
A Scalable Low-Latency Cache Invalidation Strategy for
Mobile Environments

Guohong Cao
Department of Computer Science & Engineering

The Pennsylvania State University
University Park, PA 16802

gcao@cse.psu.edu

ABSTRACT
Caching frequently accessed data items on the client side is
an effective technique to improve performance in a mobile
environment. Classical cache invalidation strategies are not
suitable for mobile environments due to the disconnection
and mobility of the mobile clients. One attractive cache in-
validation technique is based on invalidation reports (IRs).
However, the IR-based cache invalidation solution has two
major drawbacks, which have not been addressed in previ-
ous research. First, there is a long query latency associated
with this solution since a client cannot answer the query un-
til the next IR interval. Second, when the server updates a
hot data item, all clients have to query the server and get
the data from the server separately, which wastes a large
amount of bandwidth. In this paper, we propose an IR-
based cache invalidation algorithm which can significantly
reduce the query latency and efficiently utilize the broadcast
bandwidth. Detailed simulation experiments are carried out
to evaluate the proposed methodology. Compared to previ-
ous IR-based schemes, our scheme can significantly improve
the throughput and reduce the query latency, the number of
uplink request, and the broadcast bandwidth requirements.

1. INTRODUCTION
The falling cost of both communication and mobile termi-
nals (laptop computers, personal digital assistants, hand-
held computers, etc.) has made mobile computing com-
mercially affordable to both business users and private con-
sumers. In the near future, people with battery powered
mobile terminals (MTs) can access various kinds of services
over wireless networks at any time any place. However, due
to limitations on battery technologies [4, 12], these MTs
may be frequently disconnected (i.e., powered off) to con-
serve battery energy. Also, the wireless bandwidth is rather
limited. Thus, mechanisms to efficiently transmit informa-
tion from the server to the clients (running on MTs) have

Pemlission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that

copies bear this notice and the lull citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MOBICOM 2000 Boston MA USA
Copyright ACM 2000 1-58113-197-6/00/08...$5.00

received considerable attention [1, 4, 7, 11, 14, 15].

Caching frequently accessed data on the client side is an ef-
fective technique to improve performance in a mobile envi-
ronment. Average data access latency is reduced as several
data access requests can be satisfied from the local cache
thereby obviating the need for data transmission over the
scarce wireless links. However, the disconnection and mo-
bility of the clients make cache consistency a challenging
problem. Effective cache invalidation strategies are required
to ensure the consistency between the cached data at the
clients and the original data stored at the server.

Depending on whether or not the server maintains the state
of the clients' cache, there are two invalidation strategies:
stateful server approach and stateless server approach. In
the stateful server approach, the server maintains the infor-
mation about which data are cached by which client. Once a
data item is changed, the server sends invalidation messages
to the clients that have copies of the particular data. The
Andrew File Systems [10] is an example of this approach.
However, in mobile environments, the server may not be
able to contact the disconnected clients. Thus, a discon-
nection by a client automatically means that its cache is no
longer valid. Moreover, if the client moves to another cell,
it has to notify the server. This implies some restrictions on
the freedom of the clients. In the stateless server approach,
the server is not aware of the state of its clients' cache. The
client needs to query the server to verify the validity of their
caches before each use. The Network File System (NFS) [13]
is an example that takes this approach. Obviously, in this
option, the clients generate a large amount of traffic on the
wireless channel, which not only wastes the scarce wireless
bandwidth, but also consumes a lot of battery energy.

In [1], Barbara and Imielinski provided another stateless
server option. In this approach, the server periodically broad-
casts an invalidation report (IR) in which the changed data
items are indicated. Rather than querying the server di-
rectly regarding the validation of cached copies, the clients
can listen to these IRs over the wireless channel. In general,
a large IR can provide more information and is more effec-
tive for cache invalidation, but a large IR occupies a large
amount of broadcast bandwidth and the clients may need to

200

spend more power on listening to the IR since they cannot
switch to power save mode when listening to the IR. The
broadcasting timestamp (TS) scheme [1] is a good example
that limits the size of the IR by broadcasting the names
and timestamps only for the data items updated during a
window of w IR intervals (with w being a fixed parameter).
However, any client who has been disconnected longer than
w IR intervals cannot use the report, and it has to discard all
cached items even though some of them may still be valid.

Many solutions are proposed to address the long discon-
nection problem. Wu et al. [16] modified the TS scheme to
include cache validity checks after reconnection. In this way,
the client is still able to keep most of its cache even after a
long disconnection and save wireless bandwidth and battery
energy. Jing et al. [9] proposed a bit-sequence (BS) scheme
which uses a hierarchical structure of binary bit sequences
with an associated set of timestamps to represent clients
with different disconnection times. The BS structure con-
tains the update information of the whole database, and it is
good for clients with long disconnections to invalidate their
cache. However, for disconnections that axe barely longer
than the window w, the use of BS report is quite wasteful
since it needs to broadcast a long IR. Based on this obser-
vation, Hu and Lee [6] proposed a scheme which broadcasts
a TS report or BS report based on the update and query
rates/patterns and client disconnection time.

Although different approaches [1, 6, 9, 16] apply different
techniques to construct the IR, these schemes maintain cache
consistency by periodically broadcasting the IR. The IR-
based solution is attractive because it can scale to any num-
ber of clients who listen to the IR. However, the IR-based
solution has some drawbacks. For example, this approach
has a long query latency since a client must listen to the
next IR and use the report to conclude whether its cache
is valid or not before answering a query. Hence, the aver-
age latency of answering a query is the sum of the actual
query processing time and half of the IR interval. If the
IR interval is long, the delay may not be able to satisfy the
requirements of many clients. In most previous IR-based
algorithms, when a client needs an invalid cache item, it re-
quests the data from the server, and the server sends the
data to the client. Although the approach works fine for
some cold data items, which axe not cached by many clients,
it is not effective for hot data. For example, suppose a data
item is frequently accessed (cached) by 100 clients, updating
the data item once may generate 100 uplink (from the client
to the server) requests and 100 downlink (from the server to
the client) broadcasts. Obviously, it wastes a large amount
of wireless bandwidth and battery energy.

In this paper, we will address the problems associated with
the IR-based cache invalidation strategies. First, we propose
techniques to reduce the query latency. With the proposed
techniques, a small fraction of the essential information re-
lated to cache invalidation is replicated several times within
an IR interval, and hence the client can answer a query with-
out waiting until the next IR. Then, we propose techniques

to efficiently utilize the broadcast bandwidth by intelligently
broadcasting the data requested by clients. Clients can in-
telligently retrieve the data which will be accessed in the
near future. As a result, most unnecessary unlink requests
and downlink broadcasts can be avoided. Detailed simula-
tion experiments axe carried out to evaluate our proposed
methodology. Compared to the previous IR-based algo-
rithms, our algorithm can significantly improve the through-
put (the number of queries served per IR interval) and re-
duce the query latency, the number of uplink request, and
the broadcast bandwidth requirements.

The rest of the paper is organized as follows. Section 2
presents the IR-based cache invalidation model. In Section
3, we propose techniques to reduce the query latency and im-
prove the wireless bandwidth utilization. Section 4 evaluates
the performance of IR-based cache invalidation algorithms.
Section 5 concludes the paper.

2. THE IR-BASED CACHE INVALIDATION
MODEL

In a mobile computing system, the geographical area is di-
vided into small regions, called cells [5]. Each cell has a
base station (BS) and a number of mobile terminals (MTs).
Inter-cell and intra-cell communications axe managed by the
BSs. The MTs communicate with the BS by wireless links.
An MT can move within a cell or between cells while retain-
ing its network connection. An MT can either connect to a
BS through a wireless communication channel or disconnect
from the BS by operating in the doze (power save) mode.

There axe a set of database servers; each covers one or more
cells. We assume that the database is updated only by
the server. The database is a collection of N data items:
dl, d2,--. , d~, and is fully replicated at each server. A data
item is the basic unit for update and query. MTs only is-
sue simple requests to read the most recent copy of a data
item. There may be one or more processes running on an
MT. These processes axe referred to as clients (we use the
terms MT and client interchangeably). In order to serve a
request sent from a client, the BS needs to communicate
with the database server to retrieve the data items. The
BS may also use cache techniques. Since the communica-
tions between the database servers and the BSs axe through
wired links, we assume traditional techniques [10, 13] can be
used to maintain cache consistency. Since the communica-
tion between the BS and the database server is transparent
to the clients (i.e., from the client point of view, the BS is
the same as the database server), we use the terms BS and
server interchangeably.

Frequently accessed data items axe cached on the client side.
To ensure cache consistency, the server broadcasts invalida-
tion reports (IRs) every L seconds. The IR. consists of the
current t imestamp Ti and a list of tuples (d=, t~) such that
t= > (T~ - w * L), where d= is the data item id, t= is the
most recent update t imestamp of d=, and w is the invali-
dation broadcast window size. In other words, IR contains
the update history of the past w broadcast intervals. Every

201

client, if active, listens to the IRs and invalidates its cache
accordingly. To answer a query, the client listens to the next
IR and uses it to decide whether its cache is valid or not. If
there is a valid cached copy of the requested data item, the
client returns the item immediately. Otherwise, it sends a
query request to the server through the uplink. As shown in
Figure 1, when a client receives a query between Ti-1 and
T~, it can only answer the query after it receives the next
IR at Ti. Hence, the average latency of answering a query
is the sum of the actual query processing time and half of
the IR interval.

Ti.2 Ti_l

9date

query
IR

Figure 1: The I R - b a s e d cache i n v a l i d a t i o n m o d e l

In order to save energy, an MT may power off most of the
time and only turn on during the IR broadcast time. More-
over, an MT may be in the power off mode for a long time
and it may miss some IRs. Since the IR includes the history
of the past w broadcast intervals, the client can still vali-
date its cache as long as the disconnection time is shorter
than w * L. However, if the client disconnects longer than
w * L, it has to discard the entire cached data items since it
has no way to tell which parts of the cache are valid. Since
the client may need to access some data items in its cache,
discarding the entire cache may consume a large amount of
wireless bandwidth in future queries. As discussed earlier,
algorithms such as the BS algorithm [9] are proposed to deal
with the long disconnection problem.

3. THE PROPOSED CACHE INVALIDATION
ALGORITHM

In this section, we present our IR-based algorithm. Differ-
ent from previous IR-based algorithms [1, 6, 9, 16], which
concentrate on solving the long disconnection problem, our
algorithm concentrates on reducing the query latency and
efficiently utilize the broadcast bandwidth. The proposed
IR-based algorithm is independent of the cache invalidation
strategies, and it can be based on any previous IR-based al-
gorithm [1, 6, 9, 16] to deal with the long disconnection prob-
lem. To simplify the presentation, we use the TS scheme as
our base algorithm, and show how the TS scheme can be
modified to a new scheme which has low query latency and
high throughput. Certainly, if the base algorithm is changed
to the BS algorithm, the proposed algorithm will be able to
tolerate long disconnections.

3.1 Reducing The Query Latency

We use a technique similar to the (1, m) indexing [2, 7, 8] to
reduce the query latency. The (1, m) indexing was proposed
to reduce the access latency during data broadcasting. In
this scheme, a complete data index for the broadcast is re-
peated every (~) th of the broadcast. In other words, the
entire index occurs m times during a broadcast, where m
is a parameter. In this way, a client only needs to wait at

(1)~h most , ~ of the broadcast interval before getting the data
index information. In the proposed algorithm, the index is
replaced by the IR, i.e., the IR is replicated m times, and
a client only needs to wait at most (!) t h of the IR inter-

m

val before answering a query. Hence, the query latency can
be reduced to (_~)th of the latency in the previous schemes
when the query processing time is not considered.

u ~date

query

o S t U I R ,' :

n n
Ti-2 Ti-2,1 Ti-1 Ti-l,1 Ti-l,2 Ti

Figure 2: R e d u c i n g t h e q u e r y l a t e n c y b y r e p l i c a t i n g
UIRs

R e m o v i n g t h e r e d u n d a n t i n f o r m a t i o n in t h e IR: In or-
der to support long disconnections, the IR contains many
update history information. For example, in the TS strat-
egy, the IlZ contains the update history of the past w broad-
cast intervals. In the BS strategy, the IR contains the update
information of the whole database. Replicating the com-
plete IR m times may consume a large amount of broadcast
bandwidth. In order to save the broadcast bandwidth, we
introduce the concept of updated invalidation report (UIR),
which contains the data items that have been updated after
the last IP~ has been broadcasted. More formally, the UIlZ
consists of the previous IR t imestamp and a list of (d~, t~)
such that t~ > Ti, where Ti is the t imestamp of the last IlZ.
Instead of replicating the complete IR, the server inserts
(m - 1) UIRs into each IR interval. Since the UIP~ does not
have the update history information, it saves a large amount
of broadcast bandwidth.

The idea of the proposed technique can be further explained
by Figure 2. In Figure 2, Ti,k represents the time of the k th
UIIZ after the i th IR. When a client receives a query between
Ti-l,1 and Ti-l ,2, it can answer the query at Ti-l,2 instead
of Ti. Thus, to answer a query, the client only needs to wait
for the next UIR or IR, whichever arrives earlier. Based
on the received UII~ or IR, the client checks whether its
cache is still valid or not. If there is a valid cached copy
of the requested data item, the client returns the data item
immediately. Otherwise, it sends a query request to the
server through the uplink. Since the contents of the UII~
depend on the previous IR, each client has to receive the
previous IR in order to use the UIR to validate its local

2 0 2

cache. In other words, if a client missed the last IR when
it receives an UIR (by comparing the timestamp associated
with the UIR and the timestamp of the last received IR), it
cannot answer any query until it receives the next IR, and
use the received IR to validate its cache.

R e d u c i n g t he t i m e s t a m p o v e r h e a d of t he U I R : Since
only data items that have been updated after the last IR
are included in the UIR, the timestamps (associated with
the data ids) can be removed to save bandwidth. Thus, at
interval time Ti,k, UIRi,k can be constructed as follows:

UIRi,~ = {d~ I (d~ C D) A (Ti,k-1 < t~ < Ti,k)}
(o < k < m)

Due to the use of UIR to reduce query latency, things are
complicated. For example, a client may request an updated
data item dx during one UIR interval Ti,j. Just after the
client gets the current version of the data from the server, it
queries the same data after a short time. When the next UIR
Ti,k (k > j) arrives, the client finds that d~ is included in the
UIR, and it knows that d~ has been changed after the previ-
ous IR. Since there is no t imestamp associated with d~, the
client does not know whether the data has been updated af-
ter Ti,j, and hence it has to request the data from the server
again. However, the data may not have been modified since
last update; in other words, the client already has the cur-
rent version of the data. One solution to deal with this kind
of false alarm is as follows: whenever an updated data has
been queried during the last IR interval, the timestamp of
this data item is broadcasted with the data item id. Thus,
in UIR, some data items are broadcasted with timestamp,
others are not. However, we do not want to apply this so-
lution because of its complexity and extra overhead. Also,
the chance of false alarms is very rare, especially when we
apply the techniques presented next.

3.2 Efficiently Utilize The Broadcast Band-
width

As explained before, in most previous IR-based algorithms,
updating a hot data may generate many unnecessary up-
link requests and downlink broadcasts, which wastes a large
amount of wireless bandwidth and battery energy. Since it is
very difficult (if it is not impossible) for a stateless server to
find out which data is the hot data and which one is the cold
data, we propose to use the following approach to efficiently
utilize the broadcast bandwidth. When the server receives
a data request, it does not reply the request immediately.
Instead, it saves these data ids in a list called Lbcast. After
broadcasting the next IR, the server broadcasts the id list of
the data items (Lbcas~) that have been requested during the
last IR interval. Then, it broadcasts the data items whose
ids are in the id list Lbcast. Each client should always listen
to the I1% if it is not disconnected. At the end of the IR,
the client downloads the id list Lbcast. For each data id in
Lbcast, the client checks whether it has requested the server
for the data or the data becomes an invalid cache entry due

to server update 1. If any of the two conditions is satisfied, it
is better for the client to download the current version of the
data item since the data will be broadcasted. If the client
does not download the data, it may have to send another
request to the server, and the server has to broadcast the
data again in the near future.

The advantage of the stateless server approach depends on
how hot the requested data is. Let us assume that a data
item is frequently accessed (cached) by n clients. If the
server broadcasts the data after it receives a request from
one of these clients, the saved uplink and downlink band-
width can be up to a factor of n when the data is updated.
However, this approach may have two negative effects: i) if
the client does not need the data in the future, download-
ing the data may waste some battery power, ii) if there
is a cache miss, the client cannot get the requested data
from the server until the next IR, which increases the query
latency (but still shorter than the previous IR-based algo-
rithms). However, considering the cache locality and the
saved uplink and downlink bandwidth, we believe (and the
simulation results also verify) that the benefits should out-
weigh the disadvantages. Note that the proposed scheme
does not waste any bandwidth, since the server only broad-
casts the data when the data has been requested by some
clients. If the downloaded updated version is accessed in
future queries, these queries will have low latency since the
queries can be served from the local cache.

One important reason for the server not to serve requests un-
til the next IR interval is due to energy consumption. In our
scheme, a client can go to sleep most of the time, and only
wakes up during the IR and Lblist broadcast time. Based
on Lblist, it checks whether there is any interested data that
will be broadcasted. If not, it can go to sleep and only wakes
up at the next IR. If so, it can go to sleep and only wakes
up at that particular data broadcast time. For most of the
server initiated cache invalidation schemes, the server needs
to send the updated data to the clients immediately after
the update, and the clients keep awake to get the updated
data. Here we tradeoff some delay for more battery energy.
Due to the use of UIR, the delay tradeoff is not that signifi-
cant; most of the time (cache hit), the delay can be reduced
by a factor of m, where (m - 1) is the number of replicated
UIRs within one IR ihterval. Even in the worst case (for
cache miss), our scheme has the same query delay as the
previous IR-based schemes, where the clients cannot serve
the query until the next IR. To satisfy time constraint ap-
plications, we may apply priority requests as follows: when
the server receives a priority request, it serves the request
immediately instead of waiting until the next IR interval.
Since the server serves most of the data requests in the next
IR interval, the probability of false alarms (defined in Sec-
tion 3.1) is very low. For simplicity, we do not implement
priority requests in the proposed algorithm, and there is no
false alarm.

1The client may have a large probability to access the in-
validated cache entry in the near future considering cache
locality.

203

3.3 The Algorithm
This subsection presents the formal description of the algo-
r i thm which includes a server algorithm and a client algo-
rithm. As explained before, the algorithm is based on the
TS scheme. Since the proposed techniques do not depend
on a part icular algorithm, the proposed algorithm can also
be modified by enhancing the capabili ty of dealing with long
disconnections.

3.3.1 The Algorithm at The Server
The server is responsible to construct the IR and UIR at
predefined t ime interval. I t is possible tha t an IR or UIR
time interval reaches while the server is still broadcasting a
packet. We use a scheme similar to the beacon broadcast
in IEEE 802.11 [3], where the server defers the IR or UIR
broadcast until it finishes the current packet transmission.
However, the next IR or UIR should be broadcasted at its
original scheduled time. The formal description of the algo-
r i thm at the server is as follows.

N o t a t i o n s :

• L, w, d~, tffi: def ined before.

• D: the set of da t a items.

• m: (m - 1) is the number of replicated UIRs within
one IR interval.

• T~,k: represents the t ime of the k th UIl:t after the i th
IR.

• Ldata: an id list of the da ta items tha t a client re-
quested from the server.

• Lbe~st: an id list of the da ta items tha t the server
received in the last IR interval. Initialized to be empty.

(A) At interval t ime Tt, construct IRa as follows:

IRa = {< d~,t~ >1 (d~ • D) A (T i - L * w < t~ <_ Ti)};
Broadcast IRa and Lbcast;

for each d= • Lbcast d o
Broadcast da t a i tem dx;
Execute Step B if the UIR interval reaches.

Lbeast : 0;

(B) At interval t ime Ti,k, construct UIR~,k as follows:

UIP~,k = {d~ [(dr • D) A (Ti,k-1 < t~ < T,,~)}
(0 < k < m - 1)

(C) Receives a request(Ld~t~) from client Cj:
Lbeast ~ Lbcast {.J Ldata.

3.3.2 The A lgor i thm at The Cl ient
The client validates its cache based on the received IR or
UIR. If the client missed the previous IR, it has to wait for
the next IR. In the algorithm, we assume that the client only
sends a new query after its previous query has been served.
In each query, the client may need to access multiple da ta
items, and then it may send a request to the server to ask for
multiple da ta items. The formal description of the algorithm
at the client is as follows.

N o t a t i o n s :

• Q~ = {d~ I d~ has been queried before Ti}.

• Qi,k = {d~ I d~ has been queried in the interval
[Ti,k-1, Ti,k] }.

• t~: the t imestamp of cached da ta i tem dx.

• Tt: the t imestamp of the last received IR.

• Ldata: an id list of the da ta items tha t a client re-
quested from the server. Initialized to be empty.

(A) When a client Cj receives IRa and Lbc~st:

i fT l < (Ti - L . w)
t h e n drop the entire cache or go uplink to verify the

cache (or use other techniques to deal with long
disconnection);

for each da ta i tem < dx, t~ > in the cache do
i f ((d~,t ,) • IRa) A (t~ < t~)
t h e n invalidate d~;

for each d, • Lbcast d o
i f (d, E Ldata)
t h e n download dx into local cache;

Use d , to answer the previous query;
i f dr is an invalid cache i tem
t h e n download d , into local cache;

T~ = Ti; i f (Qi # 0) t h e n query (Qi).

(B) When a client receives a UIRa,k:

i f missed IRa t h e n break;
/* wait for the next IR */

for each da ta i tem < dx, t~ > in the cache d o
i f (d~ • UIRi,k)
t h e n invalidate d~;

i f (Qi,k # O) t h e n query (Qi,k).
(C) P r o c e d u r e q u e r y (Q)

Ldata -~- 0;
for each dx • Q d o

i f d , is a valid entry in the cache
t h e n use the cache's value to answer the query;
else Ldata ~- Ldata U d~;

send request(Ldata) to the server,

3.4 An Enhancement
Some implementat ion techniques can be used to further im-
prove the performance. Since the t imes tamp has a very
large overhead, we can associate one t imes tamp with those
da ta items tha t have been upda ted in the same IR interval.
More formally, IR can be changed as follows (Notations are
defined in the algorithm):

I R a = { < T ~ , D > l (0 < i - w < k < i)
AD = {d~ I Tk-1 < tx < Tk}}

The entry < Tk, D > is used to represent those da ta items
that have been upda ted in the (k - 1) th IR interval. As a
result, at each new IR interval, the server only needs to add
a new constructed entry to the II~ and remove the oldest IR
(which is out of the broadcast window) from the IR. The
client only needs to strip out those entries tha t it has not
received after the last IR interval (saved in Tl), and restore

2 0 4

the IR to the format defined in the algorithm. As a result,
the client can save power since it only needs to receive part
of the IR. For example, suppose the window size is w. If
the client did not miss the report I R a - l , it only needs to
download the last < Ti, D > instead of from < T~, D > to
< Ti-~, D >, which may reduce the download time (power
on time) by a factor of w. The following describes how the
client strips out the necessary IR information.

I R ' = 0;
for k -- (l + 1) to i do

for each < Tk, D > E I R i do
for each d~ E D do

I R ' = IR 'U < d=,Tk >;
IRa = IR ' .

4. PERFORMANCE EVALUATION
Most existing IR-based cache invalidation algorithms [1, 6,
9, 16] are proposed to deal with the long disconnection prob-
lem. Since they are based on the TS algorithm [1], with-
out considering the long disconnection problem, these algo-
rithms have similar performance to the TS algorithm. Since
our major concern is not to deal with the long disconnec-
tion problem, we only compare the performance of the TS
algorithm and the proposed algorithm.

4.1 The Simulation Model and System Param-
eters

In order to evaluate the efficiency of various invalidation
algorithms, we develop a simulation model which is similar
to that employed in [6, 9]. It consists of a single server that
serves multiple clients. The database can only be updated
by the server whereas the queries are made on the client
side. There are 1000 data items in the database, which are
divided into two subsets: the hot data subset and the cold
data subset. The hot data subset includes data items from 1
to 50 (out of 1000 items) and the cold data subset includes
the remaining data items of the database. Clients have a
large probability (80%) to access the data in the hot set and
a low probability (20%) to access the data in the cold set.
The server uses 32 bits to represent a timestamp and a data
id. Including message header overhead, each data item has
1024 bytes.

T h e Server : The server broadcasts IRs (and UIRs in our
algorithm) periodically to the clients. The server assigns the
highest priority to the IR (or UIR) broadcasts, and equal
priorities to the rest of the messages. This strategy ensures
that the IRs (or UIRs) can always be broadcasted over the
wireless channels with the broadcast interval specified by
the parameter L (or L ~) . All other messages are served on
a FCFS (first-come-first-serve) basis. It is possible that an
IR or UIR time interval reaches while the server is still in
the middle of broadcasting a packet. We use a scheme sim-
ilar to the beacon broadcast in IEEE 802.11 [3], where the
server defers the IR or UIR broadcast until it finishes the
current packet transmission. However, the next IR or UIR
should be broadcasted at its originally scheduled time inter-
val. To simplify the simulation, the IR interval L is set to

be 20s. The UIR is replicated 4 time (m = 5) within each
IR interval.

The server generates a single stream of updates separated by
an exponentially distributed update inter-arrival time. All
updates are randomly distributed inside the hot data subset
and the cold data subset, whereas 33.3% of the updates are
applied to the hot data subset. In the experiment, we as-
sume that the server processing time (not data transmission
time) is negligible, and the broadcast bandwidth is fully uti-
lized for broadcasting IRs (and UIRs) and serving clients'
data requests.

T h e cl ient: Each client generates a single stream of read-
only queries. Each new query is generated following an ex-
ponentially distributed time. The client processes generated
queries one by one. If the referenced data items are not
cached on the client side, the item ids axe sent to the server
for fetching the data items. Once the requested data items
arrive on the channel, the client brings them into its cache.
Client cache management follows the LRU replacement pol-
icy, but there are some differences between the TS algorithm
and our algorithm. In the TS algorithm, since the clients
will not use the invalid cache items, the invalidated cache
items are first replaced. If there is no invalid cache item,
LRU is used to replace the oldest valid cache item. In our
algorithm, if there are invalid data items, the client replaces
the oldest invalid item. If there is no invalid cache item, the
client replaces the oldest valid cache item. The difference is
due to the fact that the client in our algorithm can download
data from the broadcast channel.

As mentioned before, the major concern of this paper is to
reduce the query latency and improve the bandwidth uti-
lization. To simplify the presentation and simulation, we do
not model disconnections in this paper. Since the proposed
techniques are independent of any particular algorithms, the
disconnection problem can be solved by applying previous
techniques [1, 9, 16] to our algorithm. Most of the system
parameters are listed in Table 1.

Number of clients 100
Database size 1000 items
Data item size 1024 bytes
Broadcast interval (L) 20 seconds
Broadcast bandwidth 10000 bits/s
Cache size
Mean query generate time (T q ~)

50 to 300 items

Hot data access prob.

25s to 300s
Broadcast window (w) 10 intervals
UIR replicate times (m - 1) 4 (5 - 1)
Hot data items 1 to 50
Cold data items remainder of DB

0.8
Mean update arrival time (T~pda~)
Hot data update prob.

ls to 10000s
0.33

Table 1: S i m u l a t i o n p a r a m e t e r s

4.2 Simulation Results

205

Experiments were run using different workloads and sys-
tem settings. The performance analysis presented here is
designed to compare the effects of different workload pa-
rameters such as mean update arrival time, mean query
generate time, and system parameters such as cache size
on the relative performance of the TS algorithm and our
algorithm. The performance is measured by the query de-
lay, the number of uplink requests per IR interval, and the
throughput (the number of queries served per IR interval).
Note that minimizing the number of uplink requests is a
desirable goal as clients in a mobile environment have lim-
ited battery power and transmit t ing data requires a large
amount of power.

Since the client caches are only partially full at the initial
stage, the effectiveness of the invalidation algorithms may
not be truly reflected. In order to get a better understand-
ing of the true performance for each algorithm, we collect the
result data only after the system becomes stable, which is
defined as the time when the client caches are full. For each
workload parameter (e.g., the mean update arrival time or
the mean query generate time), the mean value of the mea-
sured data is obtained by collecting a large number of sam-
ples such that the confidence interval is reasonably small.
In most cases, the 95% confidence interval for the measured
data is less than 10% of the sample mean.

4.2.1 The Cache Hit Ratio
The performance metrics such as the query delay, the through-
put, and the uplink cost have strong relation with the cache
hit ratio. For example, if the cache hit ratio is high, the
query delay can be reduced since the client can process most
of the queries locally and does not need to request the data
from the server. To help understand the simulation results,
we first look at the cache hit ratio difference between the TS
algorithm and our algorithm.

The left graph of Figure 3 shows the cache hit ratio as a
function of the number of clients. As can be seen, the cache
hit ratio of our algorithm increases as the number of clients
increases, but the cache hit ratio of the IR algorithm does
not change with the number of clients. When the number
of clients in our algorithm drops to 1, the cache hit ratio
of our algorithm is similar to the IR algorithm. In the TS
algorithm, a client only downloads the data that it has re-
quested from the server. However, in our algorithm, clients
also download the data which may be accessed in the near
future. Considering 100 clients, due to server update, one
hot data item may be changed by the server, and the clients
may have to send requests to the server and download the
data from the server. In the TS algorithm, it may generate
100 cache misses if all clients need to access the updated
data. In our algorithm, after a client sends a request to the
server, other clients can download the data. In other words,
after one cache miss, other clients may be able to access
the data from their local cache. Certainly, this ideal situa-
tion may not always occur, especially when the cache size
is small or the accessed data is cold. However, as long as
some downloaded data items can be accessed in the future,

the cache hit ratio of our algorithm will be increased. Due
to cache locality, a client has a large chance to access the
invalidated cache items in the near future, so downloading
these data items in advance should be able to increase the
cache hit ratio. As the number of clients decreases, clients
have less opportunity to download data requested by others,
and hence the cache hit ratio decreases. This explains why
our algorithm has similar cache hit ratio when the number
of clients drops to 1. The right side of Figure 3 shows the
cache hit ratio under different cache sizes when the num-
ber of clients is 100. Based on the above explanation, it is
easy to see that the cache hit ratio of our algorithm is al-
ways higher than that of the TS algorithm for one particular
cache size (cache size is 50 items, 100 items, or 300 items),

From Figure 3 (the right figure), we can see that the cache
hit ratio grows as the cache size increases. However, the
growing trend is different between the TS algorithm and
our algorithm. For example, in the TS algorithm, when the
update arrival time is ls , the cache hit ratio does not have
any difference when the cache size changes from 50 data
items to 300 data items. However, in our algorithm, un-
der the same situation, the cache hit ratio increases from
about 40% to 58%. In our algorithm, clients may need to
download interested data for future use, so a large cache size
may increase cache hit ratio. However, in the TS algorithm,
clients do not download data items that are not addressed
to them. When the server updates data frequently, increas-
ing the cache size does not help. This explains why different
cache size does not affect the cache hit ratio of the TS algo-
r i thm when Tupdate --~ ls.

As shown in Figure 3 (the right figure), the cache hit ratio
drops as the update arrival time decreases. However, the
cache hit ratio of the TS algorithm drops much faster than
our algorithm. When the update arrival time is 10000s,
both algorithms have similar cache hit ratio for one partic-
ular cache size. With cache = 300 items, as the update
arrival time reaches ls , the cache hit ratio of our algorithm
still keeps around 58% whereas the cache hit ratio of the TS
algorithm drops to near 0. This can be explained as follows.
When the update arrival time is very low (e.g., ls), most
of the cache misses are due to hot data access; when the
update arrival time is very high (e.g., 10000s), most of the
cache misses are due to cold data access. Since our algo-
ri thm is very effective to improve cache performance when
accessing hot data, the cache hit ratio of our algorithm can
be significantly improved when the update arrival time is
low. However, as the mean update arrival time drops further
(Tupdate < lS), the cache hit ratio of our algorithm drops
much faster than before. At this time, the hot data changes
so fast that the downloaded hot data may be updated be-
fore the client can use it, and hence failing to improve the
cache hit ratio. Note that when the update arrival time is
very high, the cache performance depends on the LRU pol-
icy, and it is very difficult to further improve the cache hit
ratio except increasing the cache size.

4.2.2 The Query Delay

2 0 6

O

I ,

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.1

. . . , • . . , • . , . . = = = . . = . ~ ; ~ -

o o , . . - ' ~

.,.,+,,/'" d/~//" /
,."/d' //i / / R algorithm (n=lO0) , "

d I /
/ /

.fi / / Ill algori~m (n=l)
/' / ~ / Our algorithm(n= 1) :

2 /)/ Our algorithm (n=5) -
,./ / / Our algorithm (n=20i :

.... i o

1 10 100 1000 10000

Mean update arrival time (seconds)

0.9

0.8

0.7

o 0,6

0.5

~ 0.4

0.3

0.2

O.1

0
0.1

. . . . , . . , . . . , . . .

j " • - i - - + 2 e

,.'m j Y f

/?" , : : /

,,,, j + 7 '°

/ m atgorithm (c=300)
/ : Our algorithm (c=50) --~--

Our algorithm (c=lO0)
Our algorithm (c=300) ?007 - :

1 l0 100 1000 10000
Mean update arrival time (seconds)

Figure 3: A c o m p a r i s o n of t h e cache hit rat io (Tqu~rv = 100s). T h e left f igure shows t h e cache h i t r a t io as a
f u n c t i o n of t he n u m b e r of c l ien ts w h e n t he cache size is 100 i t ems . T h e r igh t f igure shows t h e c a c h e hit rat io
u n d e r d i f fe ren t cache sizes w h e n t he n u m b e r of c l i ents is 100.

We measure the query delay as a function of the mean query
generate time and the mean update arrival time. As shown
in Figure 4, our algorithm significantly outperforms the TS
algorithm.

As explained before, each client generates queries according
to the mean query generate time. The generated queries are
served one by one. If the queried data is in the local cache,
the client can serve the query locally; otherwise, the client
has to request the data from the server. If the client cannot
process the generated query due to waiting for the server
reply, it queues the generated queries. Since the broadcast
bandwidth is fixed, the server can only transmit a limited
amount of data during one IR interval, and then it can only
serve a maximum number (a) of queries during one IR in-
terval. If the server receives more than a queries during
one IR interval, some queries are delayed to the next IR
interval. If the server receives more than a queries during
each IR interval, many queries may not be served, and the
query delay may be out of bound. The left figure of Figure
4 shows the query delay as a function of the mean query
generate time with Tupdate = 10S and cache = 100 items.
When the query generate time is lower than 70s (e.g., 60s),
the query delay of the TS algorithm becomes infinite long
(cannot see from Figure 4). However, even when the query
generate time reaches 30s, the query delay of our algorithm
is still less than 10s. This is due to the fact that the cache
ratio of our algorithm is still high (see Figure 3) and a large
number of queries can be served locally. Thus, the number
of requests sent to the server is still lower than a. Note that
the query delay of our algorithm can also grow out of bound
if the query generate drops further (e.g., 20s).

In Section 3.1, we mentioned that the query delay can be
reduced by a factor of m if the IRs are replicated m time
during one IR interval. However, this is only true if the
cache hit ratio can reach 100%. Since the cache hit ratio
cannot be 100%, the query delay can never be reduced by a

factor of m. In our algorithm, without considering the prior-
ity request, a client cannot answer the query until the next
IR interval in case of cache miss. Therefore, during a cache
miss, the TS algorithm and our algorithm have the same
query delay. However, in case of cache hit, our algorithm
can reduce the query delay by a factor of m. As shown on
the right graph of Figure 4, as the mean update arrival time
increases, the cache hit ratio increases and the query delay
decreases. Since our algorithm has high cache hit ratio than
the TS algorithm, the query delay of our algorithm is shorter
than the TS algorithm. For example, with T~pdate = 10000s,
our algorithm reduces the query delay by a factor of 3 com-
pared to the TS algorithm. Although the cache ratio of the
TS algorithm is more than doubled from T~pd~t~ = 10s to
Tupdate = 33S, the query delay of the TS algorithm does not
drop too much (from 18.7s to 16.1s). This can be explained
by the fact that a client in the TS algorithm cannot answer
a query until it receives the next IR, and hence the average
query delay is at least half of the IR interval even when the
client has a valid cache copy. Since the query generate time
is exponentially distributed, multiple queries may arrive at
a client during one IR interval. The client only serves the
query one by one. In case of cache miss, due to queue effect,
the query delay may be longer than the IR interval 20s (as
shown in Figure 4).

4.2.3 The Number o f Queries Served Per IR Interval
As explained in the last subsection, due to the limited broad-
cast bandwidth, the server can only serve a maximum num-
ber (t~) of client requests during one IR interval. However,
the throughput (the number of queries served per IR inter-
val) may be larger than a since some of the queries can be
served by accessing the local cache. Since our algorithm has
higher cache hit ratio than the TS algorithm, our algorithm
can serve more queries locally, and the clients send less re-
quests to the server. Thus, although a is the same for two
algorithms, our algorithm has a higher throughput than the

2 0 7

25

20

15

10

5

0
0

' ~ ' ' IR 'algorithm' '

a l g o r i t h m

S t . .

I ~ " IRalgon.'thm " ,
20 l ~ Our algonthm

I

[%,
"~ 10 ×.

i I i i i 0 , , i , . t • . , • . ,

50 100 150 200 250 300 0.1 1 10 100 1000 10000

Mean query generate time (seconds) Mean update arrival time (seconds)

F i g u r e 4: A c o m p a r i s o n of t he q u e r y delay. T h e left f igure shows t h e q u e r y de l ay as a f u n c t i o n of t h e m e a n
q u e r y g e n e r a t e t i m e (Tupa~te = 10s, cache = 100 i tems) . T h e r igh t f igure shows t h e q u e r y de l ay as a f u n c t i o n of
t he m e a n u p d a t e a r r iva l t i m e (Tqu,rv = 100s, cache = 100 i tems)

80 , 100

_ 7O

6o

~. 5o

• ~ 3o

~ 2O
6
z 10

0
0

\

IR 'algorithm' ,
Our algorithm

\
\

\

i i i | i

50 100 150 200 250 300
Mean query generate time (seconds)

F i g u r e 5: T h e n u m b e r o f q u e r i e s s e r v e d per I R in-
t erva l (T~vd~t~ = 10s, cache = 100 i t ems)

TS algorithm. For example, as shown in Figure 5, when
the query generate time reduces to 30s, the number of re-
quests in the TS algorithm is larger than a, and some queries
cannot be served. As a result, the throughput of the TS al-
gorithm remains at 32 whereas the throughput of our algo-
ri thm reaches 70. In the TS algorithm, since the broadcast
channel has already been fully utilized when Tquerv = 60s,
further reducing the query generate time does not increase
the throughput. When the query generate time is low, the
broadcast channel has enough bandwidth to serve client re-
quests, and hence both algorithms can serve the same num-
ber of queries (although they have difference query latency).

4.2.4 The Broadcas t O v e r h e a d
Let Tit represent the average time that the server spends on
broadcasting the IlLs within one IR interval. Let T~ir repre-
sent the average time that the server uses to broadcast the

z= so

~ 60

0

~ 4o

~ 20

" m algodthm ,
Our algorithm

Simple replicate

k

\
i t

x \

Mean update arrival time (seconds)

0

0.1 1 10 100 1000

F i g u r e 6: T h e b r o a d c a s t o v e r h e a d as a f u n c t i o n
of t h e u p d a t e arr iva l t i m e (Tq~er~ = 100s, cache =
100 i tems)

UIRs within one IR interval (T~ir is 0 in the IR algorithm).
The broadcast overhead percentage is T~.+T~, Figure 6 L
compares the broadcast overhead of our algorithm to the IR
algorithm and the simple replicate algorithm, which simply
replicates the IR m (m = 4) times within each IlZ interval
(i.e., the broadcast interval (L) changes to ~ = 4s). As
can be seen, the simple replicate approach has the high-
est broadcast overhead and the IR algorithm has the low-
est broadcast overhead. Due to the use of UIR techniques
(see Section 3.1), the broadcast overhead of our algorithm is
slightly higher than the IR algorithm, but far lower than the
simple replicate algorithm. For example, When T~vdat~ =
0.35s, in the simple replicate approach, the server cannot an-
swer clients' queries since all available bandwidth are used
to broadcast IRs. However, in our algorithm, the broadcast
overhead is only about 20%.

2 0 8

4.2.5

20

18

.~ 16

"~ 14

~, 12

lO

'~ 8
6
Z 6

4
0.1

The Number of Uplink Requests

• ~ IR'algodthm ""'
Our algorithm

"k\

"-x- -N)) : : : : :

1 10 100 1000 10000
Mean update arrival time (seconds)

F i g u r e 7: T h e n u m b e r of u p l i n k r e q u e s t s p e r I R
i n t e rva l (Tq~er~ = 100s, cache = 100 i tems)

Figure 7 shows the uplink cost of both algorithms. Since our
algorithm has lower cache miss rate than the TS algorithm
and clients only send uplink requests when there are cache
misses, our algorithm has lower uplink cost compared to the
TS algorithm. It is interesting to find that both algorithms
have similar uplink cost when the mean update arrival time
is very high (e.g., 10000s), but a significant difference when
the mean update arrival time is 10s. From Figure 3, we
can find that both algorithms have similar cache miss ratio
(1 - cache hit ratio) when T u p d a t ¢ = 1 0 0 0 0 8 , but a signif-
icant difference when T u p d a t e = 108. As shown in Figure
7, our algorithm can cut the uplink cost by a factor of 3
(with Tupdat~ ---- 10s), and hence the clients can save a large
amount of energy and bandwidth. When the update arrival
time is smaller than ls, the uplink cost of the IR algorithm
does not increase, but the uplink cost of our algorithm in-
creases much faster than before. This can be explained by
the fact that the cache hit ratio of the IR algorithm already
drops to near 0 when T u p d a t e ---- ls, but the cache ratio of
our algorithms continues dropping when Tupdat~ < ls.

5. C O N C L U S I O N S
IR-based cache invalidation have received considerable at-
tention due to its scalability. However, most of the previous
IR-based algorithms [1, 6, 9, 16] concentrate on dealing with
the problem of long disconnections, and not much work has
been done to address the drawbacks associated with the IR-
based algorithms such as long query delay and low band-
width utilization. In this paper, we proposed techniques
to deal with these problems. In the proposed algorithm, a
small fraction of the essential information related to cache
invalidation is replicated several times within an IR interval,
and hence a client can answer a query without waiting until
the next IR. Moreover, the server can intelligently broadcast
the data items requested by the clients, while the clients in-
telligently retrieve the data items which will be accessed in
the near future. As a result, most unnecessary unlink re-
quests and downlink broadcasts can be avoided. Simulation

results showed that our algorithm can cut the query delay
by a factor of 3, and double the throughput compared to
the TS algorithm.

In this paper, we only perform simulation studies of the TS
algorithm and the proposed algorithm. In order to get a bet-
ter understanding of the algorithms, analytical model can be
built. Based on the analytical model, we can systematically
setup system parameters such as m, w, L, according to the
system workload. Also, we did not evaluate the performance
under client disconnections. As future work, we will extend
our algorithm and combine it with previous techniques [1,
6, 9, 16] to deal with client disconnections.

6. R E F E R E N C E S
[1] D. Barbara and T.Imielinksi, "Sleepers and workaholics:

Caching strategies for mobile environments," A CM
SIGMOD, pages 1-12, 1994.

[2] A. Datta, D. Vandermeer, A. Celik, and V. Kumar,
"Broadcast Protocols to Support EffÉcient Retrieval from
Databases by Mobile Users," A CM Transactions on
Database Systems, 24(1):1-79, March 1999.

[3] The editors of IEEE 802.11, "Wireless LAN Media Access
Control (MAC) and Physical Layer (PHY) Specifications,"
80P.11 Wireless Standards
(http://grouper.ieee.org/groups/80~/11), 1999.

[4] G. Forman and J. Zahorjan, "The Challenges of Mobile
Computing," IEEE Computer, 27(6), April 1994.

[5] D.J. Goodman, "Cellular Packet Communication," IEEE
Trans. Communication, 38(8):1272-1280, Aug. 1990.

[6] Q. Hu and D. Lee, "Cache Algorithms based on Adaptive
Invalidation Reports for Mobile Environments," Cluster
Computing, pages 39-48, Feb. 1998.

[7] T. Imielinksi, S. Viswanathan, and B. Badrinath, "Data on
Air: Organization and Access," IEEE Transactions on
Knowledge and Data Engineering, 9(3):353-372, May/June
1997.

[8] T. Imielinski, S. Viswanathan, and B. Badrinath, "Energy
Efficient Indexing on Air," ACM SIGMOD'94, pages
25-36, 1994.

[9] J. Jing, A. Elmagarmid, A. Helal, and R. Alonso,
"Bit-Sequences: An adaptive Cache Invalidation Method in
Mobile Client/Server Environments," Mobile Networks and
applications, pages 115-127, 1997.

[10] M. Kazar, "Synchronization and Caching Issues in the
Andrew File System," USENIX Conf., pages 27-36, 1988.

[11] W. Lee, Q. Hu, and D. Lee, "A Study on Channel
Allocation for Data Dissemination in Mobile Computing
Environments," A CM//Baltzer Mobile Networks and
Applications, pages 117-129, 1999.

[12] R. Powers, "Batteries for Low Power Electronics," Proc.
IEEE, 83(4):687-693, April 1995.

[13] S. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B.
Lyon, "Design and Implementation of the Sun Network File
System," Proc. USENIX Summer Conf., pages 119-130,
June 1985.

[14] K. Stathatos, N. Roussopoulos, and J. Barns, "Adaptive
Data Broadcast in Hybrid Networks," Proc. of the 23rd
VLDB Conf., 1997.

[15] N. Vaidya and S. Hameed "Scheduling DAta Broadcast in
Asymmetric Communication Environments," ACM/Baltzer
Wireless Networks (WINET), May 1999.

[16] K. Wu, P. Yu, and M. Chen, "Energy-efficient caching for
wireless mobile computing," The 20th Intl. Conf. on Data
Engineering, pages 336-345, Feb. 1996.

209

