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Abstract— As a growing number of web sites introduce mirrors to in-
crease throughput, the challenge for clients becomes determining which
mirror will offer the best performance when a document is to be re-
trieved. In this paper we present findings from measuring 9 clients scat-
tered throughout the United States retrieving over 490,000 documents from
47 production web servers which mirror three different web sites. We have
several interesting findings that may aid in the design of protocols for choos-
ing among mirror servers. Though server performance varies widely, we
have observed that a server’s performance relative to other servers is more
stable and is independent of time scale. In addition, a change in an indi-
vidual server’s transfer time is not a strong indicator that its performance
relative to other servers has changed. Finally, we have found that clients
wishing to achieve near-optimal performance may only need to consider a
small number of servers rather than all mirrors of a particular site.

I. I NTRODUCTION

Mirror servers, which serve replicas of popular data items,
have been employed for many years on the Internet as a way to
increase reliability and performance in the presence of frequent
accesses by many clients. While mirroring can provide much
higher aggregate throughput to a given data item, individual
clients must choose a mirror server carefully to achieve reason-
able performance. Unfortunately, only ad hoc mechanisms for
choosing the appropriate mirror server are currently employed.
However, a number of server selection mechanisms have been
proposed. Partridge et al [1] have introduced a scheme called
anycastthat allows a client to automatically reach the replica of
a server which is the smallest number of network hops away.
Others [2], [3] have observed that static metrics of proximity,
such as distance in hops, are less effective at finding a server
that will deliver good performance than metrics which take dy-
namically changing network and server conditions into account.

In order to design an effective algorithm for mirror server se-
lection, an understanding of the actual behavior of Internet mir-
ror servers is necessary. To contribute towards this understand-
ing, we have undertaken a large measurement scale study in-
volving 9 clients and 47 mirror servers scattered throughout the
United States. Although other studies of mirror server behavior
have appeared in the literature before, we believe this is the first
study of this scale. This paper presents a number of interest-
ing properties that we have observed in the data collected. Our
focus is on characterizing the performance an individual client
receives when transferring documents from mirror servers. We
wish to answer four questions:
� Does performance observed by a client vary across mirror
servers?
� How dynamic is the set of servers that offer good perfor-
mance?
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� How is the probability that a server’s performance will drop
relative to other servers affected by time scale?
� Does a drop in a server’s performance indicate it has become
less likely to offer better performance than other servers?

To answer the first question, we have looked at the time re-
quired to retrieve a document from each mirror server of a site.
We have found that the difference in performance between the
best and worst servers is typically larger than an order of mag-
nitude, and can grow larger than two orders of magnitude on
occasion. This result shows that performance does indeed vary
largely from one server to another.

The second question is an attempt to explore how dynamic
server performance changes are. By counting the number of
servers that a client must visit over time in order to achieve
good performance, we can see whether the set of servers that
offer good performance at any given time is small or large. We
found that the set is usually fairly small, indicating less dynamic
behavior.

The third and fourth questions concern mechanisms that
could potentially be incorporated into a server selection system.
In the third question, we consider whether there is some rela-
tionship between a server’s performance relative to other servers
and time scale. The fourth question considers the case in which
a client has found a server that offers good performance rela-
tive to the other servers but then notices a drop in that server’s
performance. The question is whether or not that drop in perfor-
mance indicates that the server’s performance is no longer good.
We found that large performance drops do indicate an increased
likelihood that a server no longer offers good performance.

Finally, we will consider the effect of document choice on
server choice. Though we assume that all mirrors of a server
have the same set of documents, it might be the case that some
factor such as document size or popularity would affect the per-
formance of a server. We found that server choice is independent
of document choice almost all the time.

To summarize, we have five main results:
� Performance can vary widely from one server to another.
� Clients can achieve near-optimal performance by considering
only a few servers out of the whole group of mirrors.
� The probability of any server’s rank change depends very little
on the time scale over which the rank change takes place.
� There is a weak but detectable link between a server’s change
in transfer time and its change in rank.
� Server choice is independent of document choice in most in-
stances.
We discuss the implications of these results in Section IX.

A. Related work

Previous work on server selection techniques can be divided
into four categories: network-layer server selection systems,
application-layer selection systems, metric evaluation, and mea-
surement studies. The first includes work dealing with finding



Client Site Avg. time Fetches Failure rate
CMU 32.82 min. 54695 10.18%
Ga. Tech. 23.78 60021 11.55%
ISI 36.52 53200 22.13%
U. C. Berkeley 32.55 55062 4.62%
U. Kentucky 31.23 55091 12.76%
U. Mass. 70.56 36542 10.95%
U. T. Austin 39.56 51640 4.70%
U. Virginia 19.32 62405 28.88%
Wash. U., St. Louis 23.27 62187 1.96%

Fig. 1. Average time for one group of fetches, number of fetches completed,
and failure rate for each client site.

the closest server in terms of number of network hops or in terms
of network latency [1], [4], [5], [6], [7], [8], [9]. The second
consists of systems that take application performance metrics
into account [3], [10], [11], [12], [13], [14], [15]. Most of these
systems use a combination of server load and available network
throughput to select a server for a client. The third category con-
sists of evaluations of server selection metrics [2], [16], [17],
[18]. These studies propose new metrics and test them experi-
mentally.

The fourth category, which includes this work, consists of
studies that characterize the behavior of existing mirror servers
in order to draw conclusions about the design of server selection
systems. Bhattarcharjee et al [19] measured “server response
time,” defined to be the time required to send a query to a server
and receive a brief response, using clients at a single site to visit
two sets of web sites. While neither set of sites were true mir-
rors, each set consisted of servers with similar content. Bhat-
tacharjee also measured the throughput between a client and
four FTP servers. Carter and Crovella [2] measured ping times
and hop counts to 5262 web servers to determine how well one
approximated the other. In contrast, our study is on a larger
scale, using multiple client sites, a longer measurement period,
and a larger number of groups of popular web servers that are
true mirrors.

There have been several other web-related measurement stud-
ies. Balakrishnan et al [20] analyzed a trace of web accesses to
determine how stable network performance is through time and
from host to host. Gribble and Brewer [21] looked at users’
web browsing behavior, exploring server response time, bursti-
ness of offered load, and the link between time of day and user
activity. Cunha et al [22] also collected user traces via a cus-
tomized version of Mosaic and looked at a number of factors
including document size and popularity. Arlitt and Williamson
[23] searched for trends present in a variety of different WWW
workloads based on server access logs. Finally, Crovella and
Bestavros [24] have found evidence for self-similarity in WWW
traffic.

The rest of this paper consists of a description of our data
collection system (Section II), a general picture of the data we
collected (Sections III and IV), a discussion of our findings (Sec-
tions V through VIII), implications of our results (Section IX),
and conclusions (Section X).

II. DATA COLLECTION METHODOLOGY

At each of nine client sites where we had guest accounts
(listed in Figure 1) a perl script periodically fetched docu-
ments from each server in three sets of mirrored web sites (the
Apache Web Server site, NASA’s Mars site, and News Head-
lines) listed in Figure 2. The Apache and Mars web sites were
true mirrors: each of the servers in one set held the same
documents at the same time. However, the News sites were
an artificial mirror since they did not contain the same doc-
uments. The News servers were picked from Yahoo’s index

Mars sites
mars.sgi.com www.sun.com/mars
entertainment.digital.com/mars/JPL mars.novell.com
mars.primehost.com mars.hp.com
mars.excite.com/mars mars1.demonet.com
mars.wisewire.com mars.ihighway.net
pathfinder.keyway.net/pathfinder mpfwww.arc.nasa.gov
mars.jpl.nasa.gov www.ncsa.uiuc.edu/mars
mars.sdsc.edu laguerre.psc.edu/Mars
www.ksc.nasa.gov/mars mars.nlanr.net
mars.catlin.edu mars.pgd.hawaii.edu

News sites
www.cnn.com www.nytimes.com/index.gif
www.latimes.com www.washingtonpost.com
www.csmonitor.com www.usatoday.com
www.abcnews.com www.msnbc.com
www.s-t.com nt.excite.com
news.bbc.co.uk www.newscurrent.com
pathfinder.com/time/daily www.sfgate.com/news
headlines.yahoo.com/FullCoverage www.topnews.com

Apache sites
www.rge.com/pub/infosystems/apacheapache.compuex.com
apache.arctic.org ftp.epix.net/apache
apache.iquest.net www.apache.org
apache.utw.com www.ameth.org/apache
apache.technomancer.com/ apache.plinet.com
fanying.eecs.stevens-tech.edu/pub/mirrors/apache

Fig. 2. Servers visited

URL Size (bytes)
Mars documents

0 /nav.html 2967
1 /2001/lander.jpg 70503
2 /mgs/msss/camera/images/...

...12 31 97 release/2303/2303p.jpg 235982
3 /mgs/msss/camera/images/...

...12 31 97 release/2201/2201p.jpg 403973
4 /mgs/msss/camera/images/...

...12 31 97 release/3104/3104p.jpg 1174839
Apache documents

0 dist/patches/applyto 1.2.4/...
...no2slash-loop-fix.patch 1268

1 dist/CHANGES1.2 90631
2 dist/contrib/modules/modconv.0.2.tar.gz 74192
3 dist/apache1.2.6.tar.gz 714976
4 dist/binaries/linux2.x/...

...apache1.2.4-i586-whatever-linux2.tar.Z 1299105

Fig. 3. URLs of documents fetched Mars and Apache servers.

(http://www.yahoo.com/). Current headlines fromeach of the
News sites were fetched and the transfer times were normalized
so that all News documents appeared to be 20 KB long. For the
Mars and Apache servers, we used five documents ranging in
size from 2 KB to 1.3 MB (listed in Figure 3). We chose these
sites in order to capture three different ranges of site content up-
date frequency: the Apache site’s content changed on the order
of weeks; the Mars site, on the order of days; and the News site,
on the order of minutes.

Clients visited servers sequentially, fetching all documents
from a server before moving on to the next. Similarly, all mirrors
of one site were visited before moving on to the next site. For
example, a client would start by visiting http://www.sgi.com/,
the first Mars mirror on the list, and fetching each of the Mars
documents from it. Then the client would fetch the Mars doc-
uments from the second Mars server, then the third, and so on.
When all of the Mars servers had been visited, the client would
move on to the Apache mirrors, and finally to the News sites.
We refer to the process of visiting all servers and collecting all
documents once as agroupof fetches.

After all servers were visited, the client would sleep for a ran-
dom amount of time taken from an exponential distribution with
a mean of1=2 hour added to a constant1=2 hour. By scheduling



the next group of fetches relative to the previous group’s finish
time (rather than its start time), we avoided situations in which
multiple fetches from the same client interfered witheach other,
competing for bandwidth on links near the client.

We introduced the delay between fetches to limit the load
our fetches created on client and server sites. A typical group
of fetches involved transferring more than 60 MB of data to a
client. If the fetches finished in 30 minutes, the average transfer
rate would have been 266 Kbps, which is a noticeable share of
the traffic on a LAN. The delay between groups of fetches low-
ered the average resource utilization to roughly half the original
average bandwidth.

We used the lynx1 web browser to perform fetches. Choosing
lynx was a compromise between realism and ease of implemen-
tation. Lynx is an actual production web browser that people
use every day. At the same time, it is easy to control via com-
mand line switches, allowing us to run fetches via a perl script.
Implementing our own URL fetch code might not have captured
the characteristics of actual browsers. Conversely, using a more
popular, hence more realistic, browser, e.g. Netscape, would
have presented a significant programming challenge.

Our client script would invoke lynx to retrieve a URL and
send it to standard output. The number of bytes received by
lynx was counted and recorded along with the amount of time
the fetch took to complete. If a fetch did not terminate after
five minutes, it would be considered unsuccessful and the asso-
ciated lynx process would be killed. We chose five minutes as a
compromise between achieving a complete picture of a server’s
behavior and forcing groups of fetches to finish in a reasonable
amount of time. The observable effects of such a short time-
out were a slightly higher failure rate, especially among larger
documents. Possible causes for timeouts are network partitions,
client errors (lynx might have frozen), server errors (the server
might have stopped providing data), or shortages of available
bandwidth. In our analysis, we treat these incidents as failures
to collect data, rather than as failures of servers.

Fetches could also be unsuccessful if the number of bytes re-
turned was incorrect. We found that the wrong number of bytes
usually indicated a temporary failure such as a “server too busy”
message although in some cases it signified that the server no
longer existed (failed DNS query) or was no longer mirroring
data. We assumed that every fetch which returned the proper
number of bytes succeeded.

It was more difficult to identify failed fetches from the News
sites. Since we were retrieving news headlines, each page’s con-
tent was constantly changing so we could not use a hard-coded
size to determine success. A simple heuristic that worked well
was to assume that all fetches that returned less than 600 bytes
were failures. This value was larger than typical error messages
(200-300 bytes) and smaller than typical page sizes (as low as
3k on some servers). As with the other servers, fetches lasting
five minutes were considered failures.

While our fetch scripts were running, there were multiple oc-
casions on which client machines crashed or were rebooted. To
limit the impact of these interruptions, we used the Unixcron
system to run a “nanny” script every 10 minutes which would
restart the fetch script if necessary. This kept all fetch scripts
running as often as possible.

A. Limitations

While our methodology was sufficient to capture the infor-
mation in which we were most interested, there were some data
that we were not able to capture. Because of the relatively large,

1Available from http://lynx.browser.org/

random gaps between fetches to the same server, we were un-
able to capture shorter-term periodic behavior. Further, because
each group of fetches finished in a different amount of time be-
cause of variations in server load and network congestion, the
distribution of fetch interarrivals to a single server from a client
was extremely hard to characterize and exploit. Thus, we were
unable to map the observed frequency of network conditions to
the actual frequency of occurrence of these conditions.

No two fetches from a given client were done simultaneously
to prevent the fetches from competing with each other. At the
same time, we would like to compare results across servers
to rank servers relative to one another. There is a reasonable
amount of evidence which suggests that network performance
changes over longer time scales [14], [20] while our measure-
ments took place over shorter time scales. On average, clients
visited all Mars mirrors in just over 17 minutes, all Apache mir-
rors in under 13 minutes, and all News sites in less than one and
a half minutes. Because of these results, we believe that it is
valid to treat sequential fetches as occurring simultaneously.

Another artifact of sequential fetches is that periods of net-
work congestion are possibly underrepresented in the data. As
congestion increases, fetches will take longer. The result is that
the number of fetches completed during periods of congestion
will be lower than the number completed during periods with
less congestion. If periods of congestion are short-lived, only a
few fetches will reflect the congestion. If periods of congestion
are long-lived, all fetches will take longer but the total number
of groups of fetches completed will be smaller.

DNS caching effects could also potentially bias our results.
Depending on the DNS workload at a given client site, DNS
entries for the servers in our study may or may not remain in
the local cache from one group of fetches to another. In fact,
cache entries could even be purged within a group of fetches.
The DNS lookups added a potentially highly variable amount
of time to each fetch we performed. Performing the lookups
separately would have been possible, but less realistic.

Finally, we must consider inter-client effects. Because each
client’s fetches are independently scheduled, two clients could
wind up visiting the same server at the same time. We will refer
to such an incident as acollision. We believe that collisions have
a negligible effect on fetch times. Further, less than 10% of all
fetches were involved in collisions.

III. D ATA CHARACTERISTICS

All clients began fetching documents on the afternoon of
Thursday, April 23, 1998 and continued until the morning of
Thursday, May 14, 1998. During this 3 week period, there were
a total of 490843 fetches made. By data set, there were 287209
fetches to Mars servers, 157762 to Apache servers, and 45872
to News servers. The much lower number for the News data is
mostly due to the fact that we only fetched one document from
each News site compared to five from each Mars and Apache
site. We can estimate the number of times each set of servers
was visited by dividing the number of fetches by the number of
combinations of servers and documents. For Mars, we divide
287209 by 100 (20 servers x 5 documents) to find that the Mars
servers were visited 2872 times. Similarly, we see that Apache
servers were visited 2868 times and News servers were visited
2867 times.

The slightly lower number of visits to Apache and News sites
is a product of the way the client fetch script reacted to crashes.
When a client was restarted, it began fetching documents from
the first server on its list rather than starting at the place where
the last series of fetches left off. The script acted this way be-
cause we assumed that any machine crash and reboot would take



a significant amount of time. Therefore, a new group was started
to avoid a group’s fetches from stretching over too long a period
of time. Since clients visited Mars sites first, then Apache sites,
and finally News sites, it is not surprising that there are more
fetches to Mars sites than to Apache sites and more fetches to
Apache sites than to News sites.

The number of fetches performed and the average length of
time that one group of fetches took to complete at each client
site can be found in Figure 1. As expected, sites with longer
group fetch times completed fewer fetches. We believe the dif-
ferences across clients reflect variation in the amount of avail-
able bandwidth and machine speed at each client site.

Figure 1 also shows the percentage of fetches that were clas-
sified as failures (because timeouts and improper amounts of
data returned). By client, the proportion of failures ranged from
1.96% to 22.13% of fetches. Considering the loss rate by server
set, we see that Mars servers failed 5.85% of the time, News
servers failed 9.49% of the time, and Apache servers failed
24.23% of the time. As far as we can tell, the differences in
failure rates across types of mirrors are not the result of us-
ing one brand of web server or another. However, we did no-
tice that three Apache servers consistently timed out for some
clients while they succeeded a reasonable amount of time for
other clients. These three servers account for most of the Apache
servers’ comparatively high failure rate.

A. Ranks

Throughout this paper, we userank to compare servers’ per-
formance. In this section we explain how ranks are computed
and give some insight into what differences in rank mean. A
ranking of servers is computed for each data set (Mars, News,
or Apache) for each group of fetches at each client. Recall that
after each group of fetches, a client has performance data for
each web server. For each document, we can order the servers by
their fetch times from lowest to highest, discarding those servers
whose fetches failed. A server’s rank is merely its place in this
order. The server which comes first in the order has the highest
rank (0), the server which comes next has a rank of 1, and so
on. In our terminology, lower ranks correspond to better server
performance. In summary, each successful group of fetches gen-
erates one set of ranks for each of the 11 documents: 5 sets for
Mars documents, 5 for Apache documents, and one for the News
document.

There is some inaccuracy in our method of ranking servers:
The tacit assumption in computing ranks is that the fetch times
being compared were generated under identical conditions. As
we have discussed in Section II-A, this is not possible, but
we believe that network conditions do not change a significant
amount between the first and last fetch of a document from a
group of servers.

Ranks are not significant performance indicators by them-
selves. Ranks will not say whether or not the difference in per-
formance between servers is negligible. But in the data that we
collected, we have found a very strong link between noticeable
differences in performance and differences in rank.

Figure 4 plots the normalized, average increase in transfer
time vs. server rank for document 4 of the Mars data set. It
was produced by averaging the differences of all pairs of servers
with ranksi andi�1 in each group. The graph shows a definite
rise in transfer time as rank increases. For example, we see that
on average, a server with a rank of 4 has twice the transfer time
of a server with a rank of 0. Further, the server with the largest
rank (17) takes more than 30 times as long to transfer a docu-
ment as the best server, and it takes more than 3 times as long to
deliver a document as a server with a rank of 14.
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Fig. 4. Average amount of separation between rank values for Mars servers,
document 4, all clients aggregated.

The primary point of Figure 4 is that rank changes usually
correspond to noticeable performance changes for document 4
of the Mars set. All other documents from Mars, Apache, and
News produced similar graphs, though the Apache and News
data tended to have much larger differences in performance.
This gives us confidence that ranks are a reasonable way to talk
about the relative performance of servers.

Figure 4 also answers our first question about whether per-
formance varies across mirror servers. A factor of 30 separates
the transfer times of the best and worst servers. Even the top
10 servers’ performance varies by a factor of 5. We noticed the
same or more exaggerated ranges of performance for other doc-
uments and sites. Performance definitely varies widely across
mirrors of a site.

IV. SUMMARY STATISTICS AND DISTRIBUTIONS

Our data consists of random samples (as we note in the next
section, there is almost no significant sequential correlation in
our samples) where each sample consists of a transfer time from
a client to a server and its ranking relative to the other transfers
in its group of fetches. This section summarizes these samples
in terms of general statistics and analytic distributions. Con-
ceptually, the analysis gives some insight into what a random
client can expect from a random mirror site for different sizes
and kinds of documents. There are two main results here. First,
transfer times and server rankings exhibit considerable variabil-
ity. Second, transfer times are well fit by a Weibull distribution.

The analysis is from the point of view of a random client site
(from Figure 1) attempting to fetch a particular document from
a set of mirror sites (Figure 2.) There are 11 different combi-
nations here (Apache and Mars each serve five different docu-
ments while News serves one virtual document.) For each of
these combinations, we examine the transfer times and corre-
sponding ranks for all the client fetches of the document to the
set of mirror sites. In effect, we factor out the set of mirrors and
the document size here by doing this.

Figure 5 presents the summary statistics of transfer times and
ranks for each of the combinations. Notice that mean transfer
times as well as standard deviations increase with increasing
document size. Further, transfer times are highly variable —
standard deviations are about as large as means, and we see max-
ima and minima near the limits we placed on observed transfer
times (300 seconds.) It is important to note that the maximum
transfer time of 638.98 seconds for the News/0 dataset is due
to our normalizing the transfer times for News documents ac-
cording to their size to approximate always fetching a 20 KB



Transfer time (seconds)
Dataset/Doc Mean StdDev Median Min Max
Apache/0 1.9632 5.8366 .7 0.1000 230.5100
Apache/1 3.9112 7.9753 2 0.3800 297.700
Apache/2 3.2929 6.3993 1.7 0.3000 293.9000
Apache/3 15.4776 18.2385 10.7 1.3000 299.9000
Apache/4 23.1960 22.9257 17.9 2.2000 298.2000
Mars/0 1.5416 4.6808 0.7 0.1000 296.6000
Mars/1 2.6929 6.5319 1.3 0.1000 292.6000
Mars/2 5.8062 9.4102 3.3 0.3000 290.5000
Mars/3 8.7380 12.3967 5.3 0.6000 297.3000
Mars/4 19.9019 23.5427 13.9 1.6000 298.2000
News/0 3.8185 11.8028 1.06 0.1200 638.9800

Fig. 5. Summary statistics of transfer time.

document. In some cases, particularly slow fetches can result in
normalized transfer times exceeding 300 seconds. This is rare.

An interesting observation can be made about ranks. Al-
though ranks are highly variable, this does not bode disaster for
server selection algorithms. A random selection is likely to re-
sult in an average ranked server, which by Figure 4 would seem
to indicate reasonable performance. Further, it may well be the
case that some servers vary less in their ranking than others –
for example, the rankings of a few good servers may very well
remain stable while the remaining servers have more drastically
varying rankings.

While summary statistics provide some insight on the perfor-
mance, both absolute (transfer time) and relative (rank) a client
can expect to receive, they provide a very limited view of the
distribution of these quantities. To better understand the distri-
bution of transfer times, we attempted to fit a variety of ana-
lytic distributions to the data. The quality of such a fit can be
determined by a quantile-quantile plot, which plots the quan-
tiles of the data versus the quantiles of the distribution [25, pp.
196-200]. A good fit results in a straight line, regardless of the
parameters chosen for the analytic distribution.

We tried normal, exponential, and Poisson distributions.
None of these fit the transfer time data very well, especially at
the tails. The distribution of transfer times is heavy-tailed com-
pared to these distributions. Next, we tried the log-normal dis-
tribution by testing if the logarithms of our data points were nor-
mally distributed. Generally, log-normal was much better than
the earlier distributions. This result agrees with Balakrishnan et
al [20], who also found that a single client’s observed throughput
can be modeled reasonably well by a log-normal distribution.

We next tried a power transformation — raising the data to a
fractional power — and seeing if the transformed data could be
fitted with a common analytic distribution. This turned out to
provide the best results. The transformed data are well fit with
an exponential distribution, thus the original data is distributed
according to a Weibull distribution.

It important to note that because transfer times were artifi-
cially truncated at 5 minutes, we do not have an accurate picture
of the full tail of the distribution. It may be the case that the
actual distribution of server transfer times is much more heavy-
tailed, meaning that the Weibull distribution may not fit this data
as well as it seems to.

V. THE TIME SCALE OF RANK CHANGES

Once a client has found a highly ranked server, the client is in-
terested in how long that server is likely to maintain a high rank
among the servers the client could fetch from. Fundamentally, it
is the time scale over which significant rank changes occur that
is important. In this section, we show that most rank changes
are small, even over relatively long time scales. Good servers
remain good for long periods of time. Indeed, the probability of
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Fig. 6. P [jrt+w � rtj � R j sample period � w � W ] for Mars/1 dataset,
plotted for several different values ofW . R is the rank change andW is
the maximum time period. The other Mars plots and the News/0 plot are
similar.

rank changes depends very little on the time scale over which
they occur.

Given periodically sampled ranks, the natural way to study
change on different time scales would be via frequency domain
or time series analysis [26]. However, as we discussed in Sec-
tion II, our data was collected at exponentially distributed in-
tervals, making this difficult. The transfer time data could be
resampled periodically and new rankings computed, but such re-
sampling is complex and since signal reconstruction from non-
periodic samples is an area of current research, such an approach
would be questionable as well as difficult to understand. We did
informally try this method and found results similar to those pre-
sented here.

Our approach was to estimate the cumulative probability of
rank changes over increasing time scales. Consider a single mir-
ror server. From the point of view of a single client using the set
of mirrors, we have a sequence of time-stamped samples of that
server’s rank (as well as transfer times.) Now extract all the pairs
of rank samples that are four or fewer hours apart. Foreach pair,
subtract the earlier rank from the later rank and take the absolute
value. Count the number of occurrences ofeach of the possible
rank changes. Accumulating these in the appropriate order gives
an estimate of the cumulative probability of rank changes given
measurements four or fewer hours apart.

We may find that rank changes of three or fewer are 80%
probable given time scales of four or fewer hours. Notationally,
we express this asP [jrt+w � rtj � R j sample period � w �
W ] = 0:8, whereR = 3 is the rank change,W = 4 hours is
the maximum time scale and thers are our rank samples. For
each combination ofW andR examined, we use a randomly
selected 10,000 samples to assure a tight estimate of the proba-
bility. Further, we aggregate the probabilities across all clients
for each dataset and document to obtain the point of view of a
random client interacting with a random server within the group.
Finally, it is important to note that we are limited by our average
sampling interval of one hour — we cannot discern behavior for
W < 1 hour.

Figure 6 shows a representative plot of the cumulative proba-
bility for the Mars/1 dataset. The way to read the plot is to pick
a time scale, follow the corresponding curve horizontally to the
maximum rank change that is of interest, and then read the cu-
mulative probability from the vertical axis. For example, we see
that for time scales of two (or fewer) hours, rank changes of four
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Fig. 7. P [jrt+w � rtj � R j sampleperiod � w � W ] for Apache/1,
plotted for several different values ofW . Other Apache plots are roughly
similar, and all Apache plots differ significantly from Mars or News plots.

(or fewer) occur with probability 0.85. The plot also includes
the curve that would result if rankings were simply uniformly
distributed random permutations.

It is clear from the graph that most rank changes are small.
The 10 day curves cover the vast majority of the data, and we
can see that the smallest 25% of possible rank changes account
for about 90% of rank changes.

The graph also shows that rank changes depend very little on
the time scales over which they occur. If there was a strong de-
pendency, the curves for the different time scales would be more
widely separated. We can see that the curves for increasingly
longer time scales do indeed slowly move to the right (toward
larger rank changes), but the effect is very marginal. This is a
very promising result. If a client can find a good server, it is
highly likely that it will remain good for quite some time.

The graph of Figure 6 is representative for the Mars and News
datasets. Unfortunately, the Apache data shows very different
behavior, as can be seen in Figure 7, which shows a cumulative
probability plot for a representative, Apache/1. Here, we don’t
see the quick rise of the curves, so large rank changes are rela-
tively much more probable than with the Mars and News data.
Further, since the curves do not hug each other very closely,
there is more dependence on the time scale. At this point, we
do not understand why the Apache data is so different. The
clearest distinguishing characteristic of the Apache sites is that
they tend to run non-commercial web servers (the Apache web
server) while the Mars and News sites tend to run commercial
web servers (Netscape and Microsoft servers.) We have no evi-
dence that this difference causes the discrepancy, however.

VI. CHANGES IN TRANSFER TIME AND RANK

A client using a highly ranked server is interested in warning
signs that may indicate that the server’s ranking has changed
dramatically. The client cannot measure rankings without mea-
suring all of the mirror servers; it can only observe the transfer
times it is experiencing on the currently chosen server. The nat-
ural question then is what, if any, relationship exists between
the changes in transfer time a client observes and the changes
in rank the server experiences. Our study shows that while a
relationship does exist, it is very marginal.

The approach we present here is to estimate the cumulative
probability of rank changes over increasing changes in observed
transfer times. We have also examined the cumulative probabil-
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Fig. 9. Cumulative probability of rank change given changes in transfer time
less thanD (P [jrti � rtj j � R j jdti � dtj j � D]) for Apache/4, plotted
for several different values ofD. All other plots are similar.

ity of rank changes over increasingpercentagechanges in trans-
fer time, and we have found results similar to those presented in
this section.

Consider a single mirror server. From the point of view of
a single client using the set of mirrors, we have a sequence of
samples of that server’s transfer times and their corresponding
ranks. We form the cross product of these samples and select a
random subset of 100,000 of these sample pairs. Foreach pair of
samples in the subset, we subtract the transfer times and ranks.

Figure 8 shows the summary statistics of these changes in
transfer time and corresponding rank. We see that the mean and
median changes in both quantities are almost exactly zero. The
distributions of these changes are also quite symmetric about
zero. For this reason, we concentrate on absolute changes in
transfer time and rank.

After taking absolute values, we count occurrences of value
pairs to estimate the joint cumulative probability of absolute
changes in rank and absolute changes in transfer time,P [jrti �
rtj j � R ^ jdti � dtj j � D] whereR is the rank change
andD is the change in transfer time. Since changes in rank
are categorical, we can then trivially compute the cumulative
probability of an absolute change in rankgiven an absolute
change in transfer time ofD or smaller. Notationally, this is
P [jrti � rtj j � R j jdti � dtj j � D]. We aggregate the proba-
bilities from all clients foreach dataset and document to obtain
the point of view of a random client interacting with a random
server within the set of mirrors. The reader may object that this
scheme also aggregates changes happening at all time scales.
This is true. However, recall from Section V that changes in
rank are virtually independent of time scale.

Figure 9 shows a representative plot of the cumulative proba-
bility for the Apache/4 dataset. The plots for all of the datasets
are similar. The way to read the plot is to pick a change in du-
ration, follow the corresponding curve horizontally to the max-
imum rank change that is of interest, and then read the cumula-
tive probability from the vertical axis. For example, we see that
for a transfer time change of 128 seconds or less, about 90% of
rank changes are of four or less.

We can see that large changes in transfer time are more likely
than small changes to indicate large rank changes. The curves
for increasingly larger changes in transfer time shift toward the
right (toward larger rank changes.) However, the difference is
slight. For example, a rank change of three or smaller is 90%



Changes in transfer time (seconds) Changes in rank
Dataset/Doc Mean StdDev Median Min Max Mean StdDev Median Min Max
Apache/5 0.0039 8.4087 0 -123.8000 226.4100 0.0091 4.2022 0 -10 10
Apache/6 -0.0810 10.3995 0 -295.7300 267.8000 0.0010 4.1948 0 -10 10
Apache/7 -0.0503 9.0000 0 -292.5000 205.9000 -0.0621 4.0177 0 -10 10
Apache/8 -0.5457 25.4940 0 -285.3000 276.5000 -0.0196 3.8818 0 -10 10
Apache/9 -0.1912 31.8086 0.1 -278.0100 287.7000 -0.0367 3.8072 0 -10 10
Mars/0 0.1068 6.0450 0 -227.9100 221.4600 0.0244 7.1711 0 -17 17
Mars/1 0.1218 8.1173 0 -184.0000 232.5900 0.1330 7.0711 0 -17 17
Mars/2 0.1189 14.3483 0 -285.2000 287.4000 -0.0685 7.1195 0 -17 17
Mars/3 -0.0226 17.5260 0 -253.6000 282.1000 -0.0038 7.0849 0 -17 17
Mars/4 0.3308 34.5870 0 -286.9000 288.6000 0.0194 7.0992 0 -17 17
News/0 0.0282 17.1793 0 -298.8300 293.8300 -0.0316 5.8363 0 -14 14

Fig. 8. Summary statistics of changes in transfer time and changes in corresponding ranks.

-15

-10

-5

0

5

10

15

-10 -8 -6 -4 -2 0 2 4 6 8 10

C
ha

ng
e 

in
 R

an
k

Change in Transfer Time

Fig. 10. Changes in rank versus changes in transfer time (limited to +/- 10
seconds) for News/0 dataset. Note the inferiority of linear fit (R2 = 0:36.)
There is little relationship between changes in transfer time and changes in
ranking.

probable with a change in transfer time of one second or smaller,
while a change of transfer time of up to 128 seconds reduces the
probability only to 80%. This is typical of the Apache data, and
the relationship is even less pronounced for the other data.

Another way to see the limited relationship of changes of rank
to changes in transfer time is to plot rank changes against their
corresponding transfer time changes. Figure 10 shows a repre-
sentative plot for the News/0 data, where we have focused on
transfer time changes in the[�10; 10] range. We have fit a least
squares line to the data and have found that the relationship is
marginal at best. TheR2 value for the line is only 0.36. For a
wider range of transfer times, the fit is even worse. Examining
each client and server pair of all the datasets individually, we
find that only 10% of combinations yieldedR2 values greater
that 0.5, fewer than 1% yieldedR2 values greater than 0.8, and
the highestR2 value was only 0.88. Clearly, there is only a lim-
ited relationship between changes in transfer time and changes
in rank.

VII. SMALL SERVER SETS

The observation in Section V that most rank changes are small
leads us to ask how many servers must a client consider to
achieve optimal performance. If server ranks never changed,
a client would only need to use one server, the one with the best
rank. But because server ranks do change, a client will need
to evaluate multiple servers to find the current best. We have
found that a client needs to evaluate only a very small number
of servers, usually less than half the total number of servers, to
achieve near-optimal performance. In this section, we define
a server’s performance to be near-optimal, or “good,” if it can
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Fig. 11. Server sets for two client-data combinations: Wash. U.’s Mars set and
U. Mass.’s Apache

deliver a document in no longer than 10% more than the best
transfer time for the same document observed in the same group
of fetches.

We define aserver setfor client C and documentD to be
the minimum subset of a site’s mirrors such that for any group,
at least one server in the server set can deliverD to C with
good performance. If a server set contains all the mirrors, it
means that a client must consider all mirrors when choosing a
server. From the data we have, we can build a server set for each
client-document combination using a straightforward greedy al-
gorithm: In each group of fetches, all servers that delivergood
performance are marked. The number of marks that each server
accrues over all groups is computed, and the server,s, with the
highest total, is added to the server set. The groups wheres
exhibited good performance are discarded, and the procedure
is repeated on the remaining groups. The algorithm terminates
when there are no groups left.

Figure 11 shows the composition of the server sets for 10 data
sets composed of the five documents from U. Mass’s Apache
data and the five documents from Washington U.’s Mars set.
Each stripe from each column represents the proportion of time
that one server offers good performance. For example, the first
column of the graph shows the server set for the Wash. U.
client’s fetches of document 0 from the Mars sites. Each stripe
in that column corresponds to one server. For purposes of this
discussion, it does not matter which server maps to which stripe.
What is significant is the size of each stripe, which shows how
often the corresponding server is able to deliver good perfor-
mance. The first stripe in the column shows that one server is
good in almost 70% of its fetches. The next stripe represents a
server that is good in a little more than 10% of the remaining



Doc. Avg. for 90% Good Avg. for 100% Good
Mars (20 Servers)

0 3.44 8.57
1 2.67 5.83
2 2.56 5.83
3 2.67 5.67
4 2.22 5.60

Apache (11 servers)
0 3.89 6.25
1 3.00 5.20
2 3.11 5.25
3 3.00 5.80
4 3.00 6.00

News (16 servers)
0 2.44 5.88

Fig. 12. Average (taken over all clients) number of servers required to achieve
good performance in 90% and 100% of fetches

Documentj
SSi 0 1 2 3 4
0 0.55% 9.32% 9.86% 10.68% 8.77%
1 4.11% 0.00% 0.00% 0.55% 0.27%
2 4.11% 0.00% 0.00% 0.55% 0.27%
3 6.85% 0.82% 0.27% 0.00% 0.00%
4 6.85% 0.82% 0.27% 0.00% 0.00%

Fig. 13. Percentage of time that good performance is not achieved using the top
5 servers from the server set of documenti (SSi) to fetch documentj.

fetches.
The distribution and number of stripes show that client sites

do not have to consider every server in the mirror set to achieve
good performance. Rather, a small number of servers can pro-
vide good performance for a significant fraction of all fetches.
Looking at the Washington U. data, we see that for documents
1 through 4, the client can receivegood performance over 90%
of the time by considering only 2 servers out of the group of
20. For document 0, the client would need to consider 5 servers
to achieve good performance more than 90% of the time. On
the other hand, the client at U. Mass. requires more servers to
achieve good performance when fetching from Apache servers.
Seven servers are required for the first document while 5 are
required for the other documents. This is a much higher propor-
tion of servers than for the Washington U. client (7 out of 11 vs.
5 out of 20).

Figure 12 summarizes our findings over all documents. On
average, less than half of all servers need to be considered to
achieve good performance most (or even all) of the time. This
result implies that when designing a server selection mecha-
nism, it is unnecessary to assume that all clients will need to
contact or evaluate all servers.

VIII. SERVER CHOICE AND DOCUMENT CHOICE

The reader may have noticed that in Figure 11, the composi-
tion of server sets obviously varies from document to document.
This seems to suggest that in some cases, a server that provides
good performance for one document does not provide good per-
formance for another document. However, further examination
reveals that document choice has at best a weak effect on server
choice.

Recall that a server set is thesmallestset of servers that pro-
vide good performance for a given client. Other servers not in
the server set could provide good performance at any given mo-
ment. For example, there are cases in which more than one col-
lection of servers can be a server set. If two servers, A and
B, provide good performance at exactly the same moment, then
two server sets are possible: one using A and the other using B.
Thus, it is unwise to rely on apparent differences in server sets

as an indicator of differences in server performance.
Figure 13 shows how using one document’s server set to fetch

another document affects performance. The table was built by
counting how often the top 5 servers from documenti’s server
set (SSi) are able to offer good performance for documentj for
everyi; j�[0; 4]. Although this data is generated from the Mars
data at client site U. Va, all other combinations of clients and
web sites produced similar results. The entry at(i; j) in the ta-
ble is the percentage of fetches for which the server set for docu-
menti wasnot able to provide good performance for document
j. For example, we can see that using the server set for docu-
ment 4 to fetch document 1 would lead to good performance in
over 99% of fetches.

We used only the top 5 servers from each server set so that
all sets of servers considered would be the same size. Server
sets for documents 2 through 4 only contained 5 servers, so they
were unaffected. Document 0’s server set, however, contained
7 servers. The most immediate effect is that in the table above,
the (truncated) server set for document 0 failed to provide good
performance 0.55% of the time.

Measuring how well one document’s server set would do to
fetch another is a much more reasonable way to judge the differ-
ences in server performance among documents. It can directly
show how often a server identified as good for one document
is not actually good for another document. In Figure 13, we
can see that most often, performance remains good across server
sets. Ignoring data from the first row and first column, we see
that instances when one document’s server set does not offer
good performance for another document are very rare.

Looking at the table’s first row and the first column, which
correspond to server set 0 and document 0 respectively, we see
that good performance is achieved less frequently. The servers
which offer good performance for document 0 are at least par-
tially different from the servers that offer good performance for
other documents. This indicates that there might be some link
between document choice and server choice. In all client-site
combinations, we observed that the first document had a notice-
ably different set of good servers than the other documents.

In both the Apache and Mars data, the first document is also
the smallest (about 2 KB). We believe the dependence is more
a function of document size than the specific documents being
fetched, but further study using a larger variety of documents is
required to verify this. We can explain the effect of document
size on server choice if we assume that the network (and not
the server) is the bottleneck. For smaller documents, the trans-
fer time depends more on the round trip time between the client
and server. The smallest documents fit in one or two packets so
the client-server conversation lasts only a few round trip times.
For larger documents, the amount of bandwidth available on the
path between the client and server becomes the important factor
as the network “pipe” is packed with as much data as possible.
In this scenario, one property of a server (the round trip time be-
tween it and the client) would dominate for small documents and
another property (the throughput between the client and server)
would dominate for larger documents.

Regardless of the cause, the effect is not extremely significant.
First of all, at most 11% of fetches were adversely affected by
the difference in server sets. In these fetches, the increase in
transfer time was less than 25% above optimal on average. Also
note that these performance penalties are on top of a rather small
transfer time (about 1 second), so the actual penalties are on the
order of hundreds of milliseconds. Thus there is little cause for
concern over using only one server set for all document sizes
will lead to bad performance.



IX. I MPLICATIONS FOR SERVER SELECTION SYSTEMS

The observations about the properties of mirror servers that
we have presented may be useful when designing server selec-
tion systems. However, our measurements were made in the
absence of a selection mechanism. The introduction of a sys-
tematic way to evaluate servers may alter the performance of the
servers significantly. For example, if all clients employ a load
balancing algorithm, the correlation of performance among the
servers may increase. Still, our observations do supply a picture
of the network that can be used as a starting point in designing
a system.

We have pointed out that the difference in performance from
one mirror server to another is quite significant. This implies
that choosing the right server has the potential to significantly
improve client performance. We have also seen that most server
sets usually contain more than one server, indicating that the
best server for a given client changes over time. Server selection
needs to take place periodically to achieve good performance.
But because server sets are also usually small, the server selec-
tion task is potentially a very lightweight operation.

We have observed that server rank changes do not depend
significantly on time scale, implying that a ranking of servers
from two hours ago is as useful as a ranking from two days ago.
In other words, all performance results older than an hour are
approximately equally useful. Because of our experimental de-
sign, we cannot say anything about performance results younger
than an hour.

For the News and Mars data sets, we have found that most
rank changes are small, implying that a client may assume with
a reasonable amount of confidence that a server which delivered
good performance during the last fetch will haveacceptable per-
formance during the next fetch even if the two fetches are far
apart in time. For these data sets, the benefits of server selection
may be outweighed by the cost of evaluating servers. However,
this does not hold for the Apache set, where ranks are less stable.

We have found a weak link between a change in a server’s per-
formance and a change in the server’s rank. If the performance
that a server can offer a client degrades massively, then it can
be inferred that the server’s rank has dropped and a new server
should be selected for the client. However, for smaller perfor-
mance drops, we cannot assume that a corresponding drop in
rank has taken place.

Finally, protocols probably do not have to make allowances
for picking a server based on the document that is being fetched.
While we have noticed that there is a difference between the
good servers for the smallest Mars and Apache documents and
other documents’ good servers, the difference in performance,
both in relative and absolute terms, is not very large.

X. CONCLUSION

We have presented measurements of the performance of repli-
cated web servers which have ramifications for server selection
system designs. We have found that performance observed by
a given client can vary widely from mirror to mirror. However,
the set of servers that a client must visit to achieve good per-
formance is fairly small. Once a client has found a good server,
neither time scale over which the server has been good nor mod-
erate changes in server performance are good indicators about
when to begin searching for a new good server. However, a
large performance drop does signal a client that a server’s rank
is likely to have changed. To further substantiate and expand
our conclusions, future work includes collecting longer traces,
trying other mirror sets, and exploring shorter time scales.

The data collected for this study is available on the

World Wide Web at http://www.cs.cmu.edu/˜acm/research/
anycast.html.
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