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Abstract—As a growing number of web sites introduce mirrors to in- « HOw is the probability that a server’'s performance will drop
crease throughput, the challenge for clients becomes determining which relative to other servers affected by time scale?
mirror will offer the best performance when a document is to be re- : ) [Rs ;
trieved. In this paper we present findings from measuring 9 clients scat- ¢ qus a drOp In a servers performance indicate it has become
tered throughout the United States retrieving over 490,000 documents from €SS likely to offer better performance than other servers?
47 production web servers which mirror three different web sites. We have To answer the first question, we have looked at the time re-
severalinteresting findings that may aid in the design of protocols for choos- ; ; ; ;
ing among mirror servers. Though server performance varies widely, we qUIred toretrieve a doc“me”t from.eaCh mirror server of a site.
have observed that a server's performance relative to other serversis more e have found that the_d|ﬁe(ence in performance between the
stable and is independent of time scale. In addition, a change in an indi- best and worst servers is typically larger than an order of mag-
vidual server’s transfer time is not a strong indicator that its performance nitude, and can grow larger than two orders of magnitude on
relative to other servers has changed. Finally, we have found that clients f Thi It sh h £ d indeed
wishing to achieve near-optimal performance may only need to consider a 9Ccasion. This result shows that performance does indeed vary
small number of servers rather than all mirrors of a particular site. largely from one server to another.
The second question is an attempt to explore how dynamic
server performance changes are. By counting the number of
. INTRODUCTION servers that a client must visit over time in order to achieve
Mirror servers, which serve replicas of popular data item@00d performance, we can see whether the set of servers that

have been employed for many years on the Internet as a waPtg" 9ood performance at any given time is small or large. We
increase reliability and performance in the presence of frequépifnd that the set is usually fairly small, indicating less dynamic
accesses by many clients. While mirroring can provide mug§havior. _ _
higher aggregate throughput to a given data item, individual The third and fourth questions concern mechanisms that
clients must choose a mirror server carefully to achieve reas¢fu!d potentially be incorporated into a server selection system.
able performance. Unfortunately, only ad hoc mechanisms #6rthe third question, we consider whether there is some rela-
choosing the appropriate mirror server are currently employd@nship between a server's performance relative to other servers
However, a number of server selection mechanisms have b@gq_tlme scale. The fourth question considers the case in which
proposed. Partridge et al [1] have introduced a scheme calfegliént has found a server that offers good performance rela-
anycasthat allows a client to automatically reach the replica ¢fV€ to the other servers but then notices a drop in that server's
a server which is the smallest number of network hops aw&grformance. The question is whether or not that drop in perfor-
Others [2], [3] have observed that static metrics of proximit{{}ance indicates that the server’s performar)ce'ls no Ion_ger good.
such as distance in hops, are less effective at finding a ser found that large performance drops do indicate an increased
that will deliver good performance than metrics which take dykelihood that a server no longer offers good performance.
namically changing network and server conditions into account.Finally, we will consider the effect of document choice on

In order to design an effective algorithm for mirror server s§€/Ver choice. Though we assume that all mirrors of a server
lection, an understanding of the actual behavior of Internet mjjave the same set of documents, it might be the case that some

ror servers is necessary. To contribute towards this understaf@§ior Such as document size or popularity would affect the per-
ing, we have undertaken a large measurement scale stud mance of a server. We found that server choice is independent

volving 9 clients and 47 mirror servers scattered throughout tiedocument choice aimost all the time.

United States. Although other studies of mirror server behavior 10 Summarize, we have five main results:

have appeared in the literature before, we believe this is the firsf €rformance can vary widely from one server to another.

study of this scale. This paper presents a humber of interdst!i€nts can achieve near-optimal performance by considering

ing properties that we have observed in the data collected. (WY & few servers out of the whole group of mirrors. .

focus is on characterizing the performance an individual clieht '€ Probability of any server's rank change depends very little

receives when transferring documents from mirror servers. the time scale over which the rr_;mk change takes playce.

wish to answer four questions: + There is a weak but detectable link between a server’s change
. . in transfer time and its change in rank.

. Does?performance observed by a client vary across miroigeryer choice is independent of document choice in most in-

servers? stances.

;n;nog/éodynamic is the set of servers that offer good perfofge giscuss the implications of these results in Section IX.

A. Related work
This research was sponsored by DARPA under contract numbers N66001- . . . .
96-C-8528 and E30602-97-2-0287, and by NSF under grant numbers CareePrevious work on server selection techniques can be divided
Award NCR-9624979 and ANI-9814929. Aitidnal support was provided by into four categories: network-layer server selection systems,

Intel Corp. Views and conclusions contained in this document are those of C . . .
authors and should no be interpreted as representing the official policies, eifdaPlication-layer selection systems, metric evaluation, and mea-

expressed or implied, of DARPA, NSF, Intel, or the U.S. government. surement studies. The first includes work dealing with finding



Client Site Avg. time | Fetches| Failure rate Mars sites
CMU 32.82min. | 54695 10.18% mars.sgi.com www.sun.com/mars
Ga. Tech. 23.78 60021 11.55% entertainment.digital.com/mars/JPL | mars.novell.com
1SI 36.52 53200 22.13% mars.primehost.com mars.hp.com
U. C. Berkeley 32.55 55062 4.62% mars.excite.com/mars marsl.demonet.com
U. Kentucky 31.23 55091 12.76% mars.wisewire.com mars.ihighway.net
U. Mass. 70.56 36542 10.95% pathfinder.keyway.net/pathfinder mpfwww.arc.nasa.gov
U. T. Austin 39.56 51640 4.70% mars.jpl.nasa.gov www.ncsa.uiuc.edu/mars
U. Virginia 19.32 62405 28.88% mars.sdsc.edu laguerre.psc.edu/Mars
Wash. U., St. Louis 23.27 62187 1.96% www.ksc.nasa.gov/mars mars.nlanr.net
mars.catlin.edu mars.pgd.hawaii.edu
Fig. 1. Average time for one group of fetches, number of fetches completed, News sites e
and failure rate for each client site. www.cnn.com www.nytimes.com/index.gi
www.latimes.com www.washingtonpost.com
Www.csmonitor.com www.usatoday.com
. . www.abcnews.com www.msnbc.com
the closest server in terms of number of network hops or in termgs www.s-t.com nt.excite.com
of network latency [1], [4], [5], [6], [7], [8], [9]. The second | news.bbc.co.uk . www.newscurrent.com
f f tems that take application performance metricspathﬁnder.com/tlme/dally www.sfgate.com/news
consists of sys pp p headlines.yahoo.com/Filloverage | www.topnews.com
into account [3], [10], [11], [12], [13], [14], [15]. Most of these Apache sites
systems use a combination of server load and available netwo kWWW-rr]ge-com/publmfosystems/apac1e%pa6he-00tr}1pue>ﬁcom
; ; _ apache.arctic.org p.epix.net/apache
throughputto select a server fora cllent. The Fhlrd category con apache.iquest.net wvw.apache org
sists of evaluatlo.ns of server selectlon_ metrics [2], [16], [17], _apache.utw.com www.ameth.orglapache
[18]. These studies propose new metrics and test them expeti-apache.technomancer.com/ apache.plinet.com
mentally. fanying.eecs.stevens-tech.edu/pub/mirrors/apache
The fourth category, which includes this work, consists of _ »
studies that characterize the behavior of existing mirror servers Fig. 2. Servers visited
in order to draw conclusions about the design of server selection
systems. Bhattarcharjee et al [19] measured “server response | [ URL O — | Size (bytes)
time,” defined to be the time required to send a query to a server —s——mavrimi 5967
and receive a brief reense, using clients at a single site to visit 1 | /2001/landerjpg 70503
two sets of web sites. While neither set of sites were true mir- | 2 | /mgs/msss/camera/images/...
rors, each set consisted of servers with similar content. Bhat- 1231 97.release/2303/2303p.jpg 235982
harj Iso measured the throughput between a client and 8 | /mgsimsssicamera/images/...
tacharjee also ghp clien ..12.31 97 release/2201/2201p.jpg 403973
four FTP servers. Carter and Crovella [2] measured ping times | 4 | /mgs/msss/icamera/images/...

and hop counts to 5262 web servers to determine how well one ---1231—97—fe|ea:e/3%]04é3104p-ipg 1174839
approximated the other. In contrast, our study is on a larger pache documents

. - . . : 0 [ dist/patches/applo_1.2.4/...

scale, using multiple client sites, a longer measurement period, ...no2slash-loop-fix.patch 1268
and a larger number of groups of popular web servers that are | 1 | dis*CHANGESL.2 90631
true mirrors 2 | dist/contrib/modules/madonv.0.2 tar.gz 74192

) 3 | dist/apachd.2.6.tar.gz 714976

There have been several other web-related measurement stud-| 3 | gisybinaries/inuse.x;...

ies. Balakrishnan et al [20] analyzed a trace of web accesses to ...apachel .2.4-i586-whatever-linux2.tar.Z 1299105
determine how stable network performance is through time and
from host to host. Gribble and Brewer [21] looked at users’ Fig. 3. URLs of documents fetched Mars and Apache servers.

web browsing behavior, exploring server response time, bursti-

ness of offered load, and the link between time of day and user

activity. Cunha et al [22] also collected useades via a cus- (http://www.yahoo.com/). Current headlines fraach of the

tomized version of Mosaic and looked at a number of factorgews sites were fetched and the transfer times were normalized

including document size and popularity. Arlitt and Williamso®o that all News documents appeared to be 20 KB long. For the

[23] searched for trends present in a variety of different WWWars and Apache servers, we used five documents ranging in

workloads based on server access logs. Finally, Crovella afige from 2 KB to 1.3 MB (listed in Figure 3). We chose these

Bestavros [24] have found evidence for self-similarity in WWWéites in order to capture three different ranges of site content up-

traffic. date frequency: the Apache site’s content changed on the order
The rest of this paper consists of a description of our daggweeks; the Mars site, on the order of days; and the News site,

collection system (Section Il), a general picture of the data ve@ the order of minutes.

collected (Sections lll and 1V), a discussion of our findings (Sec- Clients visited servers sequentially, fetching all documents

tions V through VIlI), implications of our results (Section IX),from a server before moving on to the next. Similarly, all mirrors

and conclusions (Section X). of one site were visited before moving on to the next site. For
example, a client would start by visiting http://www.sgi.com/,
Il. DATA COLLECTION METHODOLOGY the first Mars mirror on the list, and fetching each of the Mars

At each of nine client sites where we had guestoants documents from it. Then the client would fetch the Mars doc-
(listed in Figure 1) a perl script periodically fetched docudments from the second Mars server, then the third, and so on.
ments from each server in three sets of mirrored web sites (¥é@en all of the Mars servers had been visited, the client would
Apache Web Server site, NASA's Mars site, and News Heaghove on to the Apache mirrors, and finally to the News sites.
lines) listed in Figure 2. The Apache and Mars web sites weVée refer to the process of visiting all servers and collecting all
true mirrors: each of the servers in one set held the sagiecuments once asgroupof fetches.
documents at the same time. However, the News sites werdfter all servers were visited, the client would sleep for a ran-
an artificial mirror since they did not contain the same dodom amount of time taken from an exponential distribution with
uments. The News servers were picked from Yahoo's indexmean ofl /2 hour added to a constaht2 hour. By scheduling



the next group of fetches relative to the previous group’s finisandom gaps between fetches to the same server, we were un-
time (rather than its start time), we avoided situations in whiable to capture shorter-term periodic behavior. Further, because
multiple fetches from the same client interfered watith other, each group of fetches finished in a differenteamt of time be-
competing for bandwidth on links near the client. cause of variations in server load and network congestion, the

We introduced the delay between fetches to limit the loatistribution of fetch interarrivals to a single server from a client
our fetches created on client and server sites. A typical growps extremely hard to characterize and exploit. Thus, we were
of fetches involved transferring more than 60 MB of data to @nable to map the observed frequency of network conditions to
client. If the fetches finished in 30 minutes, the average transtee actual frequency of occurrence of these conditions.
rate would have been 266 Kbps, which is a noticeable share ofNo two fetches from a given client were done simultaneously
the traffic on a LAN. The delay between groups of fetches lowe prevent the fetches from competing with each other. At the
ered the average resource utilization to roughly half the origiredme time, we would like to compare results across servers
average bandwidth. to rank servers relative to one another. There is a reasonable

We used the lynkweb browser to perform fetches. Choosingmount of evidence which suggests that network performance
lynx was a compromise between realism and ease of implemehanges over longer time scales [14], [20] while our measure-
tation. Lynx is an actual production web browser that peopheents took place over shorter time scales. On average, clients
use every day. At the same time, it is easy to control via comisited all Mars mirrors in just over 17 minutes, all Apache mir-
mand line switches, allowing us to run fetches via a perl scripars in under 13 minutes, and all News sites in less than one and
Implementing our own URL fetch code might not have capturedhalf minutes. Because of these results, we believe that it is
the characteristics of actual browsers. Conversely, using a meadid to treat sequential fetches as occurring simultaneously.
popular, hence more realistic, browser, e.g. Netscape, wouldAnother artifact of sequential fetches is that periods of net-
have presented a significant programming challenge. work congestion are possibly underrepresented in the data. As

Our client script would invoke lynx to retrieve a URL andcongestion increases, fetches will take longer. The result is that
send it to standard output. The number of bytes received the number of fetches completed during periods of congestion
lynx was counted and recorded along with the amount of timéll be lower than the number completed during periods with
the fetch took to complete. If a fetch did not terminate aftéess congestion. If periods of congestion are short-lived, only a
five minutes, it would be considered unsuccessful and the asfaw fetches will reflect the congestion. If periods of congestion
ciated lynx process would be killed. We chose five minutes asiee long-lived, all fetches will take longer but the total number
compromise between achieving a complete picture of a servarfgroups of fetches completed will be smaller.
behavior and forcing groups of fetches to finish in a reasonableDNS caching effects could also potentially bias our results.
amount of time. The observable effects of such a short timeepending on the DNS workload at a given client site, DNS
out were a slightly higher failure rate, especially among largentries for the servers in our study may or may not remain in
documents. Possible causes for timeouts are network partitidhs, local cache from one group of fetches to another. In fact,
client errors (lynx might have frozen), server errors (the serveache entries could even be purged within a group of fetches.
might have stopped providing data), or shortages of availadlee DNS lookups added a potentially highly variable amount
bandwidth. In our analysis, we treat these incidents as failuastime to each fetch we performed. Performing tbeKups
to collect data, rather than as failures of servers. separately would have been possible, but less realistic.

Fetches could also be unsuccessful if the number of bytes reFinally, we must consider inter-client effects. Because each
turned was incorrect. We found that the wrong number of bytelient’s fetches are independently scheduled, two clients could
usually indicated a temporary failure such as a “server too busyind up visiting the same server at the same time. We will refer
message although in some cases it signified that the serveitasuch an incident asallision. We believe that collisions have
longer existed (failed DNS query) or was no longer mirroring negligible effect on fetch times. Further, less than 10% of all
data. We assumed that every fetch which returned the profeiches were involved in collisions.
number of bytes succeeded.

It was more difficult to identify failed fetches from the News [11. DATA CHARACTERISTICS

sites. Since we were retrieving news headlines, each page’s cony|| clients began fetching documents on the afternoon of
tent was constantly changing so we could not use a hard-co rsday, April 23, 1998 and continued until the morning of
size to determine success. A simple heuristic that worked we ursday, May 14, 1998. During this 3 week period, there were
was to assume that all fetches that returned less than 600 bysia| of 490843 fetches made. By data set, there were 287209
were failures. This value was larger than typical error messaggghes to Mars servers, 157762 to Apache'servers, and 45872
(200-300 bytes) and smaller than typical page sizes (as lowig\ews servers. The much lower number for the News data is
3k on some servers). As with the other servers, fetches lastifgstly due to the fact that we only fetched one document from
five minutes were considered failures. _ each News site compared to five from each Mars and Apache
While our fetch scripts were running, there were multiple ogjte \We can estimate the number of times each set of servers
casions on which client machines crashed or were rebooted.\J8 visited by dividing the number of fetches by the number of
limit the impact of these”mte'rruptlons, we used the Umen  compinations of servers and documents. For Mars, we divide
system to run a “nanny” script every 10 minutes which woulgls7509 by 100 (20 servers x 5 documents) to find that the Mars
restart the fetch script if necessary. This kept all fetch scrinfgrvers were visited 2872 times. Similarly, we see that Apache
running as often as possible. servers were visited 2868 times and News servers were visited
S 2867 times.
A. Limitations The slightly lower number of visits to Apache and News sites
While our methodology was sufficient to capture the infoks a product of the way the client fetch scrigticted to crashes.
mation in which we were most interested, there were some dd¥hien a client was restarted, it began fetching documents from
that we were not able to capture. Because of the relatively largfeg first server on its list rather than starting at the place where
the last series of fetches left off. The script acted this way be-
1 Available from http:/f/nx.browser.org/ cause we assumed that any machine crash and reboot would take



a significant amount of time. Therefore, a new group was started %

to avoid a group’s fetches from stretching over too long a period
of time. Since clients visited Mars sites first, then Apache sites,
and finally News sites, it is not surprising that there are more
fetches to Mars sites than to Apache sites and more fetches to
Apache sites than to News sites.

The number of fetches performed and the average length of
time that one group of fetches took to complete at each client
site can be found in Figure 1. As expected, sites with longer
group fetch times completed fewer fetches. We believe the dif-
ferences across clients reflect variation in the amount of avail-
able bandwidth and machine speed at each client site. o 2T . - ,

Figure 1 also shows the percentage of fetches that were clas- 0 5 10 15
sified as failures (because timeouts and impropeplants of Rank
data returned). By client, the proportion of failures ranged from
1.96% to 22.13% of fetches. Considering the 10ss rate by Sergr 4 average amount of separation between rank values for Mars servers,
set, we see that Mars servers failed 5.85% of the time, NewSdocument4, all clients aggregated.
servers failed 9.49% of the time, and Apache servers failed
24.23% of the time. As far as we can tell, the differences in
failure rates across types of mirrors are not the result of us-The primary point of Figure 4 is that rank changes usually
ing one brand of web server or another. However, we did neerrespond to nateable performance changes for document 4
tice that three Apache servers consistently timed out for somiethe Mars set. All other documents from Mars, Apache, and
clients while they succeeded a reasonabl@wum of time for News produced similar graphs, though the Apache and News
other clients. These three servers account for most of the Apadaga tended to have much larger differences in performance.

N
o

Transfer Time (Normalized)
8

servers’ comparatively high failure rate. This gives us confidence that ranks are a reasonable way to talk
about the relative performance of servers.
A. Ranks Figure 4 also answers our first question about whether per-

Throughout this paper, we usenk to compare servers’ per- formance varies across mirror servers. A factor of 30 separates
formance. In this section we explain how ranks are computtf transfer times of the best and worst servers. Even the top
and give some insight into what differences in rank mean. 10 servers’ performance varies by a factor of 5. We noticed the
ranking of servers is computed for each data set (Mars, New@Me or more exaggerated ranges of performance for other doc-
or Apache) for each group of fetches at each client. Recall thapents and sites. Performance definitely varies widely across
after each group of fetches, a client has performance data fofrors of a site.
each web server. For each document, we can order the servers by
their fetch times from lowest to highest, discarding those servers IV. SUMMARY STATISTICS AND DISTRIBUTIONS
whose fetches failed. A server’s rank is merely its place in thisOur data consists of random samples (as we note in the next
order. The server which comes first in the order has the highssttion, there is almost no significant sequential correlation in
rank (0), the server which comes next has a rank of 1, and@ar samples) where each sample consists of a transfer time from
on. In our terminology, lower ranks correspond to better seneiclient to a server and its ranking relative to the other transfers
performance. In summary, each successful group of fetches genits group of fetches. This section summarizes these samples
erates one set of ranks for each of the 11 documents: 5 setsifioterms of general statistics and analytic distributions. Con-
Mars documents, 5 for Apache documents, and one for the Neveptually, the analysis gives some insight into what a random
document. client can expect from a random mirror site for different sizes

There is some inaccuracy in our method of ranking serveend kinds of documents. There are two main results here. First,
The tacit assumption in computing ranks is that the fetch timgansfer times and server rankings exhibit considerable variabil-
being compared were generated under identical conditions. i§s Second, transfer times are well fit by a Weibull distribution.
we have discussed in Section II-A, this is not possible, but The analysis is from the point of view of a random client site
we believe that network conditions do not change a significgifitom Figure 1) attempting to fetch a particular document from
amount between the first and last fetch of a document fromaaset of mirror sites (Figure 2.) There are 11 different combi-
group of servers. nations here (Apache and Mars each serve five different docu-

Ranks are not significant performance indicators by themments while News serves one virtual document.) For each of
selves. Ranks will not say whether or not the difference in pghese combinations, we examine the transfer times and corre-
formance between servers is negligible. But in the data that ggonding ranks for all the client fetches of the document to the
collected, we have found a very strong link betweenceatble set of mirror sites. In effect, we factor out the set of mirrors and
differences in performance and differences in rank. the document size here by doing this.

Figure 4 plots the normalized, average increase in transfefFigure 5 presents the summary statistics of transfer times and
time vs. server rank for document 4 of the Mars data set. riinks for each of the combinations. Notice that mean transfer
was produced by averaging the differences of all pairs of servéirees as well as standard deviations increase with increasing
with ranks: and: — 1 in each goup. The graph shows a definitedocument size. Further, transfer times are highly variable —
rise in transfer time as rank increases. For example, we see 8tahdard deviations are about as large as means, and we see max-
on average, a server with a rank of 4 has twice the transfer time and minima near the limits we placed on observed transfer
of a server with a rank of 0. Further, the server with the largastes (300 seconds.) It is important to note that the maximum
rank (17) takes more than 30 times as long to transfer a dotwansfer time of 638.98 seconds for the News/O dataset is due
ment as the best server, and it takes more than 3 times as lonigtour normalizing the transfer times for News documents ac-
deliver a document as a server with a rank of 14. cording to their size to approximate always fetching a 20 KB



Transfer time (seconds) 19 0=
Dataset/Doc| Mean StdDev | Median Min Max 7
Apache/0 1.9632 | 5.8366 7 0.1000 | 230.5100 0.91
Apache/l 39112 | 7.9753 2 0.3800 | 297.700 °
Apache/2 3.2929 | 6.3993 1.7 | 0.3000| 293.9000 308
Apache/3 | 15.4776| 18.2385| 10.7 | 1.3000 | 299.9000 €07
Apache/4 | 23.1960| 22.9257| 17.9 | 2.2000 | 298.2000 (e
Mars/0 15416 | 4.6808 | 0.7 | 0.1000| 296.6000 206/
Mars/1 2.6929 | 6.5319 1.3 | 0.1000 | 292.6000 o
Mars/2 5.8062 | 9.4102 3.3 | 0.3000 | 290.5000 2051
Mars/3 8.7380 | 12.3967| 5.3 | 0.6000 | 297.3000 § —m- Random
Mars/4 19.9019| 23.5427| 13.9 | 1.6000 | 298.2000 0.4
News/0 3.8185 | 11.8028| 1.06 | 0.1200| 638.9800 p —®— L hour
= 0.3
Fig. 5. Summary statistics of transfer time. é —A— 2hours
3 0.2 —&— 4 hours
) . 0.1 —{1— 10 days
document. In some cases, particularly slow fetches can result in
normalized transfer times exceeding 300cs®ts. This is rare. 0123456 7 8 910111213 14 15 16 17 18 19

An interesting observation can be made about ranks. Al- Rank Change
though ranks are highly variable, this does not bode disasterfQf 6 pjj,,,., — r| < R | sample period < w < W] for Mars/1 dataset,
server selection algorithms. A random selection is likely to re- plotted for several different values F. R is the rank change arid’ is
sultin an average ranked server, which by Figure 4 would seemthe maximum time period. The other Mars plots and the News/0 plot are
to indicate reasonable performance. Further, it may well be theS™a"
case that some servers vary less in their ranking than others —
for example, the rankings of a few good servers may very well . . .
remain stable while the remaining servers have more drastic%ﬂk changes depends very little on the time scale over which
varying rankings. y occur. dicall led ks. th | q
While summary statistics provide some insight on the perfor; GIVeN peél_cf)f Ica t){[.samp el ran Sidtbe nathJra way tOdSt“ y
mance, both absolute (transfer time) and relative (rank) a cli t'nge on di erenl |_me2560a as would be via éequencyd _orgam
can expect to receive, they provide a very limited view of t)‘fr ime series analysis [26]. However, as we discussed in Sec-

distribution of these quantities. To better understand the disfn !l our data was collected at exponentially distributed in-
bution of transfer times, we attempted to fit a variety of ani€"valS, making this difficult. The transfer time data could be
lytic distributions to the data. The quality of such a fit can bEgSampled periodically and new rankings computed, but such re-
determined by a quantile-quantile plot, which plots the quaf@TPling is complex and since signal reconstruction from non-
tiles of the data versus the quantiles of the distribution [25, pgeriodic samples is an area of current research, such an approach
196-200]. A good fit results in a straight line, regardless of tgould be questionable as well as difficult to understand. We did
parameters chosen for the analytic distributic;n. informally try this method and found results similar to those pre-
We tried normal, exponential, and Poisson distribu'[ion?fmted here. . . .
Our approach was to estimate the cumulative probability of

None of these fit the transfer time data very well, especially at

the tails. The distribution of transfer times is heavy-tailed conjak changes over increasing time scales. Consider a single mir-

pared to these distributions. Next, we tried the log-normal digr Server. From the point of view of a single client using the set
tribution by testing if the logarithms of our data points were noPf Mirrors, we have a sequence of time-stamped samples of that
mally distributed. Generally, log-normal was much better tha§TVer's rank (as well as transfer times.) Now extract all the pairs
the earlier distributions. This result agrees with Balakrishnan@fank samples that are four or fewer hours apart.eaeh pair,
al [20], who also found that a single client’s observed throughp?HbtraCt the earlier rank from the later rank and take the absolute
can be modeled reasonably well by a log-normal distribution.va/Ue. Count the number of occurrenceseath of the possible
We next tried a power transformation — raising the data to " changes. Accumulating these in the appropriate order gives
fractional power — and seeing if the transformed data could gR estimate of the cumulative probability of rank changes given
fitted with a common analytic distribution. This turned out t@easuremefntsé fohur or fel\(/veL hours ap;ar;. f 80%
provide the best results. The transformed data are well fit with/V& May find that rank changes of three or fewer are 80%

an exponential distribution, thus the original data is distribut&joPable given time scales of four or fewer hours. Notationally,
according to a Weibull distribution. we express this aB[|riyw — 1¢| < R | sample period <w <

It important to note that because transfer times were artig/b[{] = 0.8, wheret = 3 is the rank changdy’ = 4 hours is

cially truncated at 5 minutes, we do not have an accurate pictite kr]naximbu'm ;[jme svclz/ale 32? therﬁirﬁ %urv\rlank Samflifj' r';(I)r
of the full tail of the distribution. It may be the case that th§3C" combination ok and i €xamined, We Use a randomly
\glected 10,000 samples to assure a tight estimate of the proba-

actual distribution of server transfer times is much more hea ity Eurth h babilit Il client
tailed, meaning that the Weibull distribution may not fit this datd Y- Further, we aggregate the probabilities across all clients
as well as it seems to. or each dataset and document to obtain the point of view of a
random client interacting with a random server within the group.
Finally, it is important to note that we are limited by our average
sampling interval of one hour — we cannot discern behavior for
Once aclient has found a highly ranked server, the clientis i < 1 hour.
terested in how long that server is likely to maintain a high rank Figure 6 shows a representative plot of the cumulative proba-
among the servers the client could fetch from. Fundamentallybitity for the Mars/1 dataset. The way to read the plot is to pick
is the time scale over which significant rank changes occur tigatime scale, follow the corresponding curve horizontally to the
is important. In this section, we show that most rank changesximum rank change that is of interest, and then read the cu-
are small, even over relatively long time scales. Good servensilative probability from the vertical axis. For example, we see
remain good for long periods of time. Indeed, the probability ahat for time scales of two (or fewer) hours, rank changes of four

V. THE TIME SCALE OF RANK CHANGES
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Fig. 7. Pllri4w — rt] < R | sampleperiod < w < W] for Apache/l, Fig. 9. Cumulative probability of rank change given changes in transfer time
plotted for several different values &F. Other Apache plots are roughly  less tharD (P[|rt, — r¢;| < R | |de; — dt;| < D]) for Apache/4, plotted
similar, and all Apache plots differ significantly from Mars or News plots. for several different values db. All other plots are similar.

(or fewer) occur with probability 0.85. The plot also includegy of rank changes over increasipgrcentagehanges in trans-
the curve that would result if rankings were simply uniformliyer time, and we have found results similar to those presented in
distributed random permutations. this section.

It is clear from the graph that most rank changes are small.consider a single mirror server. From the point of view of
The 10 day curves cover the vast majority of the data, and W&single client using the set of mirrors, we have a sequence of
can see that the smallest 25% of possible rank changes accQiipjes of that server’s transfer times and their corresponding
for about 90% of rank changes. _ranks. We form the cross product of these samples and select a

The graph also shows that rank changes depend very little@3dom subset of 100,000 of these sample pairse&ahn pair of
the time scales over which they occur. If there was a strong dgmples in the subset, we subtract the transfer times and ranks.
pendency, the curves for the different time scales would be morg-jq, e g shows the summary statistics of these changes in
widely separated. We can see that the curves for increasingly,cfer time and corresponding rank. We see that the mean and
longer time scales do indeed slowly move to the right (towaffle jijan changes in both quantities are almost exactly zero. The
larger rank changes), but the effect is very marginal. This isgin tions of these changes are also quite symmetric about

very promising result. If a client can find a good server, it igo, ~ For this reason, we concentrate on absolute changes in
highly likely that it will remain good for quite some time. transfer time and rank.

The graph of Figure 6 is representative for the Mars and News fter taking absolute values, we count occurrences of value

datasets. Unfortunately, the Apache data shows very differgnl oo astimate the joint cumulative probability of absolute
behavior, as can be seen in Figure 7, which shows a cumula

o . %nges in rank and absolute changes in transfer fitfje,, —
probability plot for a representative, Apache/1. Here, we dor;}” < RAdy, —dy,| < D] whereR is the rank change

D is the change in transfer time. Since changes in rank
e categorical, we can then trivially compute the cumulative
Yobability of an absolute change in ragikven an absolute
ange in transfer time o or smaller. Notationally, this is
re, — 1| < R |dy, — di;| < D]. We aggregate the proba-
ties from all clients foreach dataset and document to obtain
point of view of a random client interacting with a random
rver within the set of mirrors. The reader may object that this
heme also aggregates changes happening at all time scales.
This is true. However, recall from Section V that changes in
rank are virtually independent of time scale.
Figure 9 shows a representative plot of the cumulative proba-
A client using a highly ranked server is interested in warnirgjlity for the Apache/4 dataset. The plots for all of the datasets
signs that may indicate that the server’s ranking has changwe similar. The way to read the plot is to pick a change in du-
dramatically. The client cannot measure rankings without meation, follow the corresponding curve horizontally to the max-
suring all of the mirror servers; it can only observe the transfegmum rank change that is of interest, and then read the cumula-
times it is experiencing on the currently chosen server. The ntive probability from the vertical axis. For example, we see that
ural question then is what, if any, relationship exists betweéor a transfer time change of 128 seconds or less, about 90% of
the changes in transfer time a client observes and the changek changes are of four or less.
in rank the server experiences. Our study shows that while aVe can see that large changes in transfer time are more likely
relationship does exist, it is very marginal. than small changes to indicate large rank changes. The curves
The approach we present here is to estimate the cumulafieeincreasingly larger changes in transfer time shift toward the
probability of rank changes over increasing changes in observaght (toward larger rank changes.) However, the difference is
transfer times. We have also examined the cumulative proballight. For example, a rank change of three or smaller is 90%

see the quick rise of the curves, so large rank changes are r
tively much more probable than with the Mars and News dal
Further, since the curves do not hug each other very clos
there is more dependence on the time scale. At this point,

do not understand why the Apache data is so different. T
clearest distinguishing characteristic of the Apache sites is t
they tend to run non-commercial web servers (the Apache w,

server) while the Mars and News sites tend to run commerc

web servers (Netscape and Microsoft servers.) We have no &
dence that this difference causes the discrepancy, however.

VI. CHANGES IN TRANSFER TIME AND RANK



Changes in transfer time (seconds) Changes in rank
Dataset/Doc| Mean StdDev | Median Min Max Mean StdDev | Median | Min | Max
Apache/5 0.0039 | 8.4087 0 -123.8000| 226.4100| 0.0091 | 4.2022 0 -10 10
Apache/6 -0.0810 | 10.3995 0 -295.7300| 267.8000| 0.0010 | 4.1948 0 -10 10
Apache/7 -0.0503 | 9.0000 0 -292.5000| 205.9000| -0.0621 | 4.0177 0 -10 10
Apache/8 -0.5457 | 25.4940 0 -285.3000| 276.5000| -0.0196 | 3.8818 0 -10 10
Apache/9 -0.1912 | 31.8086 0.1 -278.0100| 287.7000| -0.0367 | 3.8072 0 -10 10
Mars/O 0.1068 | 6.0450 0 -227.9100| 221.4600( 0.0244 | 7.1711 0 -17 17
Mars/1 0.1218 | 8.1173 0 -184.0000| 232.5900( 0.1330 | 7.0711 0 -17 17
Mars/2 0.1189 | 14.3483 0 -285.2000| 287.4000| -0.0685| 7.1195 0 -17 17
Mars/3 -0.0226 | 17.5260 0 -253.6000| 282.1000| -0.0038 | 7.0849 0 -17 17
Mars/4 0.3308 | 34.5870 0 -286.9000| 288.6000| 0.0194 | 7.0992 0 -17 17
News/0 0.0282 | 17.1793 0 -298.8300| 293.8300| -0.0316 | 5.8363 0 -14 14

Fig. 8. Summary statistics of changes in transfer time and changes in corresponding ranks.
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Fig. 10. Changes in rank versus changes in transfer time (limited to +/- 10

seconds) for News/0 dataset. Note the inferiority of lineaf#t & 0.36.)  Fig. 11. Server sets for two client-data combinations: Wash. U.'s Mars set and
There is little relationship between changes in transfer time and changes in U. Mass.’s Apache
ranking.

liver a document in no longer than 10% more than the best
sfer time for the same document observed in the same group
etches.

probable with a change in transfer time of one second or smal
while a change of transfer time of up to 128 seconds reduces
probability only to 80%. This is typical of the Apache data, an : .
the relationship is even less pronounced for the other data. e define aserver sfelfor. client ¢ and dﬁc%mefnﬂ) to be
Another way to see the limited relationship of changes of rafii€ mlntlmum subset o tﬁ site’s mlrrorts suc dt Ugt orgny. %roup,
to changes in transfer time is to plot rank changes against tH&if€2St one server in the server set can deleto ¢ with
corresponding transfer time changes. Figure 10 shows a rej@2d performance. If a server set contains all the mirrors, it
sentative plot for the News/0 data, where we have focused '§g2ns that a client must consider all mirrors when choosing a
transfer time changes in tfe 10 10],range. We have fit a least SETVer- From the data we have, we can build a server set for each

squares line to the data and have found that the relationshifgIENt-document combination using a straightforward greedy al-
marginal at best. Th&? value for the line is only 0.36. For a90Tithm: In each group of fetches, all servers that delgend

wider range of transfer times, the fit is even worse. Examini rformance a:le marked. The nurgberc?frrrarks that.eﬁcrr]‘ server
each client and server pair of all the datasets individually, i#&crues over all gups is computed, and the servenwith the

find that only 10% of combinations yielde@? values greater 1dnest total, is added to the server set. The groups where
that 0.5, fewer than 1% yieldeB? values greater than 0.8, andEXhlbl'[ed good performance are discarded, and the procedure

the highes?? value was only 0.88. Clearly, there is only a lim!S repeated on the remaining groups. The algorithm terminates

ited relationship between changes in transfer time and chan&’é?n there are no groups left. .
in rank. Figure 11 shows the composition of the server sets for 10 data

sets composed of the five documents from U. Mass’s Apache
data and the five documents from Washington U.s Mars set.
Each stripe from each column represents tlopprtion of time

The observation in Section V that most rank changes are snthtt one server offers good performance. For example, the first
leads us to ask how many servers must a client considercumn of the graph shows the server set for the Wash. U.
achieve optimal performance. If server ranks never changetient’s fetches of document O from the Mars sites. Each stripe
a client would only need to use one server, the one with the bisthat column corresponds to one server. For purposes of this
rank. But because server ranks do change, a client will negidcussion, it does not matter which server maps to which stripe.
to evaluate multiple servers to find the current best. We hawhat is significant is the size of each stripe, which shows how
found that a client needs to evaluate only a very small numh#ten the corresponding server is able to deliver good perfor-
of servers, usually less than half the total number of servers,n@ance. The first stripe in the column shows that one server is
achieve near-optimal performance. In this section, we defigeod in almost 70% of its fetches. The next stripe represents a
a server’'s performance to be near-optimal, or “good,” if it caserver that is good in a little more than 10% of the remaining

VIl. SMALL SERVER SETS



Doc. | Avg. for J0% ?Zooogér\ﬁ;’rgs-) for 100% Good as an indicator of differences in server performance.
0 344 8.57 Figure 13 shows how using one document’s server set to fetch
1 2.67 5.83 another document affects performance. The table was built by
% g:g? g:g? counting how often the top 5 servers from documénserver
4 2.22 5.60 set (SS) are able to offer good performance for documgfar
Apache (11 servers) everyi, je[0, 4]. Although this data is generated from the Mars
2 g-gg g-%g data at client site U. Va, all other combinations of clients and
> 311 5.25 web sites produced similar results. The entry:af) in the ta-
3 3.00 5.80 ble is the percentage of fetches for which the server set for docu-
4 3.00 6.00 menti wasnot able to provide good performance for document
— 2I\4|&WS (16 s¢|ervers) . j. For example, we can see that using the server set for docu-
' ' ment 4 to fetch document 1 would lead to good performance in
Fig. 12. Average (taken over all clients) number of servers required to achi®¥er 99% of fetches.
good performance in 90% and 100% of fetches We used only the top 5 servers from each server set so that
all sets of servers considered would be the same size. Server
cs; 5 . Doc%mentj . . sets for documents 2 through 4 only contained 5 servers, so they
o ¢ 0E5% 1 9329 T 986% T 0.68% [ 577% were unaffected. Document O’s server set, however, contained
1 411% | 0.00% | 000% | 0.55% | 027% 7 servers. The most immediate effect is that in the table above,
% g‘ééﬁﬁ’ 8.g%o 8.2%0 8.882;0 8.%2;0 the (truncated) segver set for document O failed to provide good
. 0 . 0 . 0 . 0 . 0
4 6.85% | 0.82% | 0.27% | 0.00% | 0.00% performance 0.55% of the time.

Measuring how well one document’s server set would do to
Fig. 13. Percentage of ime that good performanceis not achieved using thel@{£h another is a much more reasonable way to judge the differ-
5 servers from the server set of documef8S:) to fetch document. ences in server performance among documents. It can directly
show how often a server identified as good for one document
is not actually good for another document. In Figure 13, we
fetches. can see that most often, performance remains good across server
The distribution and number of stripes show that client sitéets. Ignoring data from the first row and first column, we see
do not have to consider every server in the mirror set to achigl@t instances when one document’s server set does not offer
good performance. Rather, a small number of servers can pgeod performance for another document are very rare.
vide good performance for a significant fraction of all fetches. Looking at the table’s first row and the first column, which
Looking at the Washington U. data, we see that for documemisrrespond to server set 0 and document O respectively, we see
1 through 4, the client careceivegood performance over 90%that good performance is achieved less frequently. The servers
of the time by considering only 2 servers out of the group @fhich offer good performance for document 0 are at least par-
20. For document 0, the client would need to consider 5 servegegly different from the servers that offer good performance for
to achieve good performance more than 90% of the time. @ther documents. This indicates that there might be some link
the other hand, the client at U. Mass. requires more serverstaween document choice and server choice. In all client-site
achieve good performance when fetching from Apache servasémbinations, we observed that the first document had a notice-
Seven servers are required for the first document while 5 ajigly different set of good servers than the other documents.
required for the other documents. This is a much higher propor, photh the Apache and Mars data, the first document is also

tion of servers than for the Washington U. client (7 out of 11 Vo smallest (about 2 KB). We believe the dependence is more

Sout of 20). . - a function of document size than the specific documents being
Figure 12 summarizes our findings over all documents. @iched, but further study using a larger variety of documents is

Ae server) is the bottleneck. For smaller documents, the trans-
& time depends more on the round trip time between the client
and server. The smallest documents fit in one or two packets so
the client-server conversation lasts only a few round trip times.
VIIl. SERVER CHOICE AND DOCUMENT CHOICE For larger documents, the amount of bandwidth available on the
The reader may have noticed that in Figure 11, the compoR@th between the client and server becomes the important factor
tion of server sets obviously varies from document to documep$ the network “pipe” is packed with as much data as possible.
This seems to suggest that in some cases, a server that provid#is scenario, one property of a server (the round trip time be-
good performance for one document does not provide good péeen it and the client) would dominate for small documents and
formance for another document. However, further examinati@fother property (the throughput between the client and server)
reveals that document choice has at best a weak effect on sewe¥ld dominate for larger documents.
choice. Regardless of the cause, the effect is not extremely significant.
Recall that a server set is temallestset of servers that pro- First of all, at most 11% of fetches were adversely affected by
vide good performance for a given client. Other servers nottine difference in server sets. In these fetches, the increase in
the server set could provide good performance at any given ni@nsfer time was less than 25% above optimal on average. Also
ment. For example, there are cases in which more than one calte that these performance penalties are on top of a rather small
lection of servers can be a server set. If two servers, A atrdnsfer time (about 1 second), so the actual penalties are on the
B, provide good performance at exactly the same moment, treder of hundreds of milliseconds. Thus there is little cause for
two server sets are possible: one using A and the other using8ncern over using only one server set for all document sizes
Thus, it is unwise to rely on apparent differences in server setsl lead to bad performance.

contact or evaluate all servers.
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The observations about the properties of mirror servers tﬁé}ycast.html.
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