Web Caching and Content Distribution:
A View From the Interior*

Syam Gadde, Jeff Chase
Dept. of Computer Science
Duke University
Durham NC, 27708

{gadde,chase}@cs.duke.edu

Abstract

Research in Web caching has yielded analytical tools
to model the behavior of large-scale Web caches. Re-
cently, Wolman et al. have proposed an analytical
model and used it to evaluate the potential of coop-
erative Web proxy caching for large populations.
This paper shows how to apply the Wolman model
to study the behavior of interior cache servers in
multi-level caching systems. Focusing on interior
caches gives a different perspective on the model’s im-
plications, and it allows three new uses of the model.
First, we apply the model to large-scale caching sys-
tems in which the interior nodes belong to third-party
content distribution services. Second, we explore the
effectiveness of content distribution services as con-
ventional Web proxy caching becomes more preva-
lent. Finally, we correlate the model’s predictions of
interior cache behavior with empirical observations
from the root caches of the NLANR cache hierarchy.

1 Introduction

As the Web continues to evolve, the most popular
Web sites receive an increasing share of Internet traf-
fic. These sites have a competitive motivation to em-
ploy advanced content distribution schemes to offer
better service to their clients at lower cost. There
is a growing trend toward outsourcing content distri-
bution to commercial hosting services such as Exo-

*This work is supported by the National Science Foundation
under grant CCR-96-24857 and by the U.S. Department of
Education GAANN program.

Michael Rabinovich
AT&T Labs - Research
108 Park Avenue
Florham Park, NJ 07932
misha@research.att.com

dus, Digital Island, GlobalCenter, and others. Ma-
jor hosting providers and related companies main-
tain content distribution networks (CDNs) that cache
or replicate content as needed to meet demand from
clients across a wide area. Examples of CDNs in-
clude Mirror Image [10], Sandpiper Footprint [11],
and Akamai’s FreeFlow [1].

CDNs offer compelling benefits to Web sites and
other content providers even as the price of wide-area
bandwidth declines. The CDN services maintain the
networks and data centers to serve the content; these
shared resources offer economies of scale and allow
the service to dynamically adjust content placement,
request routing, and capacity provisioning to respond
to demand and network conditions. The CDN pro-
tects the content provider from unpredicted demand
surges or unecessary costs for excess capacity. Recent
extensions to CDN services are directed at serving
media streams and other resource-intensive content.

We refer to caches in CDNs as supply-side caches
because they act as agents of the content providers
rather than of the clients, as in conventional demand-
side Web proxy caching. Supply-side content distri-
bution supplements demand-side Web proxy caches,
which are rapidly becoming ubiquitous. Until re-
cently, proxy caches were an optional service for users
who voluntarily configured their browsers to redi-
rect requests through a proxy. Today, Internet Ser-
vice Providers interpose caching transparently at the
edges of the network to help meet the exponentially
growing demand for Web-based services. The market
for proxy caches and related software is now worth
billions of dollars a year, and these caches serve tens

of millions of new clients who are not aware of their
existence.

Caching CDNs supplement ubiquitous demand-
side caches with a layer of upstream caches logically
residing in the network interior. These interior caches
behave similarly to upstream caches in demand-side
hierarchical caching systems. A well-known example
of hierarchical caching is the NLANR cache [14], an
experimental large-scale Web cache that is a precur-
sor to supply-side CDNs. CDNs differ from hierar-
chical caches primarily in that they generalize the re-
quest routing function used to direct the miss stream
from lower-level (leaf) caches to the interior. Less
significantly, CDNs may proactively populate interior
caches, anticipating future requests.

Previous research [3, 6, 7, 8, 9] has studied demand-
side benefits to cooperative caching in the Web by
analyzing traces collected in specific caching envi-
ronments. The goal of this paper is to adapt re-
cent research results in demand-side Web caching to
study the interaction of supply-side and demand-side
approaches to content distribution. If demand-side
caching is ubiquitous, what are the real benefits of
supply-side content distribution from the standpoint
of the service provider? What are the ranges of cov-
ered client populations for which supply-side content
distribution is most effective?

Our study is based on an analytical model of
steady-state caching behavior for static object re-
quests in the Web. The model was proposed by Wol-
man et al. [15] as an extension to an earlier model
developed by Breslau et al. [4] In their recent paper,
Wolman et al. parameterized the model using large
traces from a community of 83,000 clients at the Uni-
versity of Washington and Microsoft, then used the
model to explore the limits of cooperation mecha-
nisms for demand-side Web caches. This model is
currently the best available tool to guide performance
expectations for large-scale Web caching.

This paper makes the following contributions:

o It shows how to use the model to directly pre-
dict interior cache behavior given parameters
such as client population sizes, document rates
of change, and Zipf popularity parameters.

o It shows that supply-side caching CDNs can be
modeled similarly to upstream caches in a hierar-
chical caching system, assuming a stable request

routing function.

e It uses the extended model to explore the ef-
fectiveness of idealized CDNs under varying as-
sumptions about the covered population and
the populations served by the demand-side leaf
caches.

e It correlates the model with empirical observa-
tions from the NLANR caching hierarchy. In
this step, we use the model to predict popula-
tion attributes of the NLANR hierarchy given
traces and performance summaries from the root
caching servers. This is significant because it
shows how to use the NLANR experiment and
its diverse user community to further validate
the model and parameterize it more accurately.

The paper is organized as follows. Section 2 out-
lines the Wolman model and its significance, shows
how to derive interior cache behavior from the model,
and how to further apply our extended model to
supply-side content distribution. Section 3 presents
analytical results for interior cache hit ratios under a
range of population assumptions. Section 4 presents
empirical observations of root cache behavior in the
NLANR hierarchy, and uses the model to derive the
populations served by the NLANR cache. Section 5
concludes.

2 Modeling Interior Caches

We base our analysis on a model presented by Bres-
lau et al [4], and extended by Wolman et al. [15]
to incorporate document rate of change. Previous
analytical and experimental work focuses on the be-
havior of complete caching systems from the client’s
perspective. This section derives new formulas to pre-
dict the behavior of interior caches deeper in the net-
work, when the edges of the network already employ
caching. This allows us to use the model to predict
upstream cache behavior in common scenarios includ-
ing caches at server sites, root servers in hierarchical
caches, and interior caches in supply-side CDNs.
The Wolman model yields formulas to predict
steady-state properties of static Web caching sys-
tems parameterized by population size, population
request rate, document rate of change, size of the

"1 1
C :/ — | ————— | dz
T e <1+“§’£)

1
1<z<n T

n = no. of objects N = population
a = Zipf parameter)\ = request rate
1 = object rate of change

Table 1: The hit ratio formula from Wolman et al.
Cp is the hit ratio for cacheable objects with a pop-
ulation of size N.

object universe, and a popularity distribution for ob-
jects. The model makes several simplifying assump-
tions that make it tractable while preserving qualita-
tive behavior: (1) object popularity follows a Zipf-like
distribution as observed in [4], (2) object popular-
ity is uniform across the population, (3) objects are
cacheable with probability p. independent of popu-
larity, and (4) inter-arrival times for object requests
and updates are exponentially distributed with a pa-
rameter determined by the object’s popularity. The
model does not account for capacity misses, thus its
predictions give an upper bound on the effectiveness
of the caching system as a whole. However, for our
purposes the model is conservative in that it over-
states the effectiveness of the leaf caches, and thus
understates the potential incremental benefit of up-
stream interior caches or CDNs to supplement the
leaf caches.

Table 1 summarizes the key formula from Wolman
et al. yielding C, the aggregate object hit ratio for
a population of size N considering only cacheable ob-
jects. The formula approximates a sum (over a uni-
verse of n objects) of the probability of access to each
object multiplied by the probability that the object
is resident in the cache, i.e., that it had already been
accessed since its last change. The total hit ratio
across all objects is given by Hy = p.Cy.

We begin by applying the model to predict behav-
ior of upstream caches in simple cache hierarchies, as
illustrated in Figure 1. Each caching level i (the root
is at level 4 = 1) is populated by one or more caches,
each serving some client population. This structure is
the basis for hierarchical proxy cache architectures, as

unified root

Level 1

Level 2

Figure 1: A typical cache hierarchy. Each level i
receives r; requests from level 4 — 1. In the NLANR
hierarchy, the root (detail) is actually several caches
cooperating to act as a unified root.

introduced by the Harvest Internet Object Cache [5],
and currently supported by its successors such as
Squid [13] and some commercial caches.

In applying the model to this structure we ideal-
ize hierarchical caching systems in two key respects.
First, we assume for now that the entire miss stream
of a level i + 1 cache is routed to the same cache in
level i, i.e., each cache has at most one parent. Sec-
ond, our application of the model in this paper as-
sumes that each cache at any level ¢ serves the same
population size of N; clients. This second assumption
merely simplifies the analysis; the principles apply
equally to more general hierarchies.

The Wolman et al. paper presents several formulas
describing the aggregate behavior of idealized hierar-
chical caching systems similar to Figure 1. However,
it does not directly predict hit ratios for the interior
caches at each level. It is not difficult to derive these
hit ratios from the model by applying it recursively
at each level of the hierarchy, as described below.

Let R be the total number of requests presented by
the client population over some sufficiently long time
interval. Let r; be the total number of requests seen
at level i, with r; < R, and let h; be the total num-
ber of hits seen at level i. Since the hit ratios for all
caches at a given level are the same in the idealized
hierarchy, it suffices to determine the aggregate hit
ratio for all caches at that level acting together. The

aggregate number of hits delivered by all caches at
level i or below is given by Rp.Cl;; each level ¢ cache
covers a population N; and therefore — together with
its descendants — absorbs cacheable requests at the
rate C;. The number of hits delivered by each level
i is this aggregate number of hits Rp.Cl;,, minus the
hits already absorbed by the level below it. Similarly,
the total number of requests r; seen at level i is equal
to the number of misses forwarded from the level be-
low, which is given by 741 — hij+1. Therefore, the hit
ratio at level i is given by:

E _ RpC(CNi - CNi+l)
T rit1 — hi1

For a two-level cache system, where ro = R, the
hit ratio for the top-level cache is:

ﬁ _ RpC(CNl - CN2)
™1 ~ R- RchN2 (1)
 Hy, - Hy,
1—Hpy,

The hit ratio for cacheable requests at the root of the
hierarchy (i.e. using r1 = Rp. — Rp.C\,) reduces to
the same equation but with C, instead of H,:

hi _ Cn, —Ch,
T1 o I—CN2

(2)

We can also account for a percentage p, of un-
cacheable requests that are not forwarded from lower-
level caches because they are immediately recognized
as uncacheable at request time:

@ _ RpC(CNi - CNi+1)
ri R—hipy1 — (1= p)(1 = pu)rita 3)
ﬁ Hy, — Hy,

1 1 _HN2 - (1 _pc)(]- _pu)

Note that Equation 3 reduces to Equation 1 when
Py 18 100%. Most of our analysis focuses on cacheable
requests, but Section 4 uses Equation 3 to corre-
late the model with real-world observations from the
NLANR hierarchy.

2.1 Modeling Supply-Side CDNs

We now apply the model to derive interior cache be-
havior in more general multi-level caches. In partic-
ular, we model supply-side CDNs as a set of interior

(B (&) Servers
.. -7

i Interior caches

Leaf caches

®oe oeee ooe o000 -
Figure 2: An example of a two-level caching system
with CDNs in the interior.

nodes in a two-level caching system, as illustrated in
Figure 2. In this configuration, the lower-level or leaf
nodes are demand-side caches managed by Internet
Service Providers, acting as agents of the client pop-
ulation. The upstream nodes are controlled by the
CDNs.

This structure generalizes the simple hierarchy by
introducing a request routing function that selects an
interior cache to service each miss from a leaf cache.
The routing function may consider the source of the
request, the identity of the requested content, and
a variety of factors including the load on the inte-
rior caches, proximity of the interior caches to the
leaf, and network congestion. The routing function
might be implemented in the leaf caches (as in the
NLANR cache hierarchy described in Section 4), or
in servers managed by the CDN, e.g., as described
below. To identify the requested content, the rout-
ing function may switch on the entire request URL,
the origin server IP address, or on some or all of the
domain name embedded in the request URL.

Some CDNs, including Akamai Freeflow and Sand-
piper Footprint, transparently interpose the routing
function by placing it in the authoritative Domain
Name Server for the domain containing the requested
content. Since the CDN acts as an agent of the con-
tent provider, it may control the DNS service for the
domains used by the content provider. To service
a miss, the leaf cache first issues a DNS request for
the IP address corresponding to the domain named
in the request URL. The CDN’s modified DNS server
responds with the IP address of the selected interior
cache, rather than the IP address of the origin server.
The leaf cache then forwards the miss to the selected
interior cache, believing that it is the origin site serv-

ing the requested content. A major advantage of this
scheme is that it works without modifying the leaf
caches.

One drawback of this DNS-based approach is that
the routing function cannot distinguish among con-
tent objects in the same domain. This is because the
leaf cache includes only the domain name in the DNS
request, and not the entire URL. To obtain a finer-
grained routing function, CDNs may provide repli-
cation tools that rewrite the URLs returned by the
content provider, replacing the content provider’s do-
main with any of a set of domains controlled by the
CDNs. These tools also allow the content provider
to specify which objects are cached or replicated by
the CDN, and which are served directly by the origin
server.

The effect of the request routing function is to con-
centrate requests for each object in a selected subset
of the interior nodes. Thus each interior node may
cover a larger population with respect to the objects
that it serves, potentially capturing hits on shared
objects that leaf caches serving smaller populations
could not absorb. The CDN may use the routing
function to suppress redundant copies of objects in
order to conserve storage in the interior. In con-
trast, any interior node in a simple hierarchical cache
might hold a copy of the object if one or more of its
descendants requested the object in the recent past.
With a routing function that maps every object to a
unique interior cache, the system can deliver all pos-
sible hits if the aggregate size of the interior caches is
sufficient to store the universe of objects, as in hash-
based proxy caches [12]. A CDN will use additional
storage to increase the degree of replication for spe-
cific domains or sets of objects, in order to reduce la-
tency or distribute the load for serving those objects.
These choices can be made dynamically by adjusting
the request routing function to respond to observed
load and network conditions.

The essential observation to make about this struc-
ture is that each interior cache serves some set of ob-
jects for some aggregate covered population whose
requests are filtered through leaf caches with known
populations. Thus we can apply the model directly
to derive steady-state hit ratios for each set of objects
at the interior caches, if we assume that the request
routing function is stable, i.e., all requests for an ob-
ject x from a particular leaf cache are consistently

routed to the same interior cache. In practice, the
results apply if the interval between request routing
adjustments is sufficiently large for the steady-state
behavior to become apparent.

Three additional simplifying assumptions allow us
to derive a single formula that applies to any interior
cache:

e For each object x assigned to a given interior
cache ¢, ¢ sees all of the requests for z from a
population subset of a fixed size N; — the clients
of those leaf caches that direct misses for z to
cache c.

e The subset of objects assigned to each interior
cache shows a popularity distribution that is rep-
resentative of the object universe. Specifically,
we assume that the miss stream is divided among
the CDNs and interior caches in proportion to
the number of objects assigned to each.

e Every client’s request stream passes through a
leaf cache, and each leaf cache serves a popula-
tion subset of a fixed size Np.

With these assumptions, the hit ratio for cacheable
objects in the interior caches (or in each CDN as a
whole) is given directly by adapting Equation 2:

CNI — CNL

1—Cw, (4)

Note that it is not necessary to specify the num-
ber of CDNs. The CDNs define a partitioning on the
universe of objects, but they yield equivalent hit ra-
tios given our assumption that the objects assigned
to each CDN show an equivalent popularity distribu-
tion. More generally, it can be shown that the hit
ratios predicted by the formula in Table 1 are com-
parable for varying n and A, as long as n/X is held
constant. Intuitively, partitioning a request stream
across any number of caches or CDNs does not change
the number of compulsory misses, given the assump-
tion that all requests for any given object are routed
to the same cache or CDN.

Moreover, it is not necessary to specify the number
of interior caches per CDN, or the replication degree
of each object. Our assumption of a fixed N; parame-
ter fixes the replication degree at N/N;. The number

of interior caches is immaterial, again assuming that
n/Ais held constant, i.e., each cache receives requests
in proportion to the number of objects assigned to it.

It is interesting to note that since CDNs act as
trusted agents of the content providers, they may
cache some objects that are not cacheable by leaf
caches due to security concerns, reliable hit meter-
ing, etc. Thus p, may have a higher value for interior
CDN nodes, yielding higher overall hit ratios for a
given cacheable hit ratio.

3 Analytical Results

In this section, we apply the analytical hit ratio
model from Section 2 to idealized cache organiza-
tions. We vary several key parameters, population,
population density, and «, a parameter to the Zipf
distribution. We plot the cacheable hit ratio for an
interior cache level using parameters similar to those
used by Wolman et al.: (Zipf) a = 0.8, “popular”
Web objects make up 0.3% of all objects, and a slow
rate of change for Web objects (averaging one change
every 14 days for popular objects, and one every 186
days for unpopular objects).

We also use a per-client request rate A of 590 re-
quests per day and n = 3.2 billion total Web objects.
However, as described in Section 2.1, the results ap-
ply for other values; it is only the ratio A/n that is
significant. For example, a CDN handles only a sub-
set of all Web objects, and thus sees a lower request
rate per client.

The slow rate of change parameter makes the peak
hit ratios occur at smaller populations than would
a faster rate of change. In this respect, our results
are optimistic in projecting the maximum benefit of
interior caching by interior population, but conserva-
tive in projecting the benefit of interior caches as leaf
caches become more effective.

3.1 Interior Hit Ratio

The graphs in Figure 3 define upper bounds on the
marginal benefit of interior caching for a population
divided into groups of size Np, each served by one
independent leaf cache. The z-axis in Figure 3a/b
is the population N; served by each interior cache;
N/Nrp is therefore either the number of (independent)

root-level caches in a cache hierarchy, or the repli-
cation degree in each content-delivery network in a
supply-side scenario.

Each plot line in Figure 3a/b represents a different
value of Ny/Np, the number of leaf caches directing
some portion of their miss streams to each interior
cache. Thus, as we move right on the z-axis, we see
how interior caches perform for a given total popula-
tion partitioned into a a fixed number of client groups
(ISPs, for example), each served by a demand-side
proxy cache. This type of plot is used in Section 4
to match observed hit rates to an estimate of total
population, given a known number of leaf caches.

Figure 3a shows the predicted steady-state
cacheable hit ratio observed at the interior level. This
graph gives a different perspective on the marginal
benefit of cache sharing (in this case through an ideal
interior cache layer) than presented in the Wolman
paper. With N ranging from 10K to 1M, an inte-
rior cache can absorb a significant share of the miss
stream from the leaf-level caches, reducing upstream
traffic and load on the origin servers. The interior
hit ratio grows rapidly with the interior cache popu-
lation; with 1M users, it ranges from 65% to 95% of
the cacheable miss stream.

Though the cacheable hit ratio in Figure 3a ap-
proaches a plateau (nearing 100% when the popula-
tions served by each interior cache are divided among
a large number of leaf caches), the high hit ratio is
misleading at large populations because the actual
request rate seen at the interior level also approaches
zero. Figure 3b shows the marginal improvement
in owverall cacheable hit ratio offered by an interior
cache, i.e., the percentage of all cacheable requests
that hit at the interior level. As the population Np,
served by each leaf cache grows, the marginal benefit
of interior caches approaches zero.

These graphs emphasize a primary conclusion
of [15], that the leaf population size Ny, is the most
important factor determining the marginal benefit of
the interior caches as predicted by the model. For
example, if a CDN assigned a server to a geographic
area whose Web-using population of 10 million is di-
vided among 1000 leaf caches each with ~10K clients
(e.g., regional ISPs, universities, businesses), then
that CDN server would observe a hit ratio close
to 100%, and those hits would account for around
50% of all cacheable requests. However, if the same

100
Ni/Nu

——— 65536 y ot
80 | ---- 16384 Y
- 4096 A

1024 Y%
— — 256
64

60

40+ | T

Cacheable hit ratio

20

1 100 10000 1.x10° 1.x108 1.x10%

Population served by each interior cache [N;]

(a) observed at interior cache level

100

80

60

40

Cacheable hit ratio

20

1 100 10000 1.x10° 1.x 108 1.x10%

Population served by each interior cache [N;]

(b) as percentage of all cacheable requests

Figure 3: Interior cacheable hit ratios, varying number of leaf-level caches assigned to each interior cache.

100

80

60

40

Cacheable hit ratio

20

1 100 10000 1.x10° 1.x10° 1.x10%

Population served by each interior cache [N;]

(a) observed at interior cache level

100

80

60

40

Cacheable hit ratio

20

1 100 10000 1.x10° 1.x10° 1.x10%

Population served by each interior cache [N;]

(b) as percentage of all cacheable requests

Figure 4: Interior cacheable hit ratios, varying leaf-level cache population density.

client population funneled its request stream through
a smaller number of leaf caches (e.g. because of a
cache sharing protocol or aggregation of clients into
larger groups), then the marginal benefit of the inte-
rior caches declines rapidly. In this example, if leaf
populations were increased by an order of magnitude,
then the interior caches would generate hits for less
than 20% of cacheable requests.

3.2 Interior Hit Ratios with Fixed
Leaf Populations

Figure 4 presents the hit ratios of interior caches for
fixed population densities N at the leaf caches. As
the total population increases along the z-axis, the
number of leaf caches assigned to each interior cache
(N1/Np) also increases. This is similar to Figure 3,

but moving right along the z-axis shows the effect of
scaling population by increasing the number of leaf
caches, rather than by increasing their populations.

Figure 4a shows the interior cache hit ratio for
cacheable requests for selected N, values as the total
population increases. Each line reflects a hit ratio of
zero when the interior population matches Ny, i.e.,
there is only one leaf cache. Hit ratios at the interior
caches jump dramatically as a second leaf is added,
but level out quickly as further increases in popula-
tion yield smaller marginal benefits.

Figure 4b shows the marginal benefit to the overall
hit rate for all cacheable requests. This graph shows
that the the marginal benefit of an interior cache level
given fixed Ny, is significant up to moderate values of
Ny, but decreases rapidly as N grows larger.

One important effect is shown by Figure 4b: be-

80| /-~

60

40

Cacheable hit ratio

20

0
100000.

1.x10" 1.x10° 1.x10™
Population served by each interior cache [N;]

(a) 65536 leaf caches.

Figure 5: Interior cacheable hit ratios, as a percentage

yond a certain aggregate population (N; = 10° in
this case), the marginal benefit of an interior level
remains constant irrespective of the number of leaf
caches assigned to each interior cache. Beyond this
point, a caching system or CDN can effectively ac-
commodate larger populations simply by adding in-
dependent interior caches; there is no further benefit
to increasing Ny.

3.3 Effect of Changing «

In this section, we quantify the effect on interior cache
level hit ratios of varying the o parameter to the Zipf
distribution. A high « indicates that popular objects
are very popular, and that unpopular objects are very
unpopular. As aggregate client request streams be-
come less/more homogenous, it is useful to see if and
how particular ranges of a affect the relative con-
tribution of interior or leaf caches to the overall hit
ratio. Intuitively, homogenous streams (character-
ized by a high o) would allow leaf caches to absorb a
large number of hits, and non-homogeneous streams
(low «) push hit-absorbing responsibilities to interior
caches serving larger populations.

The graphs in Figure 5 confirm that changing « has
a pronounced effect on the behavior of the interior
level. Figure 5a fixes Ny/Np = 65536, and Figure 5b
fixes N = 1024. As expected, Figure 5a shows that
small aggregate populations realize a larger percent-
age of hits when « is large, reducing hits in the inte-
rior. However, an interior cache still shows significant
benefits when backing either 64K leaf-level caches up

80

@
o

Cacheable hit ratio
Py
o

2027

10000 100000. 1.x10° 1.x107 1.x10°

Population served by each interior cache [N;]

(b) 1024 clients per leaf cache.

of all cacheable requests, varying Zipf parameter a.

to a total population of about 108, or leaf caches with
small populations, even with values of a as high as
0.975.

4 Correlating the Model With
the NLANR Hierarchy

In 1995, the IRCache group at the US National Lab-
oratory for Applied Network Research (NLANR) de-
ployed a group of cooperating Web proxy caches
across the United States [14]. Their goal was to pro-
vide a large-scale infrastructure for hierarchical Web
caching, and to study its behavior. NLANR publishes
performance data from its root caches daily, including
logs of HT'TP requests passing through these caches.
The Wolman study implies that the root hit ratio for
a large-scale hierarchical cache should be low. Our
goal is to leverage the NLANR experiment to validate
the analytical model presented in Section 2, by deter-
mining if interior hit ratios measured in the NLANR
cache match the predictions of the model. We make
our observations of the NLANR cache hierarchy using
traces collected on October 12, 1999.

The configuration at the end of 1999 included ten
large NLANR-operated root caches, each of which
acts as a parent for a set of independently operated
second-level proxy caches. Since we are concerned
only with hit ratios in the roots, we may consider
the second-level caches to be leaves. The NLANR
roots act as a single unified root cache. Requests are
routed /forwarded between the root caches according

to a static request routing function that maps the
top-level domain (.edu, .com, etc.) to a fixed subset of
root caches. In this respect, the NLANR hierarchy is
a precursor to more recent supply-side content distri-
bution services; the primary differences are that the
NLANR cache is an agent of the clients rather than
of the servers, its routing function is statically con-
figured and maintained by the leaf caches using the
Squid proxy cache software, and each interior cache
receives the entire miss stream of some subset of the
leaf caches. In this case, the routing function in-
creases the population covered by each interior cache
with respect to some set of objects, but without de-
creasing the total size of its covered object universe.

The first step is to determine the aggregate hit ra-
tio for the unified root, which we model as a single
interior node. The number of request hits is given
directly by the traces. To determine the number of
requests to the unified root, we first filter the traces
by source IP address to remove requests forwarded
between root caches. NLANR anonymizes the IP ad-
dresses of all nodes in the traces each day, but it is
easy to determine the mapping of root cache names
to anonymized IP addresses. This is because each
request that is forwarded between root caches shows
up at least twice in the traces. The initial request
from a leaf cache to a root cache A shows up in
A’s access trace, with a flag indicating that this re-
quest has been forwarded, giving the destination root
cache (identified by a fully-qualified domain name,
such as bol.us.ircache.net) to which it was forwarded.
Given the list of forwarded requests from each root
cache A to each root cache B, we can match A to its
anonymized IP address in B’s access trace.

The observed hit ratio — a respectable 32%, de-
termined by counting all requests labeled as HITs in
the original traces (filtered as described above) —
is a steady-state hit ratio, meaning that the cache
was warm and populated before the start of the mea-
surement period. We also see that for the whole of
October 1999, reported hit ratios range between 26%
and 36%, but hover close to 32% most days.

Once the unified root hit ratio is known, we apply
the analytic model to see if it matches the observa-
tions. Unfortunately, several parameters needed to
predict hit ratios are not available, and must be in-
ferred from the data. Little data is available from
the 914 leaf caches in the hierarchy at that time,

e.g., we do not know the size of their user popula-
tions or the request rates they serve. This cannot be
determined from the root traces because the source
of each request is hidden by leaf caches, and hits at
the leaves are not recorded in the root traces. We
“reverse-engineer” the hierarchy by making reason-
able assumptions about typical Web client behavior.
The outcome is to use the model and the observed
hit ratio to predict the total population served by
the NLANR cache in October; this prediction turns
out to be on the order of 10,000 clients. If the actual
population (which we do not know) diverges signifi-
cantly from the predictions, then the NLANR exper-
iment may cast doubt on the accuracy of the model
or indicate changes in the way it is parameterized.

The accuracy of our prediction also depends on
how much the characteristics of the NLANR environ-
ment deviate from the architectural assumptions used
by the analytical model. For example, the NLANR
caches are not unbounded — they may therefore pro-
duce capacity misses, a class of misses not generated
by the ideal caches of the model. Also, though the
NLANR root caches effectively act as a unified root
serving an aggregate population of N, side effects
of cache routing at the root caches (e.g. redundant
copies of objects) may further reduce the hit ratio
seen at the actual NLANR roots. We have calcu-
lated stack distances for these traces, which charac-
terize temporal locality and can predict the amount
of storage needed to eliminate capacity misses [2], and
the results suggest that the 16GB allocated to each
NLANR root proxy is large enough to render these
effects negligible.

One last concern arises from the fact that the
NLANR caches mark as hits any request whose re-
sponse body comes from local storage. This includes
requests that trigger a validation request (e.g. If-
modified-since) to the home server that result in
Not modified responses, allowing the cache to return
the previously cached object. The analytical model
uses the rate-of-change parameter p to characterize
the rate of events that trigger compulsory misses,
i.e. either object expiration or object change; in the
NLANR caches, however, expired objects are marked
as a hit if the cached copy is validated as unchanged
by the home server. So, in classifying requests as hits
or misses (lower- or higher-cost requests in a sense),
if the intended result is to reduce client-side latency,

100

80

60

40

individual stream hit ratio

20f " e T o T

5000 10000 50000 100000.
Requests from client

Figure 6: Hit ratio at root for the 200 most active
request streams.

one should first determine a reasonable u that cap-
tures the rate at which objects are likely to need
validation at the server. However, from a supply-
side perspective, validation requests for unchanged
objects use less network resources and server CPU
cycles than full requests; in the context of reducing
these costs, it is therefore appropriate to choose a p
that models the actual rate of change at the server,
and to mark the server-validated requests as hits.

4.1 Observations

We first determine the number of “active” leaf caches
served by the unified root. Using the filtered trace,
we sorted each leaf cache (i.e. each unique requesting
IP in each trace) by the total number of requests
it sent. We find that less than 200 of the 914 leaf
caches account for more than 95% of the requests
to the root caches. These 200 “active” caches each
sent between 2,000 and 366,000 requests during the
24-hour duration of the trace.

Figure 6 maps, for each active cache, its request
rate to its individual hit ratio in the root for the
stream of requests it generates. Each dot represents a
client. The dots are well-distributed in both axes, in-
dicating that (1) most clients are caches with few cus-
tomers, and (2) there is little correlation (p(x,y) =
0.022, or 0.036 including non-active caches) between
a cache’s request rate and its individual stream hit
ratio. This suggests that the NLANR leaf caches ex-
hibit highly diverse workloads, perhaps because small

client populations make them susceptible to varia-
tions in user behavior.

4.2 Correlating with the Model

We begin with our assumptions about the NLANR
hierarchy. First, because 200 leaves generate nearly
all of the requests, we fix the number of leaf caches at
256 caches. We also assume that 30% of uncacheable
documents are immediately recognizable as such (due
to clues in the URL, cookies, or expiry) and are not
forwarded up the hierarchy to root caches — this
number has only a small effect on our predictions,
as it turns out below. Lastly, we can estimate the
population size from the number of requests in the
trace — 7 million. If each user requests an average
of 590 requests per day, this indicates about 13,000
users. This estimate is certainly not exact given that
many requests are filtered by lower levels, but we can
reasonably assume that the population is on the order
of tens of thousands.

Figure 7a shows the interior hit ratio for 256 leaf
caches, varying the percentage p,, of requests detected
by leaves as uncacheable. 0% means none are filtered
and 100% means all are filtered (corresponding to the
line for 256 caches in Figure 3a).

Similarly, Figure 7b shows the interior hit ratio for
a client-to-leaf-cache ratio of 1024, varying p,,. Again,
0% means none are filtered and 100% means all are
filtered (similar to the 1000 clients-per-cache line in
Figure 4a).

Figure 7a indicates that for 256 caches, with a 30%
immediate uncacheable detection ratio, and a hit ra-
tio of 32%, we should expect that the number of users
of the NLANR cache hierarchy is on the order of
10,000. A population of 20 million would yield the
same hit rate, but the daily request rate to the root
would be much higher. Note that the left halves of
all curves are very close together at this hit ratio, so
even if the percentage of uncacheable requests varies
from our assumptions, we would still arrive at the
same conclusions. Figure 7b also supports our order
of magnitude prediction if the leaf caches each had
an average of 1024 clients.

100

filtered
— 100%
90%
---- 80%
— - 70%
60%
50%
40%
30%
- 20%

80

60

Hit ratio
|
i

40

20

10000 1.x10°
Total population

1.x108

(a) 256 leaf caches.

100

80 filtered

| — 100% f
90%
---- 80%
— - 70%
60%
- 50%
40%
30%
--- 20%
10%
— 0%

60

Hit ratio

40

20

1000 100000. 1.x107 1.x10°

Total population

(b) 1024 clients per leaf cache.

Figure 7: Total root hit ratio, varying percentage of uncacheable requests filtered by leaf caches.

5 Conclusion

This paper focuses on deriving hit ratios for inte-
rior caches in multi-level cache hierarchies, including
those incorporating supply-side content distribution
networks (CDNs). Evaluating caching configurations
by interior hit ratios emphasizes the effectiveness of
upstream caches at absorbing the request stream pre-
sented to them, in order to further reduce load on the
server hosting network and the origin servers. This
adds perspective to earlier studies of marginal bene-
fit of upstream caching to overall hit ratios or client-
perceived latency.

We show how to apply the analytical model pro-
posed by Wolman et al. recursively to derive interior
cache hit ratios in multi-level caches. Using this ex-
tension as a starting point, we apply the model to
explore the effectiveness of CDNs when demand-side
caching is ubiquitous. This scenario is structurally
equivalent to a hierarchical demand-side proxy cache
in which a request distribution function selects the
parent cache (content distributor) for each object re-
quested through the leaf caches.

We present basic results showing the effectiveness
of interior caches when demand-side caching is ubiqg-
uitous, in the presence of trends that scale either leaf
cache populations or the number of leaf caches as
the client population increases. We find that if leaf
cache populations scale with the client population, in-
terior caches are effective up to interior populations
of about 10 million clients. If instead the number of

leaf caches increases without increasing the popula-
tion of each leaf cache, interior cache hit ratios reach
a plateau, beyond which there is no benefit to in-
creasing the population served through each interior
cache. These results show the implications of the an-
alytical model for CDNs: although CDNs may yield
good local hit ratios, they contribute little to the ef-
fectiveness of the caching system as a whole when
leaf populations are large. Given that leaf popula-
tions will grow as ISPs consolidate and serve larger
user populations, this suggests a natural limit to the
benefits of CDNs given recent empirical observations
of Web traffic. Although we make various simplifying
assumptions to apply the model to CDNs, the basic
conclusions of the model are inevitable.

However, these conclusions are valid only if the pa-
rameters and assumptions of the analytical model
match current Web traffic patterns. For example,
CDNs are more beneficial when the object universe
includes significant numbers of popular objects that
are very large or that change rapidly. To help val-
idate and parameterize the model, we apply the
interior cache hit formulas to show how to corre-
late the Wolman model with real-world performance
data from the NLANR cache hierarchy. Our ap-
proach yields predictions for the population served
by the NLANR cache given performance data from
the NLANR roots. If additional empirical data about
the NLANR user population becomes available, this
technique could further validate the model or adjust
parameters as Web access patterns evolve.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

Akamai Technologies, Inc. FreeFlow overview.
http://www.akamai.com/service/freeflow.
html.

Virgilio Almeida, Azer Bestavros, Mark Crov-
ella, and Adriana de Oliviera. Characterizing
reference locality in the WWW. In Proceed-
ings of 1996 International Conference on Paral-
lel and Distributed Information Systems (PDIS
’96), pages 92-103, December 1996.

Paul Barford and Mark E. Crovella. Generat-
ing representative Web workloads for network
and server performance evaluation. In Proceed-
ings of Performance 98/ACM SIGMETRICS
’98, pages 151-160, June 1998.

Lee Breslau, Pei Cao, Li Fan, Graham Phillips,
and Scott Shenker. Web caching and zipf-like
distributions: Evidence and implications. In
Proceedings of IEEE Infocom ’99, March 1999.

Anawat Chankhunthod, Peter Danzig, Chuck
Neerdaels, Michael F. Schwartz, and Kurt J.
Worrell. A hierarchical Internet object cache. In
Proceedings of the USENIX 1996 Annual Tech-
nical Conference, January 1996.

Li Fan, Pei Cao, Jussara Almeida, and Andrei
Broder. Summary Cache: A scalable wide-area
Web cache sharing protocol. In Proceedings of
SIGCOMM 98, September 1998.

Syam Gadde, Jeff Chase, and Michael Rabi-
novich. Directory structures for scalable Inter-
net caches. Technical Report CS-1997-18, De-
partment of Computer Science, Duke University,
November 1997.

P. Krishnan and Binay Sugla. Utility of co-
operating Web proxy caches. In Proceedings of
the 7th International World Wide Web Confer-
ence, April 1997.

Ingrid Melve. When to kill your siblings: cache
mesh relation analysis. Computer Networks and
ISDN Systems, 30(22-23):2105-2111, 1998.

Mirror Image Internet, Inc. instaDelivery Inter-
net services. http://www.mirrorimage.com/.

[11]

[12]

[13]

[14]

[15]

Sandpiper Networks/Digital Island, Inc. Foot-
print content delivery services. http://www.
digisle.net/services/cd/.

Vinod Valloppillil and Keith W. Ross. Cache Ar-
ray Routing Protocol v1.0. Internet-Draft, June
1997.

Duane Wessels et al. Squid Internet Object
Cache. http://squid.nlanr.net/.

Duane Wessels, Traice Monk, k claffy, and
Hans-Werner Braun. A distributed testbed
for national information provisioning. http:
//ircache.nlanr.net/Cache/.

Alec Wolman, Geoff Voelker, Nitin Sharma, Neal
Cardwell, Anna Karlin, and Henry Levy. On the
scale and performance of cooperative web proxy
caching. In Proceedings of the 17th ACM Sympo-

sium on Operating Systems Principles, Decem-
ber 1999.

