legedza. Recently, ANTS nodes have also
been deployed at different sites as one of several tech-
nologies within the DARPA-sponsored ABONE, an ex-
perimental active network in which nodes communicate
by tunneling through the Internet using UDP.

30ur toolkit is publicly available as a source distribution at
http://www.sds.lcs.mit.edu/activeware.

| Class | Key Methods
Node address, get, put,
routefornode, delivertoapp
Channel send, receive, node
Application | send, receive (upcall), node
Capsule evaluate, length,
encode, decode

Table 1: Key Classes and Methods

The current implementation is written in Java and runs
as a user-level process under Linux. The code distribu-
tion protocol transfers processing routines in Java class-
file format. We chose Java because of its support for
safety and mobility (through bytecodes and their verifi-
cation) and the likely emergence of higher performance
compilers and runtimes. Its flexibility as a high-level
language and support of dynamic linking/loading, multi-
threading, and standard libraries has allowed us to evolve
our design while maintaining a small code base (10000
lines).

The major components of the ANTS architecture are im-
plemented using the classes listed in Table 1. When each
ANTS runtime is started, its root thread instantiates a
single Node object, one Channel object for each local
network interface, and one Application object for each
local distributed application. Applications may then
communicate by exchanging capsules, sending them via
the local node, which transmits them as packets using
the link layer services of the local channels. Conversely,
when packets are received from the link layer, the chan-
nel attempts to convert them to instances of the ap-
propriate Capsule subclass. If the required code is not
present at the node, then the packet is retained by the
node while the code is fetched using the code distribution
protocol. Once a capsule instance is created, the thread
calls its evaluate method, passing the node instance as
a parameter. As it is evaluated, the capsule code has
access to the private soft state of the associated protocol
as well as the public state (e.g., routing tables) of the
node.

Node Class

The Node class represents the runtime of a single network
node, including its code and soft-storage caches and code
distribution protocol. It provides a set of node primitives
that can be invoked by capsule programs. These prim-
itives allow access to the state at the node and enforce
various security constraints.

Table 1 lists some key methods, including routefornode,
which forwards a copy of a capsule towards a given des-



tination, and get and put, which are used to manipu-
late that part of the node soft-store that can be directly
accessed by the executing protocol. The soft-store is
managed in a least-recently-used order, and additionally
removes entries with coarse-grain timeouts. This pre-
vents the network from retaining stale state, e.g., old
session identifiers, and further allows us to stress test
protocols by shortening the value of the timeout. The
code cache is also managed in a least-recently-used or-
der, and does not require timeouts because the protocol
naming scheme obviates versioning problems.

Channel Class

The Channel class provides the interface to the link
layer, connecting nodes via point-to-point or shared
medium channels. At present, either Ethernet or UDP
“tunnels” may be used to transfer capsules. These
choices allow small networks to be constructed by run-
ning one node per machine and connecting the nodes
with Ethernet channels. Larger networks are emulated
by running many nodes per machine and connecting the
nodes with UDP channels.

Capsule Class

The Capsule class is a virtual class that can be special-
ized to create the capsule types that comprise protocols.
During capsule processing at nodes, each packet received
from the link layer is manipulated as an instance of its
corresponding Capsule subclass. In our prototype im-
plementation, if an error occurs, execution of the capsule
is terminated and the state associated with that execu-
tion of the capsule is released. It would be straight-
forward to extend this recovery process with an error
message scheme analogous to ICMP.

In addition to providing the base class for new proto-
cols, our current implementation provides several built-
in subclasses. The class DataCapsule allows applica-
tions to transfer data using default (i.e., shortest path)
routes. The system classes DLRequestCapsule and
DLResponseCapsule are used by the code distribution
protocol. They provide the bootstrapping capability
needed to install other protocols.

Application Class

Programs that use the ANTS service are constructed by
specializing the Application class. This is a container
for end-system processing that provides a small APT for
registering protocols, injecting capsules into the network
and receiving capsules from the network. It runs within

Runtime Latency | Throughput
(us) (capsules/sec)

JDK1.0.2 1050 1080

JDK1.1.4 800 1510

JDK1.1.4 + JIT 680 1680

C user-level relay 225 6350

Table 2: Node Baseline Performance

Capsule Size Latency | With Load
(bytes) (us) (us)
Data 1429 680 4700
Mobile 2154 720 5900
Update 2029 700 6800
Multicast 2255 740 5800
Subscribe 2850 780 6100

Table 3: Capsule Program Measurements

the same address space as the node to which it is di-
rectly attached. At nodes internal to the network, it can
be used to implement SNMP-like node management ap-
plications. At end-systems, it provides a bridge to the
end user.

Measurement and Evaluation

Though our prototype implementation was not built for
performance, we did run a small number of performance
tests. The goal of these was to gain some insight into the
performance impact of various architectural decisions.
All tests reported in this section were performed on a
Sun Ultrasparc 1 (167MHz) running Solaris 2.5 and con-
nected with 100 Mbps Ethernet.

Table 2 shows the baseline performance of our node run-
time. We measured the throughput of a single node in
capsules per second by using an external traffic genera-
tion system written in C. We measured the latency in
microseconds across a single node by using a passive
tcpdump-based monitor that recorded cycle-counts on
packet arrival within a modified Linux kernel. In both
cases, we used minimal length capsules running a mini-
mal forwarding program — this is our equivalent of a “null
RPC” that is intended to show the costs of our architec-
ture and its implementation. The progression down the
table shows how the performance varies with Java VM
runtime, given identical code, hardware, and operating
system. At the bottom of the table, measurements for a
C packet relay running at user level place the other mea-
surements in context by reporting on the raw hardware
and operating system performance.



We find that the base performance of our node is reason-
able for a high-level prototype, especially given the cur-
rent early state of Java development tools and runtimes.
At over 1000 capsules/second, the system is usable for
experimenting with distributed applications. There has
been significant improvement with successive genera-
tions of Java runtimes, though our system falls well
short of the raw machine performance. We anticipate
further improvements from: Java development environ-
ments that combine statically compiled native code with
dynamically loaded bytecodes, next generation “just-in-
time” compilers that perform adaptive inlining, and of
course the profile-driven tuning that we have not yet un-
dertaken.

Two additional experiments would assist in calibrat-
ing our node performance. First, throughput measure-
ments in bytes/second would expose the costs of our data
paths. We believe that this comparison would be favor-
able since, like IP, our implementation does not require
payloads to be copied. Second, measurements of IP pro-
cessing would determine how much of the raw hardware
performance can be obtained for a well understood for-
warding model.

To describe the costs of executing user-defined process-
ing routines, Table 3 lists measurements for the capsules
defined in our example protocols. We provide three mea-
surements: program size, latency when the code is al-
ready loaded, and latency when the code must be loaded
for the first time. Latency is measured as described pre-
viously and using the best runtime of Table 2. Repeated
code loading is simulated by using an artificially small
code cache and causing swapping to occur; however, the
cost of bytecode verification is not included since we are
unable to cause classes to be removed from our Java run-
time.

The measurements suggest that the overhead of user-
defined processing routines can be low. Despite the fact
that the size of capsule programs is considerably larger
than is necessary because our implementation uses the
Java classfile format directly, the example routines are
short, and can be transferred without consuming much
bandwidth. Additionally, the latency over simple for-
warding is small and the latency attributable to demand
loading seems quite reasonable in that it is comparable
to that associated with establishing a connection on con-
ventional networks.

5 Related Work

We believe our approach is novel in its application of
mobile code, demand loading, and caching techniques
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within the network layer.

The most similar recent work we are aware of is the mes-
senger paradigm [6] and work on flexible protocol stacks
that preceded it [18]. Like our system, this work allows
new protocols to be deployed. The intent, however, is to
investigate the structuring of communicating systems,
including distributed operating systems and intelligent
agents. As such, it lacks the network layer specializa-
tions, e.g., demand loading, that we have developed.

Some modern protocol architectures have been config-
urable, as opposed to programmable. The x-kernel [9]
provides a collection of micro-protocols from which pro-
tocols (e.g., RPC) can be synthesized. Configurable
systems can further increase their flexibility by defer-
ring the selection of components until runtime, and so
the x-kernel supports the dynamic composition of micro-
protocols on a per packet basis. Although configurable
systems are capable of expressing a range of protocols,
their means of composition, e.g., layering, is less flexible
than that of a programming language.

The earliest programmable network based on mobile
code that we are aware of is Softnet [22], an experimen-
tal packet radio network constructed in the early 1980s.
Its goal was similar to our own: to allow users to de-
fine their own high level services. As with our approach,
packets were considered to be programs of a language,
FORTH, and interpreted at nodes on arrival. Softnet is
an intriguing example of a real programmable network
that inspired a user community and workshops, but un-
fortunately fell into disuse with little documented about
its successes and failures. We speculate that this was be-
cause of difficulties with safety and efficiency, problems
that may now be more tractable, given the recent ad-
vances in mobile code and operating system technology.

End-to-end code shipping to improve performance has
been studied in the context of RPC [15, 13]. Our ap-
proach offers a greater scope for customization by in-
cluding intermediate nodes as well as end-systems.

Our work is complementary to several other active net-
work efforts. The use of general-purpose Java byte-
codes and VM has allowed us to evolve our architecture
quickly, but at the cost of less control over resource us-
age and lower absolute performance. Research at the
University of Arizona on Liquid Software [8] and Scout
[11] enable a finer granularity of local resource manage-
ment as well as competitive performance through the
construction of a specialized node operating system. Re-
search at the University of Pennsylvania on PLAN and
BBN on Sprocket enables stronger resource management
and security guarantees across the nodes of a network
through the use of language design techniques. Finally,



research on active signaling at USC ISI and NetScript
at Columbia University [21] explore alternative models
of active networks in which new services are introduced
for control rather than data transfer purposes, or by net-
work management agents rather than all users.

6 Conclusions

In this paper, we have presented an architecture that
supports the construction and dynamic deployment of
network protocols. In contrast to a standardization-
based process, our approach:

e Allows new protocols to be automatically, dynam-
ically, and rapidly deployed to exactly those nodes
in the network they are needed; and,

e Requires no advanced consensus about the kinds or
definitions of the protocols.

We achieved these results by treating the network as a
distributed programming system and through the ap-
plication of mobile code, demand loading and caching
techniques.

Our Java-based prototype allowed us to experiment with
the ANTS network programming model and test its code
distribution system. In addition to the simplistic exam-
ples presented here, we have used ANTS to implement
several more complex protocols, including a high perfor-
mance reliable multicast.

Our early experience with ANTS strongly suggests that
this use of mobile code technologies has considerable
promise. It can provide the means for automatically up-
grading network protocols. This, in turn, can remove
barriers to innovation, stimulate experimentation, and
hasten the arrival of new functionality. It is interest-
ing to speculate how many other protocols would be de-
ployed were it not for the barriers to innovation that we
are addressing.
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