
A Survey of Programmable Networks

Andrew T. Campbell1, Herman G. De Meer2, Michael E. Kounavis1,
Kazuho Miki3, John B. Vicente4, and Daniel Villela1

1Center for Telecommunications Research,
Columbia University

2 University of Hamburg, Germany
3 Hitachi Limited

4 Intel Corporation

genesis@comet.columbia.edu

Abstract
In this paper we present a programmable networking model that provides a common
framework for understanding the state-of-the-art in programmable networks. A number
of projects are reviewed and discussed against a set of programmable network
characteristics. We believe that a number of important innovations are creating a
paradigm shift in networking leading to higher levels of network programmability. These
innovations include the separation between transmission hardware and control software,
availability of open programmable network interfaces, accelerated virtualization of
networking infrastructure, rapid creation and deployment of new network services and
environments for resource partitioning and coexistence of multiple distinct network
architectures. We present a simple qualitative comparison of the surveyed work and
make a number of observations about the direction of the field.

1. INTRODUCTION

The ability to rapidly create, deploy and manage
novel services in response to user demands is a key
factor driving the programmable networking
research community. Results from this field of
research are likely to have a broad impact on
customers, service providers and equipment vendors
across a range of telecommunication sectors,
including broadband, mobile and IP networking.
Competition between existing and future Internet
Service Providers (ISPs) could solely hinge on the
speed at which one service provider can respond to
new market demands over another. The introduction
of new services is a challenging task and calls for
major advances in methodologies and toolkits for
service creation and enabling network technologies.
A vast amount of service-specific computation,
processing and switching must be handled and new
network programming environments have to be
engineered to enable future networking

infrastructures to be open, extensible and
programmable.

Before we can meet this challenge, we need to better
understand the limitations of existing networks and
the fundamentals for making networks more
programmable. There is growing consensus that
these network fundamentals are strongly associated
with the deployment of new network programming
environments, possibly based on “network-wide
operating system support”, that explicitly recognize
service creation, deployment and management in the
network infrastructure. For example a future
programmable network operating system could be
based on active network execution environments
[42] operating on node operating system [40] or
open signaling network kernels [30] supporting the
coexistence of multiple control architectures [33].
Both of these proposals squarely address the same
problem: how to open the network up and accelerate
its programmability in a controlled and secure

manner for the deployment of new architectures,
services and protocols.

The separation of communications hardware (i.e.,
switching fabrics, routing engines) from control
software is fundamental to making the network more
programmable. Such a separation is difficult to
realize today. The reason for this is that switches
and routers are vertically integrated - akin to
mainframes of the 70s. Typically, service providers
do not have access to switch/router control
environments (e.g. Cisco’s IOS operating system),
algorithms (e.g. routing protocols) or states (e.g.,
routing tables, flow states). This makes the
deployment of new network services, which may be
many orders of magnitude more flexible than
proprietary control systems, impossible due to the
closed nature of network nodes. The question is,
how do we go about ‘opening up the boxes’ for
deployment of third party control software and
services?

This paper examines the state of the art in
programmable networks. In Section 2, we present
and discuss two schools of thought on
programmable networks advocated by the Active
Networks (AN) [20] and Open Signalling (Opensig)
[39] communities. The state-of-the-art in
programmable networks is rather complex to
analyze beyond historical differences. Recently, a
number of programmable network toolkits have
been implemented. By reviewing each contribution
in turn, we arrive at a common set of features that
govern the construction of these programmable
networks. In Section 3, we present a generalized
model and common set of characteristics to better
understand the contributions found in the literature.
Following this, in Section 4, we discuss a number of
specific projects and characterize them in terms of a
simple set of characteristics. In Section 5, we
present a simple qualitative comparison of the
surveyed work and make a number of observations
about the direction of the field. We believe that a
number of important innovations are creating a
paradigm shift in networking leading to higher
levels of network programmability. This leads us to
the conclusion that the ultimate challenge facing the
programmable networking community is the
development of programmable virtual networking
environments.

2. METHODOLOGIES

There has been an increasing demand to add new
services to networks or to customize existing
network services to match new application needs.
Recent examples of this include the introduction of
integrated and differentiated services to IP networks
offering enhanced IP QOS. The introduction of new
services into existing networks is usually a manual,
time consuming and costly process. The goal of
programmable networking is to simplify the
deployment of new network services, leading to
networks that explicitly support the process of
service creation and deployment. There is general
consensus that programmable network architectures
can be customized, utilizing clearly defined open
programmable interfaces (i.e., network APIs) and a
range of service composition methodologies and
toolkits.

Two schools of thought have emerged on how to
make networks programmable. The first school is
spearheaded by the Opensig community, which was
established through a series of international
workshops. The other school, established by
DARPA, constitutes a large number of diverse AN
projects. The Opensig community argues that by
modeling communication hardware using a set of
open programmable network interfaces, open access
to switches and routers can be provided, thereby
enabling third party software providers to enter the
market for telecommunications software. The
Opensig community argues that by “opening up” the
switches in this manner, the development of new
and distinct architectures and services (e.g., virtual
networking [34]) can be realized. Open signaling as
the name suggests takes a telecommunications
approach to the problem of making the network
programmable. Here, there is a clear distinction
between transport, control and management that
underpin programmable networks and an emphasis
on service creation with QOS. Recently, the IEEE
Project 1520 [9] on Programmable Interfaces for
Networks is pursuing the Opensig approach in an
attempt to standardize programming interfaces for
ATM switches, IP routers and mobile
telecommunications networks. Physical network
devices are abstracted as distributed computing
objects (e.g. virtual switches [15], switchlets [33],
and virtual base stations [6]) with well-defined open
programmable interfaces. These open interfaces

allow service providers to manipulate the states of
the network using middleware toolkits (e.g.,
CORBA) in order to construct and manage new
network services.

The AN community advocates the dynamic
deployment of new services at runtime mainly
within the confines of existing IP networks. The
level of dynamic runtime support for new services
goes far beyond that proposed by the Opensig
community, especially when one considers the
dispatch, execution and forwarding of packets based
on the notion of “active packets”. In one extreme
case of active networking, “capsules” [42] comprise
executable programs, consisting of code (for
example Java code) and data. In active networks,
code mobility represents the main vehicle for
program delivery, control and service construction.
The granularity of control can range from the packet
and flow levels through the installation of
completely new switchware [3]. The term
‘granularity of control’ [12] refers to the scope of
switch/router behavior that can be modified by a
received packet. At one extreme, a single packet
could boot a complete software environment seen by
all packets arriving at the node. At the other
extreme, a single packet (e.g., a capsule) can modify
the behavior seen only by that packet. Active
networks allow the customization of network
services at packet transport granularity, rather than
through a programmable control plane. Active
networks offer maximum flexibility in support of
service creation but with the cost of adding more
complexity to the programming model. The AN
approach is, however, an order of magnitude more
dynamic than Opensig’s quasi-static network
programming interfaces.

Both communities share the common goal to go
beyond existing approaches and technologies for
construction, deployment and management of new
services in telecommunication networks. Both
movements include a broad spectrum of projects
with diverse architectural approaches. For example,
few AN projects consider every packet to be an
active capsule and similarly few Opensig projects
consider programmable network interfaces to be
static. The Opensig approach, however, clearly
separates network control from information
transport and is primarily focused on programmable
switches that provide some level of QOS support. In

contrast, projects under the AN umbrella have
historically been focused on IP networks, where the
control and data paths are combined.

3. PROGRAMMABLE NETWORKING MODEL

3.1 Communications and Computation

A programmable network is distinguished from any
other networking environment by the fact that it can
be programmed from a minimal set of APIs from
which one can ideally compose an infinite spectrum
of higher level services. We present a generalized
model for programmable networks as a three-
dimensional model illustrated in Figure 1. This
model shows the Internet reference model (viz.
application, transport, network, link layers)
augmented with transport1, control and management
planes. The division between transport, control and
management allows our model to be generally
applicable to telecommunications and Internet
technologies. The notion of the separation between
transport, control and management is evident in
architectures. In the case of Internet there is a single
data path but clearly one can visualize transport
(e.g., video packets), control (e.g., RSVP) and
management (e.g., SMNP) mechanisms. In the case
of telecommunication networks there is typically
support in the architecture for transport, control and
management functions. This division is motivated
by the different ways these networking functions
utilize the underlying hardware and by the distinct
time scales over which they operate. In both cases,
the planes of our generalized model remain neutral
supporting the design space of different networking
technologies.

The programmability of network services is
achieved by introducing computation inside the
network, beyond the extent of the computation
performed in existing routers and switches. To
distinguish the notion of a “programmable network
architecture” from a “network architecture”, we
have extended the communication model and
augmented it with a computation model, explicitly
acknowledging the programmability of network
architectures. We can view the generalized model
for programmable networks as comprising

1 In this case planes collectively represent cross-layer services

and protocols.

conventional communication, encompassing the
transport, control and management planes, and
computation as well, as illustrated in Figure 1.
Collectively, the computation and communication
models make up a programmable network. The
computation model provides programmable support
across the transport, control and management
planes, allowing a network architect to program
individual layers (viz. application, transport,
network and link layers) in these planes. Another
view is that programmable support is delivered to
the transport, control and management planes
through the computation model.

Figure 1: Computation and Communication Models

In Figure 2, an alternative view of the generalized
model is shown. The key components of the
computation model are represented as a distributed
network programming environment and a set of
“node kernels”2. Node kernels are node operating
systems realizing resource management. Node
kernels have local significance only, that is, they
manage single node resources, potentially shared by
multiple programmable network architectures. The
network programming environment provides
middleware support to distributed network
programming services. Figure 2 illustrates the
separation of switching hardware from programming
and communication software. Two sets of interfaces
are exposed. The first set of interfaces represents the
network programming interfaces between network
programming environments and programmable

2 We borrow the term node kernel from the work on NodeOS

[40] and broadband kernels [30] by the active networking and
Opensig communities, respectively.

network architectures. The lower set of interfaces
represents the node interfaces between node kernels
and network programming environments. We
believe that there needs to be some agreement or
standardization of these interfaces to allow
platform-independent network programming. This
is likely to happen through a number of forums, e.g.,
IEEE Programmable Interfaces for Networks [9],
DARPA Active Networks [20], Multiservice
Switching Forum [38], OPENSIG [39] and IETF
(e.g., the new work item on GSMP) or by the
emerging new programmable network industries
[48] [19].

Research on programmable networks is focused on
all facets of this model. Different programming
methodologies, levels of programmability, and
communication technologies have been investigated.
Some projects, especially from the Opensig
community have placed more emphasis on API
definitions. Others focus on issues related to code
mobility or contribute to the application domain.
Dynamic “plug-ins” have been investigated for the
construction or potential extension of new protocols
or applications. In what follows, we provide a more
detailed overview of the components in our
generalized model. It is our belief that independent
contributions to the field are beginning to converge
and it is our intention to indicate this convergence
by way of survey.

3.2 Node Kernel

Many node vendors incorporate operating system
support into their switches and routers to handle
communication functions of network nodes, e.g.
CISCO routers use the IOS environment and ATML
ATM switches use the ATMOS micro-kernel.
Typically, these node operating systems support a
variety of communications activities, e.g., signaling,
control and management processes, inter-process
communication, forwarding functions, and
downloading of new boot images. Currently, these
node operating systems are closed to third party
providers because of their proprietary nature, and
they are limited in their support for evolving
network programming environments. While the idea
of introducing computation power into nodes is not
new, there is a greater need for computation
elements to abstract node functionality and allow it
to be open and programmable. The computation

transport plane

control plane

m
anagem

ent plane

application
layer

transport
layer

network
layer
link

layer

model

communication

model

computation

model, introduced in the previous section, enables
the programmability of the communication model
and requires low-level programmable support for
communication abstractions (e.g., packets, flows,
tunnels, virtual paths), dynamic resource
partitioning and security considerations.

We describe this low-level programming
environment that runs on switch/routers as the node
kernel. The node kernel represents the lowest level
of programmability, providing a small set of node
interfaces. These interfaces support the
manipulation of the node state (e.g., accessing and
controlling the node resources) and the invocation of
communication services (e.g. communication
abstractions and security). The node kernel is
responsible for sharing node computational (e.g.,
sharing the CPU) and communication resources,
(e.g., partitioning the capacity of a multiplexer), as
well supporting core security services. A node
kernel may operate on any type of network node,
end-system or device, for example, IP router, ATM
switch, or base station. It may also provide access to
dedicated hardware offering fast packet processing
services to network programming environments. A
node kernel has local significance only, providing
the network programming environment with a set of
low-level programming interfaces, that are used by
network architects to program network architectures
in a systematic manner.

3.3 Network Programming Environment

Network programming environments support the
construction of networks, enabling the dynamic
deployment of network services and protocols.
Network programming environments support
different levels of programmability, programming
methodologies, networking technologies and
application domains. Network programming

environments operate over a set of well-defined
node kernel interfaces offering distributed toolkits
for the realization of programmable network
architectures through the deployment of distributed
service components. In this sense, one can view
network-programming environments as the
“middleware glue” between executing network
architectures and the node kernels themselves, as
illustrated in Figure 2. Network programming
environments provide network architect/designers
with the necessary environment and tools for
building distinct network architectures that run in a
distributed fashion on multiple node kernels. In this
sense network programming environments support
the programming of network architectures in the
same way that software development kits (SDKs)
allow developers to build new applications that run
on native operating systems.

This “middleware glue” can be constructed from
scratch or be built on top of well-defined distributed
object computing environments. For example, the
xbind [15] and mobiware [6] toolkits address
programmability of broadband and mobile networks,
respectively, and are built using COBRA
middleware technology. Other approaches use
mobile code technology and virtual machines to
dynamically program the network. For example, the
Active Network Transport System (ANTS)
incorporates capsule technology [45], leveraging the
Java Virtual Machine for new protocol deployment.
Both approaches result in toolkits that execute on
node kernels offering a high level of
programmability for service creation and
deployment of distinct network architectures.

Network programming environments offer a set of
open interfaces and services to network
designers/architects to program distinct network

node kernel

node HW

node kernel

node HW

network programming environment

network
programming
interfaces

node
interfaces

programmable network architecture

model
computation

model
communication

Figure 2: Generalized Model for Programmable Networks

architectures. Network programming environments
support the construction of network architectures
through service composition, service control, and
resource and state management. Services offered by
network programming environments can range from
simple Remote Procedure Calling (RPC) between
distributed network objects to sophisticated dynamic
loading of mobile code and fast compilation of
intermediate machine-independent representation.
Different types of network programming
environments offer different levels of
programmability to network architectures. For
example, mobile code technologies offer the most
radical solution to the development of services in
programmable networks when compared to RPC-
based object middleware. We identify the ‘level of
programmability’ as an important characteristic of
programmable networks.

3.4 Programmable Network Architecture

The goal of network programming environments is
to provide the necessary support to dynamically
program new network architectures. Network
programming environments do not offer core
network algorithms (e.g., routing, signaling) that
define and differentiate network architecture in the
same way that operating systems do not embed
application specific algorithms in the kernel. Rather,
a network programming environment offers a set of
network programming interfaces for constructing
network architectures. Philosophically this is similar
to constructing new applications using software
development kits. However in this case the
application is the network architecture.

We broadly define network architecture as having
the following attributes3:

• network services, which the network
architecture realizes as a set of distributed
network algorithms and offers to the end
systems;

• network algorithms, which includes transport,
signaling/control and management mechanisms;

3 This is of course an over simplification of a complex system.

Our goal here is to be illustrative in support of the generalized
model and not definitive regarding a definition of network

architecture.

• multiple time scales, which impact and
influence the design of the network algorithms;
and

• network state management, which includes the
state that the network algorithms operate on
(e.g., switching, routing, QOS state) to support
consistent services.

Network programming environments offer creation
and deployment tools and mechanisms that allow
network architects to program and build new
network architectures. Programmable network
architectures are realized through the deployment of
a set of network algorithms that take into account
network state and reflect the time scales over which
these algorithms operate. Network algorithms are
potentially as diverse as the application base that
exists in the end-systems today. Programmable
network architectures may range from simple best-
effort forwarding architectures to complex mobile
protocols that respond dynamically to changes in
wireless QOS and connectivity. Given this diversity,
it is necessary that both network programming
environments and node kernels are extensible and
programmable to support a large variety of
programmable network architectures.

4. PROGRAMMABLE NETWORKS

Following on from the discussion of the generalized
model for programmable networks, we now survey a
number of programmable networking projects that
have emerged in the literature. We attempt to
identify essential contributions of the various
projects to the field in terms of a set of
characteristics. The survey is not intended to
represent an exhaustive review of the field4. Rather,
we discuss a set of projects that are representative of
each programmable network characteristic
introduced, focusing on the pertinent and novel
features of each project and then, in Section 5, we
compare them to the generalized model introduced
in the preceding section.

4.1 Characteristics

A number of research groups are actively designing
and developing programmable network prototypes.
Each group tends to use its own terminology.

4 For a survey on active networks see [43].

However, on examination one can observe a
common set of characteristics that govern the
construction of these programmable networks. We
use these characteristics to better understand the
field:

• networking technology, which implicitly limits
the programmability that can be delivered to
higher levels. For example, some technologies
are more QOS programmable (e.g., ATM),
scalable (e.g., Internet) or limited in bandwidth
availability (e.g., mobile networks);

• level of programmability, which indicates the
method, granularity and time scale over which
new services can be introduced into the network
infrastructure. This in turn is strongly related to
language support, programming methodology or
middleware adopted. For example, distributed
object technology can be based on RPC [46] or
mobile code [45] methodologies resulting in
quasi-static or dynamically composed network
programming interfaces;

• programmable communications abstractions,
which indicate the level of virtualization and
programmability of networking infrastructure
requiring different middleware and potentially
network node support (e.g., switch/router, base
station). For example, programmable
communications abstractions include virtual
switches [30], switchlets [33], active nodes [40],
universal mobile channels [32] and virtual
active networks [21]; and

• architectural domain, which indicates the
targeted architectural or application domain
(e.g., signaling, management, transport). This
potentially dictates certain design choices and
impacts the construction of architectures, and
services offered, calling for a wide range of
middleware support. Examples include,
composing application services [4],
programmable QOS control [30] and network
management [41]).

4.2 Networking Technology

A number of programmable network prototypes
have been targeted to specific networking
technologies. The motivation behind these projects
is to make the targeted networking technology more

programmable in an attempt to overcome particular
deficiencies associated with supporting
communication services.

4.2.1 IP networks: Smart Packets

The University of Kansas has developed smart
packets, a code-based specialized packet concept
implemented in a programmable IP environment
[29]. Smart packets represent elements of in-band or
out-of-band mobile code based on Java classes.
Smart packets propagate state information in the
form of serialized objects and carry identifiers for
authentication purposes. An active node architecture
supports smart packets by exposing a set of resource
abstractions and primitives made accessible to smart
packets. Active nodes incorporate:

• resource controllers, which provide interfaces to
node resources;

• node managers, which impose static limits on
resource usage; and

• state managers, which control the amount of
information smart packets may leave behind at
an active node.

The active node supports a feedback-scheduling
algorithm to allow partitioning of CPU cycles
among competing tasks and a credit-based flow-
control mechanism to regulate bandwidth usage.
Each smart packet is allocated a single thread of
CPU and some amount of node resources. Active
nodes also include router managers that support both
default routing schemes and alternative routing
methods carried by smart packets. The smart packets
testbed has been used to program enhanced HTTP
and SMTP services that show some performance
benefits over conventional HTTP and SMTP by
reducing excessive ACK/NAK responses in the
protocols. A beacon routing scheme supports the use
of multiple routing algorithms within a common
physical IP network based on smart packets.

4.2.2 ATM Networks: xbind

ATM technology provides connection-oriented
communications and has been tailored towards QOS
provisioning of multimedia networks. Although
essential features of QOS provisioning, such as
admission control and resource reservation, are
inherently supported by the ATM technology, its

signaling component is unsuitable for practical
usage due to its significant complexity. xbind [15]
overcomes these service creation limitations by
separating control algorithms from the
telecommunications hardware. Emphasis is placed
on the development of interfaces to provide open
access to node resources and functions, using virtual
switch and virtual link abstractions. The interfaces
are designed to support the programmability of the
management and control planes in ATM networks.

The xbind broadband kernel [47], which is based on
the XRM model [15], incorporates three network
models abstracting a broadband network,
multimedia network and service network. The
multimedia network supports programmable
network management, network control, state
management, connection management and media
stream control. The xbind testbed incorporates
multivendor ATM switches using open signaling
and service creation to support a variety of
broadband services, transport and signaling systems
with QOS guarantees.

4.2.3 Mobile Networks: Mobiware

Mobiware [6] is a software-intensive open
programmable mobile architecture extending the
xbind model of programmability to packet based
mobile networks for the delivery of adaptive mobile
services over time-varying wireless links. Mobiware
incorporates object-based, CORBA programmability
for the control plane but also allows active transport
objects (i.e., code plug-ins) based on Java byte code
to be loaded into the data path. At the transport
layer, an active transport environment injects
algorithms into base stations providing value-added
service support at strategic points inside the
network. At the network layer, a set of distributed
objects that run on mobile devices, access points and
mobile-capable switches, interact with each other to
support programmable handoff control and different
styles of QOS adaptation. The MAC layer has also
been made programmable.

The following mobile services have been
programmed using the mobiware toolkit [37]:

• QOS-controlled handoff, which supports
automatic media scaling and error control based
on an adaptive-QOS API and wireless channel
conditions;

• mobile soft-state, which provides mobile
devices with the capability to respond to time
varying QOS through a periodic reservation and
renegotiation process; and

• flow bundling, which supports fast handoff in
cellular access networks.

The mobiware testbed supports a variety of scalable
audio and video services to mobile devices in
addition to traditional web based data services.

4.3 Level of Programmability

The level of programmability expresses the
granularity at which new services can be introduced
into the network infrastructure. One can consider a
spectrum of possible choices from highly dynamic
to more conservative levels of programmability. At
one end of this spectrum, capsules [42] carry code
and data enabling the uncoordinated deployment of
protocols. Capsules represent the most dynamic
means of code and service deployment into the
network. At the other end of the spectrum there are
more conservative approaches to network
programmability based on quasi-static network
programming interfaces using RPCs between
distributed controllers [46] to deploy new services.
Between the two extremes lie a number of other
methodologies combining dynamic plug-ins, active
messaging and RPC. Different approaches have a
direct bearing on the speed, flexibility, safety,
security and performance at which new services can
be introduced into the infrastructure.

4.3.1 Capsules: ANTS

ANTS [45], developed at MIT, enables the
uncoordinated deployment of multiple
communication protocols in active networks
providing a set of core services including support
for the transportation of mobile code, loading of
code on demand and caching techniques. These core
services allow network architects to introduce or
extend existing network protocols. ANTS provides a
network programming environment for building new
capsule-based programmable network architectures.
Examples of such programmed network services
include enhanced multicast services, mobile IP
routing and application-level filtering. The ANTS
capsule-driven execution model provides a
foundation for maximum network programmability

in comparison to other API approaches. Capsules
serve as atomic units of network programmability
supporting processing and forwarding interfaces.
Incorporated features include node access, capsule
manipulation, control operations and soft-state
storage services on IP routers. Active nodes execute
capsules and forwarding routines, maintain local
state and support code distribution services for
automating the deployment of new services. The
ANTS toolkit also supports capsule processing
quanta as a metric for node resource management.

4.3.2 Active Extensions: Switchware

Switchware [3], being developed at University of
Pennsylvania, attempts to balance the flexibility of a
programmable network against the safety and
security requirements needed in a shared
infrastructure such as the Internet. The Switchware
toolkit allows the network architects to trade-off
flexibility, safety, security, performance and
usability when programming secure network
architectures. At the operating system level, an
active IP-router component is responsible for
providing a secure foundation that guarantees
system integrity. Active extensions can be
dynamically loaded into secure active routers
through a set of security mechanisms that include
encryption, authentication and program verification.
The correct behavior of active extensions can be
verified off-line by applying ‘heavyweight’
methods, since the deployment of such extensions is
done over slow time scales.

Active extensions provide interfaces for more
dynamic network programming using active packets.
Active packets can roam and customize the network
in a similar way as capsules do. Active packets are
written in functional languages (e.g., Caml and
PLAN [28]) and carry lightweight programs that
invoke node-resident service routines supported by
active extensions. There is much less requirement
for testing and verification in the case of active
packets than for active extensions, given the
confidence that lower level security checks have
already been applied to active extensions. Active
packets cannot explicitly leave state behind at nodes
and they can access state only through clearly
defined interfaces furnished by active extension
software. Switchware applies heavyweight security
checks on active extensions, which may represent

major releases of switch code, and more lightweight
security checks on active packets. This approach
allows the network architect to balance security
concerns against performance requirements. The
security model of Switchware considers public,
authenticated and verified facilities.

4.3.3 Composition Languages: CANEs

Capsules, active messages and active extensions
promote the creation of new services through the
composition of new building blocks or by adding
components to existing services. The CANEs
project led by researchers at University of Kentucky
and Georgia Tech. aim to define and apply service
composition rules as a general model for network
programmability [14]. A composition method is
used to construct composite network services from
components. A composition method is specified as a
programming language with enhanced language
capabilities that operates on components to
construct programmable network services.
Attributes of a good composition method include
high performance, scalability, security and ease of
management. Features of well-structured
composition methods combine:

• control on the sequence in which components
are executed;

• control on shared data among components;

• binding times, which comprise composite
creation and execution times;

• invocation methods, which are defined as events
that cause a composite to be executed; and

• division of functionality among multiple
components, which may either reside at an
active node or be carried by packets.

PLAN, ANTS and Netscript [21] (described in
Section 4.4.2) are examples of composition
methods. LIANE is proposed within the CANEs
project as a composition method that incorporates
all the aforementioned features. The key idea of
LIANE is that services are composed from basic
underlying programs that contain processing slots.
Users insert programs for customization in these
slots. The CANEs definition of service composition
encompasses the Opensig approach to network
programmability indicating how different

approaches to programmable networking
complement each other by addressing the same goal
from different perspectives.

4.3.4 Network APIs: xbind

The xbind broadband kernel is based on a binding
architecture and a collection of node interfaces
referred to as Binding Interface Base (BIB) [2]. The
BIB provides abstractions to the node state and
network resources. Binding algorithms run on top of
the BIB and bind QOS requirements to network
resources via abstractions. The BIB is designed to
support service creation through high-level
programming languages. The interfaces are static
while supporting universal programmability. The
quasi-static nature of the BIB interfaces, allow for
complete testing and verification of the correctness
of new functions, on emulation platforms, before
any service is deployed. The concept of active
packets or capsules containing both programs and
user data is not considered in the xbind approach to
programmability. Rather, communication is
performed using RPCs between distributed objects
and controllers based on OMG’s CORBA. The
approach taken by xbind promotes interoperability
between multi-vendor switch market supporting
resource sharing and partitioning in a controlled
manner.

4.4 Programmable Communications
Abstractions

Abstractions and partitioning of resources are
essential concepts in programmable networking.
Programmable communications abstractions may
range from node resources to complete
programmable virtual networks. Other
programmable communications abstractions include
programmable virtual routers, virtual links and
mobile channels. Abstracting the network
infrastructure through virtualization and making it
programmable is a major contribution of the field
that encompasses a number of different projects.

4.4.1 Active Node Abstractions: NodeOS

Members of the DARPA active network program
[20] are developing an architectural framework for
active networking [11]. A node operating system
called NodeOS [40] represents the lowest level of
the framework. NodeOS provides node kernel

interfaces at routers utilized by multiple execution
environments, which support communication
abstractions such as threads, channels and flows.
Development of an execution environment is a
nontrivial task and it is anticipated [12] that the total
number of execution environments will not be large.
Encapsulation techniques based on an active
network encapsulation protocol (ANEP) [5] support
the deployment of multiple execution environments
within a single active node. ANEP defines an
encapsulation format allowing packets to be routed
through multiple execution environments coexisting
on the same physical nodes. Portability of execution
environments across different types of physical
nodes is accomplished by the NodeOS, by exposing
a common, standard interface. This interface defines
four programmable node abstractions: threads,
memory, channels and flows. Threads, memory and
channels abstract computation, storage, and
communication capacity used by execution
environments, whereas flows abstract user data-
paths with security, authentication and admission
control facilities. An execution environment uses the
NodeOS interface to create threads and associate
channels with flows. The NodeOS supports QOS
using scheduling mechanisms that regulate the
access to node computation and communication
resources. The architectural framework for active
networking is being implemented in the ABONE
testbed [1] allowing researchers to prototype new
active architectures.

4.4.2 Virtual Active Networks: Netscript

The Netscript project [49] at Columbia University
takes a functional language-based approach to
capture network programmability using universal
language abstractions. Netscript is a strongly typed
language that creates universal abstractions for
programming network node functions. Unlike other
active network projects that take a language-based
approach Netscript is being developed to support
Virtual Active Networks as a programmable
abstraction. Virtual Active Network [21]
abstractions can be systematically composed,
provisioned and managed. In addition, Netscript
automates management through language extensions
that generate MIBs. Netscript leverages earlier work
on decentralized management and agent
technologies that automatically correlate and

analyze the behavior monitored by active MIB
elements. A distinguishing feature of Netscript is
that it seeks to provide a universal language for
active networks in a manner that is analogous to
postscript. Just as postscript captures the
programmability of printer engines, Netscript
captures the programmability of network node
functions. Netscript communication abstractions
include collections of nodes and virtual links that
constitute virtual active networks.

4.4.3 Virtual ATM Networks: Tempest

The Tempest project at the University of Cambridge
[34] has investigated the deployment of multiple
coexisting control architectures in broadband ATM
environments. Novel technological approaches
include the usage of software mobile agents to
customize network control and the consideration of
control architectures dedicated to a single service.
Tempest supports two levels of programmability
and abstraction. First, switchlets, which are logical
network elements that result from the partition of
ATM switch resources, allow the introduction of
alternative control architectures into an operational
network. Second, services can be refined by
dynamically loading programs that customize
existing control architectures. Resources in an ATM
network can be divided by using two software
components: a switch control interface called ariel
and a resource divider called prospero. Prospero
communicates with an ariel server on an ATM
switch, partitions the resources and exports a
separate control interface for each switchlet created.
A network builder creates, modifies and maintains
control architectures.

4.5 Architectural Domains

Most programmable network projects are related to
the introduction of services into networks. However,
most projects are targeted to a particular
architectural domain (e.g., QOS control, signaling,
management, transport and applications). In what
follows we discuss three projects that address the
application, resource management and network
management domains.

4.5.1 Application-Level: Active Services

In contrast to the main body of research in active
networking, Amir et al. [4] call for the preservation

of all routing and forwarding semantics of the
Internet architecture by restricting the computation
model to the application layer. The Active Services
version 1 (AS1) programmable service architecture
enables clients to download and run service agents
at strategic locations inside the network. Service
agents called “servents” are restricted from
manipulating routing tables and forwarding
functions that would contravene the IP-layer
integrity. The AS1 architecture contains a number of
architectural components:

• a service environment, which defines a
programming model and a set of interfaces
available to servents;

• a service-location facility, which allows clients
to ‘rendezvous’ with the AS1 environment by
obtaining bootstrapping and configuration
mechanisms to instantiate servents5;

• a service management system, which allocates
clusters of resources to servents using admission
control and load balancing of servents under
high-load conditions;

• a service control system, which provides
dynamic client control of servents once
instantiated within an AS1 architecture;

• a service attachment facility, which provides
mechanisms for clients that can not interact
directly with the AS1 environment through soft-
state gateways; and

• a service composition mechanism, which allows
clients to contact multiple service clusters and
interconnect servents running within and across
clusters.

The AS1 architecture is programmable at the
application layer supporting a range of application
domains. In [4], the MeGa architecture is
programmed using AS1 to support an active media
gateway service. In this case, servents provide

5 Servents are launched into the network by an active service

control protocol (ASCP), which includes an announce-listen
protocol for servers to manage session state consistency, soft-
state to manage expiration due to timeouts and multicast
damping to avoid flooding the environment with excessive
servents.

support for application-level rate control and
transcoding techniques.

4.5.2 Resource Management: Darwin

The Darwin Project [17] at Carnegie Mellon
University is developing a middleware environment
for the next generation IP networks with the goal of
offering Internet users a platform for value-added
and customizable services. The Darwin project is
focused toward customizable resource management
that supports QOS. Architecturally, the Darwin
framework includes Xena, a service broker that
maps user requirements to a set of local resources,
resource managers that communicate with Xena
using the Beagle signaling protocol, and hierarchical
scheduling disciplines based on service profiles. The
Xena architecture takes the view that the IP
forwarding and routing functions should be left in
tact and only allows restricted use of active packet
technology in the system.

Alongside the IP stack, Darwin introduces a control
plane that builds on similar concepts such as those
leveraged by broadband kernels [30] and active
services [4]. The Xena architecture is made
programmable and incorporates active technologies
in a restricted fashion. A set of service delegates
provides support for active packets. Delegates can
be dynamically injected into IP routers or servers to
support application specific processing (e.g.,
sophisticated semantic dropping) and value-added
services (e.g., transcoders). A distinguishing feature
of the Darwin architectural approach is that
mechanisms can be customized according to user
specific service needs defined by space,
organization and time constraints. While these
architectural mechanisms are most effective when
they work in unison each mechanism can also be
combined with traditional QOS architecture
components. For example, the Beagle signaling
system could be programmed to support RSVP
signaling for resource reservation, while the Xena
resource brokers and hierarchical schedulers could
support traffic control.

4.5.3 Network Management: Smart Packets

The Smart Packets Project [41] (not to be confused
with University of Kansas smart packets) at BBN
aims to improve the performance of large and
complex networks by leveraging active networking

technology. Smart Packets are used to move
management decision making points closer to the
nodes being managed, target specific aspects of the
node for management and abstract management
concepts to language constructs. Management
centers can send programs to managed nodes. Thus
the management process can be tailored to the
specific interests of the management center reducing
the amount of back traffic and data requiring
examination. A smart packet consists of a header
and payload encapsulated using ANEP [5]. Smart
packets may carry programs to be executed, results
from execution, informational messages or reports
on error conditions. Smart Packets are written in two
programming languages:

• sprocket, which is a high-level C-like, language
with security threatening constructs, and

• spanner, which is a low-level assembly-like
language, that can result in tighter, optimized
code.

Sprocket programs are compiled into spanner code,
which in turn is assembled into a machine-
independent binary encoding placed into smart
packets. Meaningful programs perform networking
functions and MIB information retrieval.

5. DISCUSSION

We have introduced a set of characteristics and a
generalized model for programmable networks to
help understand and differentiate the diverse set of
programmable network projects discussed in this
paper. In what follows we provide a brief
comparison of these projects and other work in the
field.

5.1 Comparison

In this section we present a simple qualitative
comparison of the programmable networks surveyed
in Section 4. Table 1 presents the comparison with
respect to the characteristics and generalized model
for programmable networks presented in Section 3
and 4, respectively.

5.2 Open Programmable Interfaces

The use of open programmable network interfaces is
evident in many programmable network projects
discussed in this survey. Open interfaces provide a

foundation for service programming and the
introduction of new network architectures.

The xbind broadband kernel supports a
comprehensive Binding Interface Base using
CORBA/IDL to abstract network ATM devices,
state and control. A number of other projects
focussed on programming IP networks (e.g., ANTS,
Switchware, CANEs) promote the use of open APIs
that abstract node primitives, enabling network
programmability and the composition of new
services. Many network programming environments
shown in Table 1 take fundamentally different
approaches to providing open interfaces for service
composition. The programming methodology
adopted (e.g., distributed object technology based on
RPC, mobile code or hybrid approaches) has a
significant impact on an architecture’s level of
programmability; that is, the granularity, time scales
and complexity incurred when introducing new
APIs and algorithms into the network.

Two counter proposals include the xbind and ANTS
APIs. While the ANTS approach to the deployment
of new APIs in extremely flexible presenting a
highly dynamic programming methodology it
represents a complex programming model in
comparison to the simple RPC model. In contrast,
the xbind binding interfaces and programming
paradigm is based on a set of CORBA IDL and RPC
mechanisms. In comparison to capsule-based
programmability the xbind approach is rather static
in nature and the programming model less complex.
These approaches represent two extremes of
network programmability.

One could argue that quasi-static APIs based on
RPC is a limited and restrictive approach. A counter
argument is that the process of introducing and
managing APIs is less complex than the capsule-
based programming paradigm, representing a more
manageable mechanism for service composition and
service control. Similarly one could argue that
active message and capsule-based technologies are
more ‘open’ because of the inherent flexibility of
their network programming models given that
capsules can graft new APIs onto routers at runtime.

The xbind approach lacks this dynamic nature at the
cost of a simplified programming environment.
Other projects adopt hybrid approaches. For
example the mobiware toolkit combines the static
APIs with the dynamic introduction of Java service
plug-ins when needed [7]. A clear movement of the
field is to open up the networks and present APIs for
programming new architectures, services and
protocols. As we discuss in the next section the field
is arguing that the switches, routers and base
stations should open up ultimately calling for open
APIs everywhere.

5.3 Virtualization and Resource Partitioning

Many projects use virtualization techniques to
support the programmability of different types of
communication abstractions. The Tempest
framework [33] presents a good example of the use
of virtualization of the network infrastructure. Low-
level physical switch interfaces are abstracted
creating sets of interfaces to switch partitions called
switchlets. Switchlets allow multiple control
architectures to coexist and share the same physical
switch resources (e.g., capacity, switching tables,
name space, etc.). Typically, abstractions found in
programmable networks are paired with safe
resource partitioning strategies that enable multiple
services, protocols and different programmable
networking architectures to coexist. Virtualization
of the network in this manner presents new levels of
innovation in programmable networks that have not
been considered before. All types of network
components can be virtualized and made
programmable from switches and links [15] to
switchlets [33], active nodes [40], routelets [13] and
virtual networks [21], [34], [13].

The NodeOS interface [40] provides a similar
abstraction to node resources. The use of open
interfaces allows multiple network programming
environments (or execution environments using
active networking terminology) to coexist within a
common physical node architecture. In this case, the
ANEP [5] protocol provides encapsulation as a
mechanism for delivering packets to distinct
execution environments.

 Table 1: Comparison of Programmable Networks

Using encapsulation in this manner allows for
different overlay execution environments (e.g.,
ANTS, Switchware, or Netscript) to execute on the
same router using a single, common node kernel.
The notion of virtualization is not a new concept,
however. Similar motivation in the Internet
community has led to the advent of the Mbone. New
directions in the virtualization of the Internet have
prompted the proposal for X-bone [44], shown in
Table 1, which will provide a network programming
environment capable of dynamically deploying
overlay networks. As Table 1 illustrates, other
projects such as Supranet [23] advocate tunneling
and encapsulation techniques for the separation and
privacy among coexisting, collaborative
environments.

5.4 Programmable Virtual Networking

The dynamic composition and deployment of new
services can be extended to include the composition
of complete network architectures as virtual
networks. The Netscript project [49] supports the
notion of Virtual Active Networks [21] over IP
networks. Virtual network engines interconnect sets
of virtual nodes and virtual links to form virtual
active networks. The Tempest framework [34]
supports the notion of virtual networks using safe
partitioning over ATM hardware. Tempest offers
two levels of programmability. First, network
control architectures can be introduced over long
time scales through a ‘heavyweight’ deployment
process. Second, ‘lightweight’ application-specific
customization of established control architectures
take place over faster time scales. The abstraction
of physical switch partitions within the Tempest
framework has led to the implementation of multiple
coexisting control architectures. The Tempest
strategy aims to address QOS through connection-
oriented ATM technology and investigates physical
resource sharing techniques between alternative
control architectures. Both Darwin [17] and
Netscript [49] projects support the notion of sharing
the underlying physical infrastructure in a
customized way as well. As discussed in the
previous section, the NodeOS [40] project also
provides facilities for coexisting execution
environments.

5.5 Spawning Networks

In [13] we describe spawning networks, a new class
of programmable networks that automate the

creation, deployment and management of distinct
network architectures “on-the-fly”. The term
“spawning” finds a parallel with an operating
system spawning a child process, typically operating
over the same hardware. We envision programmable
networks as having the capability to spawn not
processes but complex network architectures [31].
The enabling technology behind spawning is the
Genesis Kernel [13], a virtual network operating
system that represents a next-generation approach to
the development of network programming
environments.

A key capability of Genesis is its ability to support a
virtual network life cycle process for the creation
and deployment of virtual networks through:

• profiling, which captures the “blueprint” of a
virtual network architecture in terms of a
comprehensive profiling script;

• spawning, which executes the profiling script
to set-up network topology, and address
space and bind transport control and
management objects into the physical
infrastructure; and

• management, which supports virtual network
architecting and resource management.

Virtual networks, spawned by the Genesis Kernel
operate in isolation with their traffic being carried
securely and independently from other networks.
Furthermore, “child” networks, created through
spawning by “parent” networks inherit architectural
components from their parent networks, including
life cycle support. Thus a child virtual network can
be a parent (i.e., provider) to its own child networks,
creating a notion of “nested virtual networks” within
a virtual network.

6. CONCLUSION

In this paper, we have discussed the state-of-the-art
in programmable networks. We have presented a set
of characteristics and generalized model for
programmable networks, which has allowed us to
better understand the relationship between the
existing body of work on programmable networking.
The generalized model comprises communication
and computation models. By “grafting” a
computation model to the communication model a
network architecture can be made programmable.
The generalized model includes node kernels to
manage network node resources, and network

programming environments that provide tools for
programming network architectures.

We believe that a number of important innovations
are creating a paradigm shift in networking leading
to higher levels of network programmability. These
are:

• separation of hardware from software;

• availability of open programmable interfaces;

• virtualization of the networking infrastructure;

• rapid creation and deployment of new network
services; and

• safe resource partitioning and coexistence of
distinct network architectures over the same
physical networking hardware.

Programmable networks provide a foundation for
architecting, composing and deploying virtual
network architectures through the availability of
open programmable interfaces, resource partitioning
and the virtualization of the networking
infrastructure. We believe that a key challenge is the
development of programmable virtual networking
environments based on these foundations.

7. ACKNOWLEDGEMENTS

This work is supported in part by the National
Science Foundation (NSF) under CAREER Award
ANI-9876299 and with support from COMET
Group industrial sponsors. In particular, we would
like to thank the Intel Corporation, Hitachi Limited
and Nortel Networks for supporting the Genesis
Project. John B. Vicente (Intel Corp) would like to
thank the Intel Research Council for their support
during his visit with the Center for
Telecommunications Research, Columbia
University. Miki Kazuho (Hitachi, Ltd) would like
to express his thanks to Hitachi Ltd for their support
of his work on Programmable Networks at
Columbia University. Hermann G. De Meer is
grateful to Deutsche Forschungsgemeinschaft
(DFG) for providing his fellowship and research
grant Me 1703/2-1. Daniel A. Villela would like to
thank the National Council for Scientific and
Technological Development (CNPq-Brazil) for
sponsoring his scholarship at Columbia University
(ref. 200168/98-3).

8. REFERENCES

[1] ABONE, Active network Backbone,
http://www.csl.sri.com/ancors/abone/

[2] Adam, C.M., Lazar, A.A., Lim, K.-S., and
Marconcini, F., “The Binding Interface Base
Specification Revision 2.0”, OPENSIG
Workshop on Open Signalling for ATM,
Internet and Mobile Networks, Cambridge,
UK, April 1997.

[3] Alexander, D.S., Arbaugh, W.A., Hicks, M.A.,
Kakkar P., Keromytis A., Moore J.T., Nettles
S.M., and Smith J.M., “The SwitchWare
Active Network Architecture”, IEEE Network
Special Issue on Active and Controllable
Networks, vol. 12 no. 3, 1998.

[4] Amir E., McCanne S., and Katz R., “An Active
Service Framework and its Application to real-
time Multimedia Transcoding”, Proceedings
ACM SIGCOMM’ 98, Vancouver, Canada

[5] Alexander D.S., Braden B., Gunter C.A.,
Jackson W.A., Keromytis A.D., Milden G.A.,
and Wetherall D.A., “Active Network
Encapsulation Protocol (ANEP)”, Active
Networks Group Draft, July 1997

[6] Angin, O., Campbell, A.T., Kounavis, M.E.,
and Liao, R.R.-F., “The Mobiware Toolkit:
Programmable Support for Adaptive Mobile
Networking”, IEEE Personal Communications
Magazine, Special Issue on Adaptive Mobile
Systems, August 1998.

[7] Balachandran, A., Campbell, A.T., and
Kounavis, M.E, “Active Filters: Delivering
Scalable Media to Mobile Devices” , Proc.
Seventh International Workshop on Network
and Operating System Support for Digital
Audio and Video, St Louis, May, 1997.

[8] Bershad,B.N., et al., “Extensibility, Safety and
Performance in the SPIN Operating System”,
Fifth ACM Symposium on Operating Systems
Principles, Copper Mountain, December 1995.

[9] Biswas, J., et al., " The IEEE P1520 Standards
Initiative for Programmable Network
Interfaces” IEEE Communications Magazine,
Special Issue on Programmable Networks,
October, 1998.

[10] Braden,B., “Active Signaling Protocols”,
Active Networks Workshop, Tucson AZ, March
1998.

[11] Calvert, K. et al, “Architectural Framework for
Active Networks”, Active Networks Working
Group Draft, July 1998.

[12] Calvert, K. et. al, “Directions in Active
networks”, IEEE Communications Magazine,
Special Issue on Programmable Networks,
October 1998.

[13] Campbell A.T., De Meer H.G., Kounavis M.E.,
Miki K., Vicente J.B., and Villela D., “The
Genesis Kernel: A Virtual Network Operating
System for Spawning Network Architectures”,
Second International Conference on Open
Architectures and Network Programming
(OPENARCH), New York, 1999.

[14] "CANEs: Composable Active Network
Elements", http://www.cc.gatech.edu/
projects/canes/

[15] Chan, M.-C., Huard, J.-F., Lazar, A.A., and
Lim, K.-S., “On Realizing a Broadband Kernel
for Multimedia Networks”, 3rd COST 237
Workshop on Multimedia Telecommunications
and Applications, Barcelona, Spain, November
25-27, 1996.

[16] Chen and Jackson, Editorial, IEEE Network
Magazine, Special Issue on Programmable and
Active Networks, May 1998

[17] Chandra, P. et al., “Darwin: Customizable
Resource Management for Value-added
Network Services”, Sixth IEEE International
Conference on Network Protocols (ICNP’98),
Austin, October 1998.

[18] Coulson, G., et al., “The Design of a QOS-
Controlled ATM-Based Communications
System in Chorus”, IEEE Journal of Selected
Areas in Communications, vol.13, no.4, May
1995.

[19] Cplane Inc., www.cplane.com

[20] DARPA Active Network Program,
http://www.darpa.mil/ito/research/anets/project
s.html, 1996.

[21] Da Silva, S., Florissi, D. and Yemini, Y.,
“NetScript: A Language-Based Approach to
Active Networks”, Technical Report,
Computer Science Dept., Columbia University
January 27, 1998.

[22] Decasper, D., Parulkar, G., Plattner, B., “A
Scalable, High Performance Active Network
Node”, IEEE Network, January 1999.

[23] Delgrossi, L. and Ferrari D., “A Virtual
Network Service for Integrated-Services
Internetworks”, 7th International Workshop on
Network and Operating System Support for
Digital Audio and Video, St. Louis, May 1997.

[24] Engler, D.R., Kaashoek, M.F. and O’Toole ,J.,
“Exokernel: An Operating System Architecture
for Application-Level Resource Management”,
Fifth ACM Symposium on Operating Systems
Principles, Copper Mountain, December 1995.

[25] Feldmeier, D.C., at al. “Protocol Boosters”,
IEEE Journal on Selected Areas in
Communications, Special Issue on Protocol
Architectures for the 21st Century, 1998.

[26] Ferguson, P. and Huston, G., “What is a
VPN?”, OPENSIG’98 Workshop on Open
Signalling for ATM, Internet and Mobile
Networks, Toronto, October 1998.

[27] Hartman, J., et al., “Liquid Software: A New
Paradigm for Networked Systems”, Technical
Report 96-11, Dept. of Computer Science,
Univ. of Arizona, 1996.

[28] Hicks, M., et al., “PLAN: A Programming
Language for Active Networks”, Proc
ICFP’98, 1998.

[29] Kulkarni, A.B. Minden G.J., Hill, R., Wijata,
Y., Gopinath, A., Sheth, S., Wahhab, F., Pindi,
H., and Nagarajan, A., “Implementation of a
Prototype Active Network”, First International
Conference on Open Architectures and
Network Programming (OPENARCH), San
Francisco, 1998.

[30] Lazar, A.A.,“Programming Telecommunication
Networks”, IEEE Network, vol.11, no.5,
September/October 1997.

[31] Lazar, A.A., and A.T Campbell, “Spawning
Network Architectures”, Technical Report,
Center for Telecommunications Research,
Columbia University, 1997.

[32] Liao, R.-F. and Campbell, A.T., “On
Programmable Universal Mobile Channels in a
Cellular Internet”, 4th ACM/IEEE
International Conference on Mobile
Computing and Networking (MOBICOM’98) ,
Dallas, October, 1998

[33] Van der Merwe, J.E., and Leslie, I.M.,
“Switchlets and Dynamic Virtual ATM

Networks”, Proc Integrated Network
Management V, May 1997.

[34] Van der Merwe, J.E., Rooney, S., Leslie, I.M.
and Crosby, S.A., “The Tempest - A Practical
Framework for Network Programmability”,
IEEE Network, November 1997.

[35] DARPA Active Network Mail List Archives,
1996. http://www.ittc.ukans.edu/Projects/
Activenets

[36] Montz, A.B., et al., “Scout: A
Communications-Oriented Operating System”,
Technical Report 94-20, University of Arizona,
Dept. of Computer Science, June 1994.

[37] Mobiware Toolkit v1.0 source code
distribution http://www.comet.columbia.edu/
mobiware

[38] Multiservice Switching Forum (MSF) ,
www.msforum.org

[39] Open Signaling Working Group
comet.columbia.edu/opensig/

[40] Peterson L., “NodeOS Interface Specification”,
Technical Report, Active Networks NodeOS
Working Group, February 2, 1999

[41] Schwartz, B., Jackson, W.A., Strayer W.T.,
Zhou, W., Rockwell, R.D., and Partridge, C.,
"Smart Packets for Active Networks”, Second
International Conference on Open
Architectures and Network Programming
(OPENARCH), New York, 1999.

[42] Tennenhouse, D., and Wetherall, D., “Towards
an Active Network Architecture”, Proceedings,
Multimedia Computing and Networking, San
Jose, CA, 1996.

[43] Tennenhouse, D., et al., “A Survey of Active
Network Research”, IEEE Communications
Magazine, January 1997.

[44] Touch, J. and Hotz, S., "The X-Bone", Third
Global Internet Mini-Conference in
conjunction with Globecom ’98 Sydney,
Australia, November 1998.

[45] Wetherall, D., Guttag, J. and Tennenhouse, D.,
“ANTS: A Toolkit for Building and
Dynamically Deploying Network Protocols”,
Proc. IEEE OPENARCH’98, San Francisco,
CA, April 1998.

[46] Vinoski, S.,“CORBA: Integrating Diverse
Applications Within Distributed

Heterogeneous Environments”, IEEE
Communications Magazine, Vol. 14, No. 2,
February, 1997.

[47] xbind code http://comet.columbia.edu/xbind

[48] Xbind Inc., www.xbind.com

[49] Yemini, Y., and Da Silva, S, "Towards
Programmable Networks", IFIP/IEEE
International Workshop on Distributed
Systems: Operations and Management,
L'Aquila, Italy, October, 1996.

