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Abstract—Recently there has been an increasing deployment of content
distribution networks (CDNs) that offer hosting services to Web content
providers. CDNs deploy a set of servers distributed throughout the Internet
and replicate provider content across these servers for better performance
and availability than centralized provider servers. Existing work on CDNs
has primarily focused on techniques for efficiently redirecting user requests
to appropriate CDN servers to reduce request latency and balance load.
However, little attention has been given to the development of placement
strategies for Web server replicas to further improve CDN performance.

In this paper, we explore the problem of Web server replica placement in
detail. We develop several placement algorithms that use workload infor-
mation, such as client latency and request rates, to make informed place-
ment decisions. We then evaluate the placement algorithms using both syn-
thetic and real network topologies, as well as Web server traces, and show
that the placement of Web replicas is crucial to CDN performance. We also
address a number of practical issues when using these algorithms, such as
their sensitivity to imperfect knowledge about client workload and network
topology, the stability of the input data, and methods for obtaining the in-
put.

Keywords—World Wide Web, replication, replica placement algorithm,
content distribution network (CDN).

I. INTRODUCTION

With the explosive growth of the World Wide Web, popular
Web sites receive an enormous share of Internet traffic. These
sites have a competitive motivation to offer better service to their
clients at lower cost. To address the need, there has been an in-
creasing trend toward outsourcing content distribution to com-
mercial hosting services such as Akamai [2], Exodus [12], Dig-
ital Island [11], etc. Existing work on CDNs has primarily fo-
cused on techniques for efficiently redirecting user requests to
appropriate CDN servers to reduce request latency and balance
load. However, little attention has been given to the develop-
ment of placement strategies for Web server replicas to further
improve CDN performance. Placement strategies are important
because appropriate placement of server replicas benefits con-
tent providers by reducing latency for their clients, and benefits
ISPs by reducing bandwidth consumption.

In this paper, we propose several algorithms that can automate
the server placement decision. More specifically, we consider
the following scenario. A popular Web site aims to improve
its performance (e.g., reducing its clients’ perceived latency) by
pushing its content to some hosting services. The problem is to
choose M replicas (or hosting services) among N potential sites
(N > M ) such that some objective function is optimized under
a given traffic pattern. The objective function can be minimizing
either its clients’ latency, or its total bandwidth consumption, or
an overall cost function if each link is associated with a cost.

In our study, we assume that each client uses a single replica
(of course, multiple clients can use the same replica). In other
words, a client gets all of its content from the same replica.
So our analysis of replica placement focuses on the traffic load
generated by the clients while ignoring what content is actually
downloaded by clients. While our assumption is not entirely re-

alistic – for example, a CDN such as Akamai would, in general,
have partial replicas and direct clients to different replicas de-
pending on what content is accessed – it enables us to project
into the future when falling storage costs might make it feasible
for each replica to be a complete replica. In such a setting, a
client may well be directed to a single replica for most or all of
its accesses.

We evaluate the performance of the various placement algo-
rithms by simulating their behavior on synthetic and real net-
work topologies and several access traces from large commer-
cial and government Web servers. As far as we know, this is
the first experimental study on this subject. We also address
a number of practical issues when using these algorithms on-
line in a content distribution network, and study the sensitiv-
ity of the placement algorithms to imperfect information about
client workload characteristics. Based upon our results, we con-
clude that a greedy algorithm for solving the Web server replica
placement problem can provide content distribution networks
with performance that is close to optimal. Although the greedy
algorithm depends upon estimates of client distance and load
predictions, we find that it is relatively insensitive to errors in
these estimates and therefore is a viable algorithm for use in the
general Internet environment where workload information will
always be imperfect.

The rest of the paper is organized as follows. In Section II,
we survey previous work. We describe graph theoretic formula-
tions of the replica placement problem in Section III, and present
a number of placement algorithms in Section IV. Then in Sec-
tion V and Section VI, we describe our simulation methodology
and performance results. In Section VII, we discuss a number
of practical issues when using the algorithms. We then conclude
in Section VIII.

II. PREVIOUS WORK

There has been a considerable amount of research on Web
performance, ranging from Web workload characterization [3],
[4], [23] to developing techniques to enhance Web performance.
Two primary techniques for enhancing Web performance are
caching and replication. Previous work has studied many as-
pects of caching and replication, such as object routing, object
distribution, object selection, inter-replica or inter-proxy com-
munication, and policy management [24]. However, less atten-
tion has been given to the placement of Web proxies or Web
replicas. The only prior work on the placement problem that we
know of is [16] by Li et al. They approached the proxy place-
ment problem with the assumption that the underlying network
topologies are trees, and modeled it as a dynamic programming
problem. Although an interesting first step, this approach has a
number of limitations. First, the Internet topology is not a tree,
and the paper does not evaluate how well the dynamic program-



ming algorithm based on tree-topologies works for Internet-like
topologies. Our evaluation using real traces and topologies (in
Section VI) shows that, although the assumption of a tree topol-
ogy makes it possible to obtain an optimal solution to the place-
ment problem when the constraints are satisfied (i.e., the topol-
ogy is actually a tree, and the clients can only direct requests
to proxies on its path toward the Web server, but not to sibling
proxies), in a more general setting it does not perform as well as
the heuristics that work in general graph topologies. Moreover,
its high computational complexity (O(N 3M2) for choosing M
proxies among N potential sites) prevents its practical use in
topologies with thousands of nodes.

Jamin et al. examined the placement problem for Internet in-
strumentation in [14]. They investigated both graph theoretic
methods and heuristics for instrumenting the Internet to obtain
distance maps. They showed that an Internet distance map ser-
vice based on their placement techniques (including the place-
ment heuristics that do not require full topological knowledge)
can offer useful hints for server selection by clients.

III. GRAPH THEORETIC APPROACHES

In this section we review two graph theoretic approaches that
can help us determine the number and the placement of Web
replicas given the network topology and the users’ demands. In
the following, we use the terms facilities, centers, and replicas
synonymously. We study two variants of the center placement
problem: one is the facility location problem, and the other is the
minimum K-median problem. Both problems are NP-hard [22].
However, there are constant-factor approximation algorithms for
the metric variants of both problems, where the metric variants
require that the distance function c is non-negative, symmetric,
and satisfies the triangle inequality.

A. Facility Location Problem

The facility location problem is defined as follows. Given
a set of locations i at which facilities may be built, building a
facility at location i incurs a cost of fi. Each client j must be as-
signed to one facility, incurring a cost of djcij where dj denotes
the demand of the node j, and c ij denotes the distance between
i and j. The objective is to find a solution (i.e., both the number
of facilities and the locations of the facilities) of the minimum
total cost.

There have been a number of approximation algorithms de-
veloped for this NP-hard problem in the metric space. Through-
out the paper, a ρ-approximation algorithm is a polynomial-time
algorithm that always finds a feasible solution with an objective
function value within a factor of ρ of optimal. The best approx-
imation algorithm known today was developed by Charikar &
Guha [6], who gave a 1.728-approximation algorithm.

B. Minimum K-Median Problem

The minimum K-median problem is stated as follows. Given
n points, we must select K of these to be centers (facilities),
and then assign each input point j to the selected center that is
closest to it. If location j is assigned to a center i, we incur a cost
djcij . The goal is to select the K centers so as to minimize the
sum of the assignment costs. The main difference between the
K-median and facility location problems is that, in K-median,

there are no costs for opening centers. Instead, a number K
is specified as an input that is an upper bound on the number
centers that can be opened. Recently, Charikar and Guha [6]
gave a 4-approximation algorithm for this problem in the metric
space.

C. Capacitated Versions

The formulations of the facility location problem and min-
imum K-median problem given above do not constrain the
amount of service that can be provided at any center. There are
capacitated variants that do constrain the service capacity at cen-
ters, requiring that each facility serve no more requests than the
capacity defined at that location. The worst-case performance
bound for the capacitated variants are considerably worse than
for the non-capacitated versions [8], [7].

Depending on different constraints and cost functions to be
optimized, replica placement can be formulated as either an un-
capacitated/capacitated facility location problem, or an uncapac-
itated/capacitated minimum K-median problem.

D. Summary

In the rest of this paper, we consider the formulation of the
uncapacitated minimum K-median problem. That is, we restrict
the maximum number of replicas, but do not restrict the number
of requests served by each replica. We believe that this is a rea-
sonable formulation because increasing the number of replica
sites is significantly more difficult than increasing the capacity
of a site. The maximum number of replicas is usually given a
priori for cost and administrative reasons, whereas the capac-
ity constraint on the replica can be overcome by adding more
machines. 1

We also ignore the cost of placing replicas for the following
reasons. If our objective function is to minimize network band-
width consumption, we can ignore the replication traffic (i.e.,
the traffic associated with managing the replicas, distributing
content to the replicas, etc.) since it is typically orders of mag-
nitude smaller than the traffic generated by users’ requests. Fur-
thermore, since most content distribution networks (e.g., Aka-
mai) that replicate content have their own private high-speed
networks, the bandwidth consumption incurred during the repli-
cation is usually not a major concern. On the other hand, if our
objective function is to optimize another performance metric,
such as users’ perceived latency, then it is unclear how to in-
corporate the replication cost (in the unit of network bandwidth)
into the objective function in a different unit (such as time in the
case of client latency).

As in [16], we fix the origin server to be one of the replica
sites. However, including or excluding the original server is not
a fundamental choice and has little impact on our results.

IV. PLACEMENT ALGORITHMS

In this section, we present a number of algorithms for solving
the minimum K-median problem. The objective is to minimize
the total cost of all the requests. We define the cost of a request
from node i to node j as the distance between the two nodes,

1If the capacity of replicas needs to be taken into account, we can use the
capacitated minimum K-median problem formulation, and the algorithms de-
scribed below will still apply.



where the distance can reflect any performance metric we want
to optimize, such as latency, hop counts, or the economic cost
of the path between two nodes (assuming there is a cost associ-
ated with the links on the path). The algorithms work the same
regardless of what metric is used.

A. Tree-based Algorithm

Li et al. proposed a placement algorithm in [16] based on the
assumption that the underlying topologies are trees, and mod-
eled it as a dynamic programming problem. The algorithm was
originally designed for Web proxy cache placement, and it is
also applicable for Web replica placement. At a very high level,
they divide a tree T into several small trees Ti, and show that
the best way of placing t > 1 proxies in the tree T is to place t ′i
proxies the best way in each small tree Ti, where

∑
i t′i = t. The

algorithm is shown to find an optimal placement when the un-
derlying topologies are trees, and clients request from the proxy
on the path toward the Web server, that is, clients cannot re-
quest from a sibling proxy. However, these two assumptions
can prune possibly better placement choices. As shown in Sec-
tion VI, the optimal solutions under these assumptions are usu-
ally not as good as the solutions found by the greedy and hot
spot heuristics (without the assumptions), which are described
later in this section.

B. Greedy Algorithm

The basic idea of the greedy algorithm is as follows. Sup-
pose we need to choose M replicas among N potential sites.
We choose one replica at a time. In the first iteration, we eval-
uate each of the N potential sites individually to determine its
suitability for hosting a replica. We compute the cost associ-
ated with each site under the assumption that accesses from all
clients converge at that site, and pick the site that yields the low-
est cost. In the second iteration, we search for a second replica
site which, in conjunction with the site already picked, yields
the lowest cost. In general, in computing the cost, we assume
that clients direct their accesses to the nearest replica (i.e., one
that can be reached with the lowest cost). We iterate until we
have chosen M replicas.

C. Random

The random algorithm is oblivious to client workload, and
randomly chooses M replicas among N potential sites from a
uniform distribution. To improve performance, we execute the
algorithm several times – in our simulations, we execute over
10 times, and pick the random assignment that yields the lowest
cost.

D. Hot Spot

The hot spot algorithm attempts to place replicas near the
clients generating the greatest load. It sorts the N potential sites
according to the amount of traffic generated within their vicin-
ity. It places the replicas at the top M sites that generate the
largest amount of traffic. We define A’s vicinity as the circle
centered at A with some radius. In our simulations, we vary
the radius from 0 to the maximum distance between any pair of
nodes in the graph, and report the best performance over all the
radii tested.

E. Super-Optimal Algorithm

As mentioned earlier, the minimum K-median problem is
NP-hard. Computing the exact optimal solution is therefore too
computationally intensive to be useful in practice. To evaluate
how well the algorithms described above perform, we compute
a (fairly tight) lower bound on the cost of any feasible solution
of our minimization problem. We do so using a super-optimal
algorithm based on Lagrangian relaxation with subgradient op-
timization [21]. As its name suggests, the solution produced by
this algorithm may be better than optimal because it may not be
feasible. Nevertheless, it serves as a useful data point for com-
parison.

More specifically, the K-median problem can be stated as the
following integer program, where the 0-1 variable y i, i ∈ N ,
indicates whether the location i is selected as a center, and the 0-
1 variable xij , i, j ∈ N , indicates whether location j is assigned
to the center at i:

minimize
∑

i,j∈N djcijxij (1)
subject to

∑
i∈N xij = 1 for each j ∈ N , (2)

xij ≤ yi for each i, j ∈ N , (3)∑
i∈N yi ≤ k, (4)

xij ∈ {0, 1}, for each i, j ∈ N , (5)
yi ∈ {0, 1}, for each i ∈ N . (6)

The set of constraints (2) ensures that each location j ∈ N is
assigned to some center i ∈ N , the set of constraints (3) ensures
that, whenever a location j is assigned to a center i, then a cen-
ter must have been opened at i, and (4) ensures that at most k
centers are open.

We then apply Lagrangian relaxation to the integer program-
ming problem, where the constraints (2) are weighted by multi-
pliers and placed in the objective function as follows:

L(x, y, u) =
∑

i,j∈N

djcijxij −
∑

j∈N

ui(
∑

i∈N

xij − 1)

Then we use the subgradient method given in Held et al. [25]
to compute the super-optimal bound. It is an iterative procedure
that begins with a specified multiplier value u0 and generates a
sequence of multiplier values uk. On iteration k the Lagrangian
problem is solved with multipliers uk−1, and a new value uk

is determined from uk−1 and the Lagrangian solution using the
rule in [25]. At each iteration an upper bound on the optimal
value is available. In order to obtain the lower bound in our
minimization problem, we use the subgradient method on −L.
In our simulations, we use 1000 iterations for 100 nodes topolo-
gies, and 200 iterations for all other topologies. To get a tighter
bound, for a specific instance of problem we use three random
values to initialize the multiplier u0, and obtain a super-optimal
bound from each value of u0. The maximum of the three is used
as the lower bound.

F. Summary

Table I lists the computational time of various algorithms for
selecting M replicas among N potential sites. If only a hand-
ful of potential hosting sites is available, the cost of the com-
putationally complex algorithms may not be significant. How-
ever, in our analysis, we consider clusters defined by address
prefixes, which will be explained in Section V-B, as potential



Tree-based [16] Greedy Random Hot Spot
O(N3M2) O(N2M) O(NM) N2 + min(NlognN + NM)

TABLE I

COMPARISON OF COMPUTATIONAL TIME OF VARIOUS ALGORITHMS

replica sites. In this case, N is on the order of 100,000 (the num-
ber of address prefixes in the Internet), so clearly the computa-
tional complexity of the replica placement algorithm becomes
very significant. To reduce the computational cost, we consider
only the top, in terms of requests generated, few hundreds or few
thousands of clusters. Since these top clusters generate most of
the traffic, as shown in Section V-B, ignoring the requests from
unpopular clusters has little effect on the results.

In the following sections, we will compare the above al-
gorithms with the super-optimal algorithm using the real Web
traces and network topologies.

V. SIMULATION METHODOLOGY

To evaluate the performance of the various algorithms pre-
sented in this paper, we simulate the behavior of the algorithms
on a variety of network topologies and Web workloads. In this
section, we discuss the network topologies and Web workloads
that we use in our evaluations. We then describe the perfor-
mance metric that we use as a basis for comparing the algo-
rithms.

A. Network Topology

In our simulations, we use both randomly generated network
topologies and the real Internet topologies derived from BGP
routing tables.

We generate two types of random network topologies: ran-
dom trees and random graphs. The primary reason for studying
performance on the tree structure is to determine how the opti-
mal tree-based algorithm compares to the other algorithms. To
generate random trees, we wrote a simple program that takes
3 parameters: the total number of nodes, the maximum distance
between any two nodes, and the maximum degree of a tree node.
Starting from the root node, we recursively create random chil-
dren until the total number of nodes specified is reached. In our
simulations, we use 100-node and 300-node trees, and we set
the maximum distance to 10 and the maximum node degree to
10, 15, and 20. For each parameter setting, we generate three
different trees.

To generate random graphs, we use the GT-ITM internetwork
topology generator [5]. In particular, we use three network mod-
els: pure random, Waxman, and Transit-Stub. In the pure ran-
dom model, vertices are distributed at random locations in a
plane, and an edge is added between a pair of vertices with prob-
ability p. In the Waxman model, the probability of an edge from
u to v is given by P (u, v) = αe−d/(βL), where 0 < α and
β ≤ 1 are parameters of the model, d is the Euclidean distance
from u to v, and L is the maximum distance between any two
nodes. The Transit-Stub model generates hierarchical graphs by
composing interconnected transit and stub domains; see [26] for
further details.

We use a wide range of parameters for each network model.
For each parameter setting, we generate three different topolo-
gies. We do not claim that these network models and parame-

Trace ID Web Site Period Duration
1 MSNBC 8/3/99 - 8/5/99 9 am - noon
2 MSNBC 9/27/99 - 10/1/99 All day
3 MSNBC 10/7/99 - 10/14/99 All day
4 ClarkNet 9/4/95 - 9/10/95 All day
5 NASA 7/1/95 - 7/31/95 All day

TABLE II

ACCESS LOGS USED

ters we use are representative for the Internet topology. Instead,
our goal is to make the generated topologies as rich as possi-
ble by using multiple models with a wide range of parameters.
As we will show in Section VI, the performance of the place-
ment algorithms is similar across different network models and
parameters.

We also construct a simplified model of the actual Inter-
net topology using BGP routing data from a set of seven
geographically-dispersed BGP peers. Each BGP routing ta-
ble entry specifies an AS path, AS1, AS2, · · · , ASn, to a des-
tination address prefix block (AS1 corresponds to the BGP
peer and ASn corresponds to the destination address prefix
block). We construct an AS-level topology graph of the net-
work using the AS paths. The AS path AS1, AS2, · · · , ASn

yields edges between adjacent nodes (AS’s) in the path (e.g.,
(AS1, AS2), (AS2, AS1), (AS2, AS3), etc.). We map individ-
ual clients and address prefix blocks to their corresponding AS
nodes in the topology graph, and assign the distance between
two nodes as the AS hop counts between the two nodes.

While not very detailed, an AS-level topology at least par-
tially reflects the true topology of the Internet. Furthermore, re-
cent study [17] has shown the AS hop count of a path is a decent
indicator of the path’s proximity, reliability, and stability.

B. Web Workload

To evaluate the algorithms on realistic traffic patterns, we use
the access logs collected at the MSNBC server site [19], dur-
ing three periods, as shown in Table II. MSNBC is a large and
popular commercial news site in the same category as CNN [9]
and ABCNews [1], and is consistently ranked among the busi-
est sites in the Web [18]. For diversity, we also use the traces
collected at ClarkNet [10] and NASA Kennedy Space Center in
Florida [20] during 1995. Table II shows the detailed trace in-
formation. We use the workload in one day or 3 hours (for the
August 1999 traces) to parameterize one simulation setup.

We use the access logs in the following way. First, we use
the approach proposed by Krishnamurthy et al. in [15] to clus-
ter the Web clients that are topologically close together. Their
method is based on the information available from BGP routing
table snapshots, and they show that it significantly outperforms
a heuristic that assumes a fixed-length, 24-bit network prefix.

To use their method for clustering clients, we obtained the
complete BGP routing tables from seven geographically and
topologically diverse ISPs [13]. For each client IP address in the
access logs, we find its best matching prefix in the union of the
routing tables. All the clients whose IP addresses have the same
best prefix match belong to the same cluster. Figure 1 plots the
number of requests generated by each cluster. As we can see, in
the 8/3/99 MSNBC trace, the top 10, 100, 1000, and 3000 clus-
ters account for about 23.55%, 44.86%, 77.96%, and 93.97%
requests, respectively. The other server traces have similar re-



sults, though the NASA traces are a little more concentrated: the
top 10, 100, 1000, and 3000 clusters account for about 29.67%,
51.96%, 85.39%, and 97.37% requests, respectively.
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Fig. 1. The CDF of the number of requests generated by the Web clusters
defined by address prefixes.

For a network topology of a specific size, say 100 nodes, we
choose the top 100 clusters in the traces and map them randomly
to the nodes in the graph. Assigning a cluster C i to a node Pi

in the graph means that the weight of the node P i is equal to the
number of requests generated by the cluster C i. For each net-
work topology and access log, we make three different random
assignments from the clusters to the nodes in the graphs.

C. Performance Metric

To compare the performance of the algorithms on the var-
ious network topologies and access logs, we use the relative
performance of the algorithms as a metric. We define the rel-
ative performance as the ratio between the cost of the feasible
solution found by the algorithm to the cost determined by the
super-optimal algorithm. The relative performance is an appro-
priate metric, since it reflects the cost we want to minimize. The
normalization step is to show how far away we are from the
super-optimal, and does not alter the metric to be minimized.
The smaller the value of the relative performance, the better the
algorithm performs. A relative performance of 1 implies the al-
gorithm finds an optimal solution, but the optimal solution need
not necessarily have a relative performance of 1, since the super-
optimal solution may not be achievable.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the various
placement algorithms on a variety of synthetic and realistic net-
work topologies using the Web server traces.

A. Random tree topologies

First, we evaluate the performance of the placement algo-
rithms on the tree topologies. More specifically, we run each
placement algorithm in hundreds of simulation runs and exam-
ine the performance of the algorithm across all simulation runs.
Each simulation run is parameterized by (i) the Web server trace,
(ii) the network topology, (iii) the mapping of clusters to nodes
in the simulation topology, and (iv) the number of replicas to
pick. We evaluate the algorithms on 100-node and 300-node
trees using Web traces 1 and 3 listed in Table II. We use three
different random assignments from the clusters defined by ad-
dress prefix to the nodes in the trees. We then vary the number
of replicas to place from 1 to 80 for the 100-node trees, and from
1 to 100 for the 300-node trees.

Figure 2 shows the cumulative distribution (CDF) of the rel-
ative performance of the algorithms on tree topologies. As we
can see, the greedy algorithm and the tree-based algorithm per-
form the best, with the greedy algorithm slightly better. The
hot spot algorithm has a performance in between these two and
the random algorithm, which clearly has the worst performance.
We quantify the differences in relative performance of the algo-
rithms in the next set of graphs.

Figure 3 shows the minimum (best case), maximum (worst
case), and median values of the relative performance of these al-
gorithms over all simulation runs, where the tree-based, greedy,
random, and hot spot algorithms are numbered algorithm 1, 2,
3, and 4, respectively. On average, both the greedy and tree-
based algorithms are within 5% worse than the super-optimal
algorithm for 100-node trees, and within 20%–30% worse than
the super-optimal algorithm for 300-node trees. The hot spot
algorithm has a relative performance that is about 30% worse
than the super-optimal algorithm. The random algorithm per-
forms considerably worse than the others. This is also evident
from its CDF curve shown in Figure 2, which has a very grad-
ual slope. For the three graph sizes, 50% of the simulation runs
for the random algorithm have a relative performance of at least
2.5. Note also that the relative ranking of these algorithms is
consistent across all the tree topologies and Web traces tested.

The reason that even in tree topologies the tree-based algo-
rithm is not the best performer is that it assumes clients can only
direct requests to replicas on the path toward the Web server.
This assumption eliminates some potentially better placement
choices.

B. Random graph topologies

We also evaluate the performance of the placement algorithms
on random graphs generated by the GT-ITM topology generator.
As with the tree topologies, we run each algorithm in hundreds
of simulation runs and examine the performance of the algo-
rithms across all simulation runs. We vary the number of repli-
cas to place from 1 to 80 for the 100-node graphs, from 1 to 100
for the 300-node graphs, and from 1 to 200 for the 1000 and
3000-node graphs. For every graph size, we use three network
models with different parameters, as described in Section V-A.
We plot the CDF of the relative performance of the different
placement algorithms across all simulation runs in Figure 4. We
show the minimum, maximum, and median of the relative per-
formance across all simulation runs using errorbars in Figure 5,
where the algorithms are numbered as in Figure 3.

Before describing the results in the graphs, we make the fol-
lowing observations. First, the tree-based algorithm requires the
underlying topology to be a tree. For our evaluation of the tree-
based algorithm on general graphs, we generate three random
spanning trees for a given graph, where all the spanning trees
are rooted at the original server node. Then we run the al-
gorithm on each of the trees. The three adjacent errorbars for
Algorithm ID = 1 in Figure 5 correspond to the performance
obtained using the three different spanning trees. Second, we
only report the performance of the tree-based algorithm for 100-
node and 300-node topologies since it takes too long to run on
topologies with 1000 or more nodes. For example, it takes over
11 hours to place 5 replicas among 1000 potential sites on an



0

10

20

30

40

50

60

70

80

90

100

1 1.5 2 2.5 3

C
D

F 
(%

)

Relative performance

100 nodes tree & Trace 1

Tree-based algorithm
Greedy algorithm
Random
Hot Spot

0

10

20

30

40

50

60

70

80

90

100

1 1.5 2 2.5 3

C
D

F 
(%

)

Relative performance

100 nodes tree & Trace 3

Tree-based algorithm
Greedy algorithm
Random
Hot Spot

0

10

20

30

40

50

60

70

80

90

100

1 1.5 2 2.5 3

C
D

F 
(%

)

Relative Performance

300 nodes tree & a subset of Trace 1 and 3

Tree-based algorithm
Greedy algorithm
Random
Hot Spot

Fig. 2. The CDF of relative performance across all simulation runs of the place-
ment algorithms on tree topologies.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5

R
el

at
iv

e 
pe

rf
or

m
an

ce

Algorithm ID

100 nodes tree & Trace 1

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5

R
el

at
iv

e 
pe

rf
or

m
an

ce

Algorithm ID

100 nodes tree & Trace 3

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5

R
el

at
iv

e 
pe

rf
or

m
an

ce

Algorithm ID

300 nodes tree & a subset of Trace 1 and 3

Fig. 3. A summary of the performance of the placement algorithms on tree
topologies using errorbars. The lower and upper bounds, and the X mark
on each errorbar correspond to the minimum, maximum, and median, re-
spectively, of the relative performance of the corresponding algorithm. The
tree-based, greedy, random, and hot spot algorithms are respectively num-
bered 1, 2, 3, and 4 in the graph.

UltraSparc machine with a 500 MHz CPU and 4 GB of mem-
ory. As a result, we conclude that the tree-based algorithm is
not practical for making real-time placement decisions when the
network size grows to thousands of nodes. In comparison, for
the same scenario, the greedy, hot spot, and random algorithms
take less than 1 minute to run.

Compared to the super-optimal algorithm, the greedy algo-
rithm performs within a factor of 1.5 in the median cases, and
around a factor of 4 in the maximum cases. These results are
significantly better than all of the other algorithms, including
the tree-based algorithm. Another interesting observation is that
the hot spot algorithm is often better than the tree-based algo-
rithm on the general graphs. The random algorithm, as before,
performs the worst: its median performance is around 2.5 and
its maximum relative performance is as high as 11–13.

C. Internet topology

We also evaluate the performance of the placement algorithms
using a model of Internet topology derived from BGP routing ta-
bles. In this case, we use AS hop counts as the distance metric
between two connected nodes. As shown in Figure 6 and Fig-
ure 7, the ranking of the various algorithms stays the same as in
the randomly generated graphs. From the best to the worst in or-
der are the greedy, hot spot, tree-based, and random algorithms.
However, the performance difference between the algorithms is
smaller than that in the randomly generated graphs. This is be-
cause the number of AS hops between any two nodes is not as
widely distributed as the distance in the generated topologies.
The number of AS hops varies from 0 to 6 for the 100 top AS’s
(in terms of the number of requests generated to the MSNBC
Web server during the periods under study), and from 0 to 9 for
the 1000 top AS’s. In contrast, the distance between any two
nodes in the generated topologies can be different by orders of
magnitude.

D. Effects of imperfect knowledge about input data

The above simulation results are based on the assumption that
we have perfect knowledge of the underlying topologies and the
number of requests generated from each node. In practice, we
do not have perfect knowledge about these inputs, but only have
rough estimates. In this section, we examine how imperfect
knowledge about the input data affects the placement decision.
In particular, we want to find out if the placement decision based
on inaccurate information will still be useful, and how far its per-
formance deviates from that obtained using perfect knowledge.

Our approach is to salt the input data with random noise of
uniform distribution, and vary the amount of noise added to the
input data. This is done in two ways: (1) we perturb the volume
of requests from a client by up to a factor of 2 (i.e., if the true
number of requests is d, the perturbed value ranges between d

2
and 2d), and (2) we perturb the distance, c ij , between two nodes
i and j by up to a factor of 4 (i.e., the corrupted distance ranges
between cij

4 and 4cij). We feed the salted inputs to the place-
ment algorithms, and compute the cost after applying the place-
ment decision to the actual input data. As before, we use relative
performance as the metric, defined as the ratio between the cost
of the feasible solution found by the algorithms using the salted
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Fig. 4. The CDF of the relative performance across all simulation runs of the
placement algorithms on general graphs.

0

2

4

6

8

10

12

14

0 1 2 3 4 5

R
el

at
iv

e 
pe

rf
or

m
an

ce

Algorithm ID

100 nodes graph & Trace 1

0

2

4

6

8

10

12

14

0 1 2 3 4 5

R
el

at
iv

e 
pe

rf
or

m
an

ce

Algorithm ID

100 nodes graph & Trace 3

0

2

4

6

8

10

12

14

0 1 2 3 4 5

R
el

at
iv

e 
pe

rf
or

m
an

ce

Algorithm ID

300 nodes graph & a subset of Trace 1 and 3

0

2

4

6

8

10

12

14

0 1 2 3 4 5

R
el

at
iv

e 
pe

rf
or

m
an

ce

Algorithm ID

1000 nodes graph & a subset of Trace 1, 3, 4, 5

0

2

4

6

8

10

12

14

0 1 2 3 4 5

R
el

at
iv

e 
pe

rf
or

m
an

ce

Algorithm ID

3000 nodes graph & a subset of Trace 1 and 3

Fig. 5. A summary of the performance of the placement algorithms on graph
topologies using errorbars. The lower and upper bounds, and the X mark
on each errorbar correspond to the minimum, maximum, and median, re-
spectively, of the relative performance of the corresponding algorithm. The
tree-based, greedy, random, and hot spot algorithms are respectively num-
bered 1, 2, 3, and 4 in the graph.
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BGP routing tables.



0

2

4

6

8

10

12

14

0 1 2 3 4 5

R
el

at
iv

e 
pe

rf
or

m
an

ce

Algorithm ID

Real topologies with 100 nodes & Trace 1, 2, 3

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5

R
el

at
iv

e 
pe

rf
or

m
an

ce

Algorithm ID

Real Internet topologies with 1000 nodes tree & Trace 1, 2, 3

Fig. 7. A summary of the relative performance of the placement algorithms
on the model of the real Internet topology using errorbars. The lower and
upper bounds, and the X mark on each errorbar correspond to the mini-
mum, maximum, and median, respectively, of the relative performance of
the corresponding algorithm. The tree-based, greedy, random, and hot spot
algorithms are respectively numbered 1, 2, 3, and 4 in the graph.

inputs to the cost determined by the super-optimal algorithm us-
ing the actual inputs.

Figure 8 shows the minimum, maximum, and median of the
relative performance over all the values of the error rates in the
distance and load. As we can see, the performance deviation is
small. In particular, even with the salted error as high as a factor
of 4, the cost of the greedy algorithm is in most cases within a
factor of 2 of the super-optimal algorithm when using perfect
knowledge. This is also evident from Figure 9, which plots the
relative performance of the greedy algorithm versus the errors in
the input. As we can see, as the error increases, the performance
degrades only slightly.
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Fig. 8. The relative performance of the placement algorithms on the graph
topologies using errorbars, with both the load and distance information
salted with random noise.
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The above perturbation technique on the topology is most
useful when our performance metric is the propagation delay or
the economic cost of the paths. If our performance metric is AS
hop count, we can infer the distance between two nodes by us-
ing BGP routing tables as illustrated in Section V-A. However,
when the number of BGP peers providing routing information is
very limited, we may not have a very accurate AS-level topology
map (for example, we do not see all the links).

To study the effect of overlooking some network links on the
placement algorithms, we randomly remove 0–50% of the edges
in the AS-level Internet topology derived from the BGP routing

tables, and use the perturbed topology information in the place-
ment algorithm. Figure 10 shows the performance results for the
greedy algorithm normalized by the performance of the super-
optimal algorithm using perfect topology information for the
10/8/99 MSNBC server trace. As we can see, the performance
of the greedy algorithm hardly changes as more edges are re-
moved. In particular, even when the edge removal probability is
as high as 50%, the relative performance of the greedy algorithm
stays within 2.6. The insensitivity of the greedy algorithm to the
edge removal partly comes from the fact that the only topology
information that the greedy algorithm (and all other algorithms
except the tree-based algorithm) requires is the distance matrix.
When testing the distance matrix in more detail, we find that the
distance matrix is not sensitive to edge removal. In particular,
removing up to 5% of the edges in the graph does not change
the distance matrix in our experiments.
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Fig. 10. A summary of the relative performance of the greedy algorithm during
edge removal using errorbars. The lower and upper bounds, and the X
mark on each errorbar correspond to the minimum, maximum, and median,
respectively, of the relative performance of the greedy algorithm.

E. Stability of input data

The above section studies the effect of imperfect knowledge
on the placement decision. One of the major reasons that we
do not have perfect knowledge about the input data is that the
input data is changing over time. When making the placement
decision for the next 24 hours, ideally we would like to give
the placement algorithms the load and network information for
the next 24 hours. However, in practice, we can only use the
past information to predict the future load and network infor-
mation. How good such a prediction is can significantly affect
the performance of the placement algorithm. In this section, we
investigate this issue in detail.

Our evaluation is done in two parts. In the first part, we as-
sume the topology information is accurate but the load infor-
mation is based on the prediction. In particular, we consider
the scenario where we want to make a placement decision for
10/1/99 by using the workload for the previous few days. We
predict the load generated from a cluster by averaging its load
during the previous n days, where n varies from 1 to 4.

To perform this evaluation, we use Trace 2 listed in Table II,
which contains the access logs from 5 consecutive working days
(from Monday to Friday). We pick the top 1000 clusters from
10/1/99. (The top 1000 clusters on 9/27/99 - 9/30/99 have more
than 90% overlap with those on 10/1/99.) As before, we ran-
domly assign the clusters to the nodes in the randomly gener-
ated topologies of various network models and parameters. For
each topology and cluster assignment, we simulate the place-
ment algorithms on the actual workload on 10/1/99 and five pre-
dicted workloads: (i) the workload of 9/30/99, (ii) the averages



of 9/29/99 and 9/30/99, (iii) the averages of 9/28/99 – 9/30/99,
and (iv) the averages of 9/27/99 – 9/30/99.

Figure 11 shows the CDF of the greedy algorithm’s perfor-
mance across all simulation runs. Here we normalize the per-
formance of the greedy algorithm using the predicted load by its
performance using the actual workload on 10/1/99. The lower
the normalized performance, the better the prediction is. A nor-
malized performance of 1 means the performance is exactly the
same as that obtained using the actual workload. As we can see,
the performance using the predicted workload closely matches
the performance using the actual workload, within 5% over all
cases. Note that, in some cases, the performance using the pre-
dictions is slightly better than using the actual workload. This is
because the greedy algorithm does not give the optimal perfor-
mance even when the input data is completely accurate.
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Fig. 11. The CDF of the greedy algorithm’s performance using the predicted
workload normalized by its performance using the actual workload across
all simulation runs.

For the second part of the evaluation, we use the same strategy
as above, but salt the topology information with random noise
as described in Section VI-D. Figure 12 shows the performance
results when we perturb the distance between any two nodes by
up to a factor of 1.2 and 2. As we can see, the performance de-
viation from using the accurate load and network information is
small: when the perturbation in distance is up to a factor of 1.2
and 2, the deviation is only within 5% and 17%, respectively.
Moreover, the performance results are similar across all the pre-
diction windows tested.

Finally, we have observed significant variation between week-
day workloads and weekend workloads, even though they are
consecutive in time. This is not surprising, and suggests that we
should use past weekday workload information to predict future
weekday workloads, and likewise use past weekend workload
data to predict future weekend workloads.

VII. PRACTICAL CONSIDERATIONS

In this section, we discuss ways to obtain the input data for
the placement algorithms. As mentioned earlier, the input to the
placement algorithms is a graph with weighted nodes and edges.
A node’s weight represents the amount of traffic initiated by the
node, and an edge’s weight represents latency, or link cost, or
hop count, etc. In order to apply the placement algorithms in
practice, we need to be able to obtain both traffic pattern and
network topology information in real-time.

Obtaining node weights is relatively straightforward. During
re-provisioning, the Web server communicates with all the ac-
tive replicas (i.e., the replicas that serve the requests, as opposed
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Fig. 12. The CDF of the greedy algorithm’s performance using the predicted
workload normalized by its performance using the actual workload when
we also perturb the distance between any two nodes.

to potential replica sites) about the number of requests generated
by all the popular clusters, where clusters are identified using the
approach proposed in [15].

The method for obtaining edge weights depends on the per-
formance metric that we want to optimize. Since replication
placement is a relatively long-term provision, we believe it is
desirable to use the performance metrics that are stable on the
order of hours, such as propagation delay, hop count, or eco-
nomic cost of the path between two nodes.

To approximate the distance between each pair of nodes, we
can use BGP routing tables to infer the hop counts between each
pair of nodes as described in Section V. An interesting ques-
tion is how many BGP peers we would need routing informa-
tion from in order to construct a fairly accurate AS-level topol-
ogy map. The answer clearly depends on the richness of the
connectivity, i.e., the (average) degree of nodes in the topology
graph. The greater the degree, the greater the number of BGP
peers from which we will need routing information. The worst
case is a completely connected graph (which, however, is far
from the reality). However, as we show in Section VI, the per-
formance of the greedy algorithm is not sensitive to overlooking
some network links – its relative performance stays within 2.6 of
the super-optimal algorithm even when the edge removal prob-
ability is as high as 50%.

A separate question is whether knowing the topology is suffi-
cient for solving the placement problem. In general, we would
need some notion of Internet “weather”, that is, the network per-
formance between two points, say a client location and a poten-
tial replica site. There are several research efforts (e.g., IDMaps
[14]) focusing on the problem of constructing such an Internet
weather map. If desired, we could, in a straightforward manner,
substitute cost metrics derived from an Internet weather map in



place of those derived from topology information in our algo-
rithms. Before such a service is widely available, we can also
have the Web sites periodically ping or traceroute a representa-
tive client in each identified popular cluster. Since the number
of popular clusters is not large, usually around 1 - 3 thousand
as is the case with MSNBC Web site, such probing is afford-
able especially when the provisioning timescale is on the order
of hours or longer.

VIII. CONCLUSION

In this paper, we study the online problem of placing Web
server replicas in content distribution networks (CDNs) to mini-
mize the cost for clients to access data replicated on the servers.
We approach the placement problem by formulating it as a min-
imum K-median graph theoretic problem. We present various
algorithms for solving the minimum K-median problem, and
evaluate the performance of the algorithms by simulating their
behavior on synthetic and real network topologies and several
Web traces. We also address a number of practical issues when
using these algorithms online in a content distribution network.
As far as we know, this is the first experimental study on this
subject.

Our main results and conclusions are:
• Placement algorithms should incorporate client workload in-
formation, such as client distance and request rate, in their place-
ment decisions. Such algorithms consistently perform a factor
of 2 – 5 better than a workload-oblivious random algorithm.
• A greedy algorithm that places replicas based upon both a dis-
tance metric and request load performs the best (i.e., its median
performance is within a factor of 1.1 – 1.5 of optimal). A hot
spot algorithm based upon request load only performs nearly
as well (its median performance is within a factor of 1.6 - 2 of
optimal). A tree-based algorithm developed for proxy cache hi-
erarchies [16] performs better than random placement, but not
as well as the algorithms for general graph topologies.
• The placement algorithms are not very sensitive to noise in the
estimates of distance and load used as inputs to the algorithms.
Even with rough estimates of client distance and request load
salted with random noise, the algorithms perform nearly as well
as when they used perfect knowledge. For example, when the
salted error is as high as a factor of 4, the greedy algorithm stays
within a factor of 2 of the super-optimal in most cases.
• When deployed, the placement algorithms must predict fu-
ture request load based upon past information. We show that the
algorithms can use a simple moving window average for pre-
dicting load with negligible impact on performance.
• The relative performance of the placement algorithms is con-
sistent across network topologies (tree, random graph, AS hop-
count), topology parameters (the number of nodes, inter-node
distance), trace workloads, and noise in the inputs.

Based upon our results, we conclude that a greedy algorithm
for Web server replica placement can provide content distribu-
tion networks with performance that is close to optimal. Al-
though the greedy algorithm depends upon estimates of client
distance and load predictions, we find that it is relatively insen-
sitive to errors in these estimates and is therefore a viable and
practical algorithm for use in the general Internet environment
where workload information will likely be imperfect.

As for future work, we are interested in exploring incremental
versions of the placement algorithms that also take into account
the cost of changing the set of replica sites. Ideally, for place-
ment strategies with similar performance, we prefer the one that
incurs the least amount of perturbation to the system. For ex-
ample, if site A is already hosting a Web service, then we prefer
not to replace it with another replica site unless the performance
degradation of continuing to use A is significant. We are also
interested in studying distributed versions of the placement al-
gorithms to further improve the scalability of the system. One
possible distributed algorithm would be to make the algorithm
hierarchical.
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