
An End-to-End Approach to Host Mobility

Alex C. Snoeren and Hari Balakrishnan
MIT Laboratory for Computer Science

Cambridge, MA 02139
{snoeren, hari} @ Ics.mit.edu

Abstract

We present the design and implementation of an end-to-end ar-
chitecture for Internet host mobility using dynamic updates to the
Domain Name System (DNS) to track host location. Existing TCP
connections are retained using secure and efficient connection mi-
gration, enabling established connections to seamlessly negotiate a
change in endpoint IP addresses without the need for a third party.
Our architecture is secure--name updates are effected via the se-
cure DNS update protocol, while TCP connection migration uses
a novel set of Migrate options--and provides a pure end-system
altemative to routing-based approaches such as Mobile IP.

Mobile IP was designed under the principle that fixed Internet
hosts and applications were to remain unmodified and only the un-
derlying IP substrate should change. Our architecture requires no
changes to the unicast IP substrate, instead modifying transport pro-
tocols and applications at the end hosts. We argue that this is not a
hindrance to deployment; rather, in a significant number of cases, it
allows for an easier deployment path than Mobile IP, while simul-
taneously giving better performance. We compare and contrast the
strengths of end-to-end and network-layer mobility schemes, and
argue that end-to-end schemes are better suited to many common
mobile applications. Our performance experiments show that hand-
off times are governed by TCP migrate latencies, and are on the
order of a round-trip time of the communicating peers.

1 Introduction

The proliferation of mobile computing devices and wireless net-
working products over the past decade has made host and service
mobility on the Internet an important problem. Delivering data to
a mobile host across a network address change without disrupting
existing connections can be tackled by introducing a level of indi-

This research was supported in part by DARPA (Grant No.
MDA972-99-1-0014), NTT Corporation, and IBM. Alex C. Sno-
eren is supported by a National Defense Science and Engineering
Graduate (NDSEG) Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the lull citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MOBICOM 2000 Boston MA USA
Copyright ACM 2000 1-58113-197-6/00/08...$5.00

rection in the routing system. This is the approach taken by Mobile
IP [27, 29], which deploys a home agent that intercepts packets des-
tined for a host currently away from its home network, and delivers
it to the mobile host via a foreign agent in the foreign network. This
approach does not require any changes to the fixed (correspondent)
hosts in the Intemet, but does require changing the underlying IP
substrate to effect this triangle routing, and an authentication proto-
col to ensure that connections are not hijacked by a malicious party.
Mobile IP is a "pure" routing solution, a network-layer scheme that
requires no changes to any higher layer of the Internet protocol
stack.

There are many classes of mobile applications [16]: those where
other hosts originate connections to a mobile host and can benefit
from both host location and handoff support (e.g., a mobile Web
server, mobile telephony); those where the mobile host originates
all connections, which do not require host location services but can
benefit from handoff support (e.g., mall readers, Web browsers);
and those where an application-level retry suffices if the network
address changes unexpectedly during a short transaction, which
need neither to work well (e.g., DNS resolution). We believe that a
good end-to-end architecture for host mobility will support all these
modes, and empower applications to make the choice best suited to
their needs. Our architecture is motivated by, and meets, this goal.
It is an end-to-end approach; no changes to the IP substrate are re-
quired.

In our mobility architecture, the decision of whether to support
transparent connectivity across network address changes (espe-
cially useful for mobile servers) or not (not needed for short client-
server transactions) is left to the application. While Mobile IP-style,
fully-transparent mobility support is general and sufficient for mo-
bile applications, this generality comes at significant cost, complex-
ity, and performance degradation.

To locate mobile hosts as they change their network attachment
point, we take advantage of the widely-deployed Domain Name
System (DNS) [20] and its ability to support secure dynamic up-
dates [8, 35]. Because most Internet applications resolve hostnames
to an IP address at the beginning of a transaction or connection, this
approach is viable for initiating new sessions with mobile hosts.
When a host changes its network attachment point (IP address), it
sends a secure DNS update to one of the name servers in its home
domain updating its current location. The name-to-address map-
pings for these hosts are uncacheable by other domains, so stale
bindings are eliminated.

The ability to support continuous communication during periods of
mobility without modifying the IP substrate is a more challenging
problem. Because TCP is a connection-oriented reliable protocol,

155

many TCP applications reasonably expect this service model in the
face of losses and transient link failures, route changes, or mobility.
The two communicating peers must securely negotiate a change in
the underlying network-layer IP address and then seamlessly con-
tinue communication. Furthermore, an approach that requires either
communicating peer to learn about the new network-layer address
before a move occurs is untenable because network-layer moves
may be quite sudden and unpredictable.

We design a new end-to-end TCP option to support the secure
migration of an established TCP connection across an IP address
change. Using this option, a TCP peer can suspend an open con-
nection and reactivate it from another IP address, transparent to an
application that expects uninterrupted reliable communication with
the peer. In this protocol, security is achieved through the use of a
connection identifier, or token, which may be secured by a shared
secret key negotiated through an Elliptic Curve Diffie-Hellman
(ECDH) key exchange [36] during initial connection establishment.
It requires no third party to authenticate migration requests, thereby
allowing the end points to use whatever authentication mechanism
they choose to establish a trust relationship. Although we only de-
scribe details for TCP migration, we find that this idea is general
and can be implemented in a like manner for specific UDP-based
protocols such as the Real-time Transport Protocol (RTP) to achieve
seamless mobility for those protocols as well.

One way of thinking of our work is in the context of the end-to-end
argument [32], which observes that functionality is often best im-
plemented in a higher layer at an end system, where it can be done
according to the application's specific requirements. We show that it
is possible to implement mobility as an end-to-end service without
network-layer support, while providing multiple mobility modes. In
this sense, this is akin to applications deciding between UDP and
TCP as a transport protocol; many opt for UDP's simplicity and
timeliness over TCP's reliability. In the same fashion, applications
should be able to select the mobility mode of their choice.

The other significant advantage of handling mobility on an end-to-
end basis is that it enables higher layers like TCP and HTTP to learn
about mobility and adapt to it. For example, it is a good idea after a
network route change to restart TCP transmissions from slow start
or a window-halving [13] since the bottleneck might have changed,
or adapt the transmitted content to reflect new network conditions.
These optimizations can be made naturally if mobility is handled
end-to-end, since no extra signalling is needed. Indeed, the large
body of work in mobile-aware applications [15, 22, 25] can benefit
from our architecture.

Experience with previous end-to-end enhancements such as various
TCP options (e.g., SACK [19]), path MTU discovery, HTTP/1.1,
etc., has shown that such techniques often meet with less resistance
to widespread deployment than changes to the IP substrate. This
supports our belief that, in addition to the flexibility it offers, an
end-to-end approach may be successfully deployed.

We have implemented this mobility architecture in Linux 2.2 and
have conducted several experiments with it. We are encouraged by
the ease with which seamless mobility can be achieved, the flexibil-
ity it provides, and the lack of performance degradation. Since our
scheme does not impose any triangle routing anomalies, end-to-end
latency for active connections is better than standard Mobile IP, and
similar to Mobile IP with route optimization.

The rest of this paper describes the technical details of our ap-
proach. In Section 2, we survey related work in the area of mo-
bility support. We describe our architecture in Section 3, and detail
our new Migrate TCP option in Section 4. We discuss the security
ramifications of our approach in Section 5 and our implementation
and performance results in Section 6. We address some deployment
issues in Section 7 and conclude in Section 8.

2 Related work
The problem of Internet host mobility has been approached from
many angles in the literature, but they can be classified into two
categories. Some techniques attempt to handle host relocation in
a completely transparent fashion, hiding any changes in network
structure from the end hosts. We term these techniques network-
layer mobility. By contrast, many other approaches attempt to han-
dle relocation at a higher level in the end host.

2.1 Network-layer mobility

Mobile IP (RFC 2002) [29] is the current IETF standard for sup-
porting mobility on the Intemet. It provides transparent support for
host mobility by inserting a level of indirection into the routing ar-
chitecture. By elevating the mobile host's home address from its
function as an interface identifier to an end-point identifier (EID),
Mobile IP ensures the delivery of packets destined to a mobile
host's home address, independent of the host's physical point of at-
tachment to the Internet, as reflected in its care-of address. Mobile
IP does this by creating a routing tunnel between a mobile host's
home network and its care-of address.

Such routing tunnels need to be implemented with care because
advertising explicit host routes into the wide-area routing tables de-
stroys routing scalability. Mobile IP uses a home agent physically
attached to the mobile host's home network to intercept and tunnel
packets to the mobile host. Hence, packets undergo triangle rout-
ing, which is often longer than the optimal unicast path.

Further compounding the problem is the widespread deployment
of ingress filters [9], ratified in February 2000 by the IETF as a
"Best Current Practice" to combat denial-of-service attacks. With
this mechanism, a router does not forward packets with a source
address foreign to the local network, which implies that a packet
sent by a mobile host in a foreign network with its source address
set to its home address will not be forwarded. The solution to this
is to use reverse tunneling, which tunnels packets originating at the
mobile host first to the host's home agent (using the host's care-of
address as a source address), and then from there on to the desti-
nation using the home address as the source address. Thus, routing
anomalies occur in both directions.

Perkins and Johnson present a route optimization option for Mo-
bile IP to avoid triangle routing [28]. Here, correspondent hosts
cache the care-of address of mobile hosts, allowing communication
to proceed directly. It requires an authenticated message exchange
from the home agent to the correspondent host [26]. The resulting
Mobile IP scheme achieves performance almost equivalent to ours,
but requires modifications to the end hosts' IP layer ~ as well as the

lln fact, the draft allows on-path routers to cache the care-of
addresses instead of the end host, but this requires modifying yet
another level of infrastructure.

156

infrastructure. In contrast, our approach achieves secure, seamless
connection migration without a third-party home agent. It also pro-
vides a mobile host the ability to pick a mobility mode based on the
needs of its applications.

IPv6 provides native support for multiple simultaneous host ad-
dresses, and Mobile IPv6 provides mobility support for IPv6 in
much the same fashion as Mobile IP for IPv4. IPv6 extensions allow
for the specification of a care-of address, which explicitly separates
the role of the EID (the host's canonical IP address) and routing
location (the care-of address). Gupta and Reddy propose a similar
redirection mechanism for IPv4 through the use of ICMP-like con-
trol messages which establish care-of bindings at the end hosts [10].

Mysore and Bharghavan propose an interesting approach to
network-layer mobility [23], where each mobile host is issued a per-
manent Class DIP multicast address that can serve as a unique EID.
If multicast were widely deployed, this is a promising approach; be-
cause a Class D EID has the benefit of being directly routable by
the routing infrastructure, it removes the need for an explicit care-of
address. However, this scheme requires a robust, scalable, and effi-
cient multicast infrastructure for a large number of sparse groups.

3 An end-to-end architecture

In this section, we describe our end-system mobility architecture.
There are three important components in this system: addressing,
mobile host location, and connection migration. By giving the mo-
bile host explicit control over its mobility mode, we remove the
need for an additional (third-party) home-agent to broker packet
routing. The DNS already provides a host location service, and any
further control is managed by the communicating peers themselves,
triggered by the mobile host when it changes network location.

We assume, like most mobility schemes, that mobile hosts do not
change IP addresses more than a few times a minute. We believe
this is a reasonable assumption for most common cases of mobil-
ity. We emphasize that this does not preclude physical mobility at
rapid velocities across a homogeneous link technology, since that
can be handled at the physical and link layers, e.g., via link-layer
bridging [12].

The rest of this section discusses addressing in a foreign network
and host location using the DNS. Section 4 is devoted to a detailed
description of TCP connection migration.

2.2 Higher-layer methods

The home-agent-based approach has also been applied at the trans-
port layer, as in MSOCKS [18], where connection redirection was
achieved using a split-connection proxy.

The general idea of using names as a level-of-indirection to handle
object and node mobility is part of computer systems folklore. For
some years now, people have talked about using the DNS to effect
the level-of-indirection needed to support host mobility, but to our
knowledge ours is the first specific and complete architecture that
uses the DNS to support Internet host mobility. Recently, Adjie-
Winoto et al. proposed the integration of name resolution and mes-
sage routing in an Intentional Naming System to implement a "late
binding" option that tracks highly mobile services and nodes [1],
and it seems possible to improve the performance of that scheme
using our connection migration approach.

Our approach differs fundamentally from EID/locator techniques
since it requires no additional level of global addressing or indi-
rection, but only a (normally pre-existing) DNS entry and a shared
connection key between the two end hosts. Furthermore, unlike pre-
vious connection-ID draft proposals such as Huitema's ETCP [11]
for TCP connection re-addressing, it requires no modification to
the TCP header, packet format, or semantics. 2 Instead, it uses an
additional TCP option and the inserts an additional field into the
Transmission Control Block (TCB).

There is a large body of work relating to improving TCP perfor-
mance in wireless and mobile environments [5, 6]. While not the
focus of our work, our adherence to standard TCP semantics allows
these schemes to continue to work well in our architecture. Fur-
thermore, since end hosts are explicitly notified of mobility, signif-
icant performance enhancements can be achieved at the application
level [25].

2Special RST handling is required on some networks that may
rapidly reassign IP addresses; Section 4.5 discusses this issue.

3.1 Addressing

The key to the scalability of the Internet architecture is that the IP
address serves as a routing locator, reflecting the addressee's point
of attachment in the network topology. This enables aggregation
based on address prefixes and allows routing to scale well. Our mo-
bility architecture explicitly preserves this crucial property of Inter-
net addressing.

Like Mobile IP, we separate the issues of obtaining an IP address
in a foreign domain from locating and seamlessly communicating
with mobile hosts. Any suitable mechanism for address allocation
may be employed, such as manual assignment, the Dynamic Host
Configuration Protocol (DHCP) [7], or an autoconfiguration proto-
col [34].

While IP addresses fundamentally denote a point of attachment in
the Internet topology and say nothing about the identity of the host
that may be connected to that attachment point, they have implic-
itly become associated with other properties as well. For example,
they are often used to specify security and access policies as in the
case of ingress filtering to alleviate denial-of-service attacks. Our
architecture works without violating this trust model and does not
require any form of forward or reverse tunneling to maintain seam-
less connectivity. In a foreign network, a mobile host uses a locally
obtained interface address valid in the foreign domain as its source
address while communicating with other Internet hosts.

3.2 Locating a mobile host

Once a mobile host obtains an IP address, there are two ways in
which it can communicate with correspondent hosts. First, as a
client, when it actively opens connections to the correspondent host.
In this case, there is no special host location task to be performed
in our architecture; using the DNS as before works. However, if
the mobile host were to move to another network attachment point
during a connection, a new address would be obtained as described
in the previous section, and the current connection would continue
seamlessly via a secure negotiation with the communicating peer as

157

described in Section 4. If a mobile host were always a client (not
an uncommon case today), then no updates need to be made to any
third party such as a home agent or the DNS.

To support mobile servers and other applications where Internet
hosts actively originate communication with a mobile host, we use
the DNS to provide a level of indirection between a host's current
location and an invariant end-point identifier. In Mobile IP, a host's
home address is the invariant, and all routing (in the absence of
route optimization) occurs via the home agent that intercepts pack-
ets destined to this invariant. Ours is not a network-layer solution
and we can therefore avoid the indirection for every packet trans-
mission. We take advantage of the fact that a hostname lookup is
ubiquitously done by most applications that originate communica-
tion with a network host, and use the DNS name as the invariant.
We believe that this is a good architectural model: a DNS name
identifies a host and does not assume anything about the network
attachment point to which it may currently be attached, and the in-
direction occurs only when the initial lookup is done via a control
message (a DNS lookup).

This implies that when the mobile host changes its attachment
point, it must detect this and change the hostname-to-address ("A-
record") mapping in the DNS. Fortunately, both tasks are easy to
accomplish, the former by using a user-level daemon as in Mobile
IP, and the latter by using the well-understood and widely avail-
able secure DNS update protocol [8, 35]. We note that some DHCP
servers today issue a DNS update at client boot time when handing
out a new address to a known client based on a static MAC-to-DNS
table. This augurs well for the incremental deployability of our ar-
chitecture, since DNS update support is widely available.

The DNS provides a mechanism by which name resolvers can cache
name mappings for some period of time, specified in the time-to-
live (TTL) field of the A-record. To avoid a stale mapping from be-
ing used from the name cache, we set the time-to-live (TTL) field
for the A-record of the name of the mobile host to zero, which pre-
vents this from being cached. 3 Contrary to what some might expect,
this does not cause a significant scaling problem; name lookups for
an uncached A-record do not have to start from a root name server,
because in general the "NS-record" (name server record) of the mo-
bile host's DNS name is cacheable for a long period of time (many
hours by default). This causes the name lookup to start at the name
server of the mobile host's domain, which scales well because of
administrative delegation of the namespace and DNS server replica-
tion in any domain. We note that some content distribution networks
for Web server replication of popular sites use the same approach
of small-to-zero TTL values to redirect client requests to appropri-
ate servers (e.g., Akamai [2]). There is no central hot spot because
the name server records for a domain are themselves cacheable for
relatively long periods of time.

Even with uncacheable DNS entries there still exists a possible race
condition where a mobile host moves between when a correspon-
dent host receives the result of its DNS query and when it initiates a
TCP connection. Assuming a mobile host updates its DNS entry im-
mediately upon reconnection, the chances of such an occurrence are
quite small, but non-zero, especially for a mobile host that makes
frequent moves. In this case, the correspondent host will attempt to

SModern versions of BIND honor this correctly.

open a TCP connection to the mobile host's old address, and has no
automatic fail-over mechanism.

In this case, the application must perform another DNS lookup to
find the new location of the mobile host. We note that the trend
towards dynamic DNS records has caused such application-level
retries to find their way into applications already--for instance,
current FreeBSD t : e l n e t and r s h applications try alternate ad-
dresses if an initial connection fails to a host that has multiple DNS
A-records. It seems to be only a minor addition to refresh DNS
bindings if connection establishment fails.

4 TCP connection migration

A TCP connection [31] is uniquely identified by a 4-tuple: (source
address, source port, dest address, dest port). Packets addressed to
a different address, even if successfully delivered to the TCP stack
on the mobile host, must not be demultiplexed to a connection es-
tablished from a different address. Similarly, packets from a new
address are also not associated with connections established from a
previous address. This is crucial to the proper operation of servers
on well-known ports.

We propose a new Migrate TCP option, included in SYN segments,
that identifies a SYN packet as part of a previously established con-
nection, rather than a request for a new connection. This Migrate
option contains a token that identifies a previously established con-
nection on the same destination (address, port) pair. The token is
negotiated during initial connection establishment through the use
of a Migrate-Permitted option. After a successful token negotia-
tion, TCP connections may be uniquely identified by either their
traditional (source address, source port, dest address, dest port) 4-
tuple, or a new (source address, source port, token) triple on each
host.

A mobile host may restart a previously-established TCP connection
from a new address by sending a special Migrate SYN packet that
contains the token identifying the previous connection. The fixed
host will than re-synchronize the connection with the mobile host at
the new end point. A migrated connection maintains the same con-
trol block and state (with a different end point, of course), including
the sequence number space, so any necessary retransmissions can
be requested in the standard fashion. This also ensures that SACK
and any similar options continue to operate properly. Furthermore,
any options negotiated on the initial SYN exchange remain in ef-
fect after connection migration, and need not be resent in a Migrate
SYN. 4

Since SYN segments consume a byte in the TCP sequence number
space, Migrate SYNs are issued with the same sequence number as
the last transmitted byte of data. This results in two bytes of data
in a migrated TCP connection with the same sequence number (the
new SYN and the previously-transmitted actual data), but this is not
a problem since the Migrate SYN segment need never be explicitly
acknowledged. Any packet received from the fixed host by a mi-
grating host at the mobile host's new address that has a sequence
number in the appropriate window for the current connection im-
plicitly acknowledges the Migrate SYN. Similarly, any further seg-

4They can be, if needed. For example, it might be useful to rene-
gotiate a new maximum segment size (MSS) reflecting the proper-
ties of the new path. We have not yet explored this in detail.

158

m o b i l e

SYN 083521:082321(0) _ ~_x .
~ l m e ; t e m a p T f) , ---

3 ack 083522

"41

545431:545967(536)

s e n o9239r:o92397(o)

ack 092398

ack 5'15968

f i x e d

4

6

Figure 1: TCP Connection Migration

ments from the mobile host provide the fixed host an implicit ac-
knowledgement of its SYN/ACK. Thus, there is exactly one byte in
the sequence space that needs explicit acknowledgement even when
the Migrate SYN is used.

4.1 An example

Figure 1 shows a sample connection where a mobile client con-
nects to a fixed host and later moves to a new address. The mobile
client initiates the TCP connection in standard fashion in message
1, including a Migrate-Permitted option in the SYN packet. The
values km and Tm are parameters used in the token negotiation, de-
scribed in Section 4.3. The fixed server, with a migrate-compliant
TCP stack, indicates its acceptance of the Migrate-Permitted option
by including the Migrate-Permitted option in its response (message
2). The client completes the three-way handshake with message 3,
an ACK. The connection then proceeds as any other TCP connec-
tion would, until message 4, the last packet from the fixed host to
the mobile host at its current address.

At some time later the mobile host moves to a new address, and
notifies the fixed server by sending a SYN packet from its new ad-
dress in message 5. This SYN includes the Migrate option, which
contains the previously computed connection token as part of a mi-
gration request. Note that the sequence number of this Migrate SYN
segment is the same as the last byte of transmitted data. The server
responds in kind in message 6, also using the sequence number of
its last transmitted byte of data. The ACK, however, is from the
same sequence space as the previous connection. While in this ex-
ample it acknowledges the same sequence number as the SYN that
generated it, it could be the case that segments were lost during
a period of disconnect while the mobile host moves, and that the
ACK will be a duplicate ACK for the last successfully received in-
sequence byte. Since it is addressed to the mobile host's new lo-
cation, however, it serves as an implicit ACK of the SYN as well.

Upon receipt of this SYN/ACK, the mobile host similarly ACKs in
the previous sequence space, and the connection resumes as before.
All of the options negotiated on the initial SYN except the Migrate-
Permitted option are still in effect, and need not be replicated in this
or any subsequent migrations.

4.2 Securing the migration
It is possible to partially hijack TCP connections if an attacker
can guess the sequence space being used by the connection [21].
With the Migrate options, an attacker who can guess both the se-
quence space and the connection token can hijack the connection
completely. Furthermore, the ability to generate a Migrate SYN
from anywhere greatly increases the connection's exposure. While
ingress filtering can be used to prevent connection hijacking by at-
tackers not on the path between the end hosts, such methods are
ineffective in our case. We must therefore take care to secure the
connection token.

The problem is relatively easy to solve if IP security (IPsec) [4]
were deployed. While the spectrum of approaches that could be
used is outside the scope of this paper, we note that IPsec pro-
vides sufficient mechanisms to secure migrateable connections.
Currently, however, IPsec has not found wide-spread deployment.
Hence, we provide a mechanism to self-secure the Migrate options.
End hosts may elect to secretly negotiate an unguessable connec-
tion token, which then reduces the security of a migrateable TCP
connection to that of a standard TCP connection, since no addi-
tional attacks are possible against a migrateable connection without
guessing the token, and any attack against a standard TCP connec-
tion clearly remains feasible against a migrateable TCP connection.

An unguessable connection token is secured with a secret connec-
tion key. Since any host that obtains the connection key could fab-
ricate the token and issue a Migrate request, we select the key with
an Elliptic Curve Diffie-Hellman key exchange [36], as described
below. Hosts using IPsec, or unconcerned with connection security,
may choose to disable key negotiation to avoid excess computation.

4.3 Migrate-Permitted option
Hosts wishing to initiate a migrateable TCP connection send a
Migrate-Permitted option in the initial SYN segment. Similar to
the SACK-Permitted option [19], it should only be sent on SYN
segments, and not during an established connection. Additionally,
hosts wishing to cryptographically secure the connection token may
conduct an Elliptic Curve Diffie-Hellman (ECDH) key exchange
through the option negotiation. (Elliptic Curve Diffie-Hellman is
preferred to other methods of key establishment due to its high
security-to-bit-length ratio. Readers unfamiliar with Elliptic Curve
cryptography can find the necessary background material in [3].)

As seen in figure 2, the Migrate-Permitted option comes in two
variants--the insecure version, of length 3, and the secure version,
with length 20. The secure version is used to negotiate a secret con-
nection key, and contains an 8-bit Curve Name and a 136-bit ECDH
Public Key fragment. The curve name field selects a particular set
of domain parameters (the curve, underlying finite field, F, and its
representation, the generating point, P, and the order of P, n), as
specified in [3]. Use of the insecure version, which contains only a
Curve Name field (which must be set to zero) allows the end host

159

Kind: 15 ILength=3/20[CurveName [ECDHPK

ECDH Public Key (cont.)

ECDH Public Key (cont.)

ECDH Public Key (cont.)

ECDH Public Key (cont.)

Kind: 16 I Length = 19 I ReqNo

Token

Token (cont.)

Request

Request (cont.)

Figure 2: TCP Migrate-Permitted option

to skip the key negotiation process. In that case, the connection key
is set to all zeros.

The secure variant of the Migrate-Permitted option also requires the
use of the Timestamp [14] option in order to store up to 200 bits of
ECDH keying material. The EDCH Public Key is encoded using
the compressed conversion routine described in [3, Section 4.3.6].
The 136 least-significant bits are stored in the EDCH Public Key
field of the Migrate-Permitted option, while the remaining 64 bits
of the key are encoded in the Timestamp option. The timestamp op-
tion, while often included, is not used on SYN segments. The Pro-
tection Against Wrapped Sequence Numbers (PAWS) [14] check
is only performed on synchronized connections, which by defini-
tion [31] includes only segments after the three-way handshake.
Similarly, the Round-Trip Time Measurement (RTTM) [14] pro-
cedure only functions when a timestamp has been echoed---clearly
this is never the case on an initial SYN segment. Hence the value of
the Timestamp option on SYN segments is entirely irrelevant to cur-
rent TCP stacks. Legacy TCP stacks will never receive a Migrate-
Permitted option on a SYN/ACK, hence the Timestamp option will
be processed normally. Special handing is only required for the
SYN/ACK and following ACK segment on connections that have
negotiated the Migrate-Permitted option, as Timestamp fields on
these segments will not contain timestamps. Hence the RTTM algo-
rithm must not be invoked for SYN/ACK or initial ACK segments
of connections that have negotiated the Migrate-Permitted option.

The Timestamp TSVal field contains the 32 most-significant bits of
the public key, while the TSecr field contains the next 32 most-
significant bits. These two components, combined with the 136-bit
EDCH Public Key field of the Migrate-Permitted option, constitute
the host's public key, k. If the public key is less than 200 bits, it is
left-padded with zeros. For any host, i, k~ is generated by selecting
a random number, Xi E [1, n - 1], where n is the order of P , and
computing

ki = X i * P

The * operation is the scalar multiplication operation over the field
F . The security of the connection hinges on the secrecy of the ne-
gotiated key, hence X~ should be randomly generated and stored in
the control block for each new connection. Any necessary retrans-
missions of the SYN or SYN/ACK must include identical values
for the Migrate-Permitted and Timestamp option.

Upon receipt of an initial SYN with a Migrate-Permitted option,
a host, j , with a compliant TCP stack must include a Migrate-
Permitted option (and a Timestamp option if the secure variant

Figure 3: TCP Migrate option

is used) in its SYN/ACK segment. It similarly selects a random
X~ E [1, n - 1] which it uses to construct k~, its public key, which
it sends in the same fashion.

After the initiating host's reception of the SYN/ACK with the
Migrate-Permitted and Timestamp options, both hosts can then
compute a shared secret key, K, as specified in [36]:

K = k i * X j = kj * X i

This secret key is then used to compute a connection validation to-
ken. This token, T, is computed by hashing together the key and
the initial sequence numbers Ni and Nj using the Secure Hash Al-
gorithm (SHA-1) [24] in the following fashion (recall that host i
initiated the connection with an active open, and host j is perform-
ing a passive open):

T = S H A I (N i , N~, K)

While SHA-I produces a 160-bit hash, all but the 64 most-
significant bits are discarded, resulting in a cryptographicaUy-
secure 64-bit token that is unique to the particular connection. Since
SHA-1 is collision-resistant, the chance that another connection on
the same (address, port) pair has an identical token is extremely
unlikely. If a collision is detected, however, the connection must be
aborted by sending a RST segment. (The host performing a passive
open can check for collisions before i~uing a SYN/ACK, and se-
lect a new random X j until a unique token is obtained. Hence the
only chance of collision occurs on the host performing the active
open.)

4.4 Migrate option
The Migrate option is used to request the migration of a currently
open TCP connection to a new address. It is sent in a SYN segment
to a host with which a previously-established connection already
exists (in the ESTABLISHED or FIN_WAIT states), over which the
Migrate-Permitted option has been negotiated.

There are two 64-bit fields in a Migrate option: a token, and a re-
quest. In addition, there is an 8-bit sequence number field, reqNo,
which must be monotonically increasing with each new migrate re-
quest issued by an end host for a connection. (The sequence num-
ber allows correspondent hosts to ensure Migrate SYNs were not
reordered by the network. Sequence space wrap-around is dealt
with in the standard fashion.) The token is simply the 64 most-
significant bits of the connection's SHA-1 hash as computed in the
Migrate-Permitted option exchange. The request, R, is similarly

160

the 64 most-significant bits of a SHA-1 hash calculated from the
sequence number of the connection initial sequence numbers N,
Migrate SYN segment, S, the connection key, K, and the request
sequence number, I.

R = SHAI(N~, N~, K, S, I)

SYN segments may now correctly arrive on a bound port not in
the LISTEN state. They should be processed only if they contain
the Migrate option as specified above. Otherwise, they should be
treated as specified in [31]. Upon receipt of a SYN packet with the
Migrate option, a TCP stack that supports migration attempts to
locate the connection on the receiving port with the corresponding
token. The token values for each connection were precomputed at
connection establishment, reducing the search to a hash lookup.

If the token is valid, meaning an established connection on this
(address, port) pair has the same token, and the reqNo is greater
than any previously received migrate request, the fixed host then
computes R = S H A I (Ni , N~ , K, S, I) as described above, and
compares it with the value of the request in the Migrate SYN. If
the comparison fails, or the token was invalid, a RST is sent to the
address and port issuing the Migrate SYN, and the SYN ignored.
If, on the other hand, the token and request are valid, but the reqNo
is smaller than a previdusly received request, the SYN is assumed
to be out-of-order and silently discarded. If the reqNo is identical
to the most recently reegived migrate request this SYN is assumed
to be a duplicate of the most recently received SYN, and processed
accordingly.

Otherwise, the destina"fion address and port 5 associated with the
matching connection should be updated to reflect the source of the
Migrate SYN, and a SYN/ACK packet generated, with the ACK
field set to the last received contiguous byte of data, and the con-
nection placed in the SYN_RCVD state. Upon receipt of an ACK,
the connection continues as before.

4.5 MIGRATE_WAIT state

This section assumes that the reader is familiar with the TCP state
machine and transitions [33, Chapter 18].

Special processing of TCP RST messages is required with migrate-
able connections, as a mobile host's old 1P address may be reas-
signed before it has issued a migrate request to the fixed host. Figure
4 shows the modified TCP state transition diagram for connections
that have successfully negotiated the Migrate-Permitted option. The
receipt of a RST that passes the standard sequence number checks
in the ESTABLISHED state does not immediately terminate the
connection, as specified in [31]. Instead, the connection is placed
into a new MIGRATE_WAlT state. (A similar, but far less likely sit-
uation can occur if the fixed host is in the FIN_WAITI state--the
application on the fixed host has closed the connection, but there
remains data in the connection buffer to be transmitted. For sim-
plicity, these additional state transitions are not shown in figure 4.)

Connections in the MIGRATE_WAIT state function as if they were
in the ESTABLISHED state, except that they do not emit any seg-
ments (data or ACKs), and are moved to CLOSED if they remain

5Migrated connections will generally originate from the same
port as before. However, if the mobile host is behind a NAT, it is
possible the connection has been mapped to a different port.

appl: passive open
send: (nothing)

(SYN.RCVD), recv: SYN • , ,~ , send: SYN, ACK .~SYN_SENT

" ~ "~0}_~'. \ A v / "/e."~"

f i .~ ,~ ESTABLISHED)/ ,r
Zl .~. /"

I /

I /

I . / ~MSL timeout
(MIGRATE_WAIT) - .I

Figure 4: Partial TCP state transition diagram with Migrate
transitions (adapted from [33, figure 18.12])

in MIGRATE_WAIT for over a specified period of time. We recom-
mend using the 2MSL ([31] specifies a Maximum Segment Lifetime
(MSL) as 2 minutes, but common implementations also use values
of l minute or 30 seconds for MSL [33]) period of time specified
for the TIME_WAIT state.

Any segments received while in the MIGRATE_WAIT state should
be processed as in the ESTABLISHED state, except that no ACKs
should be generated. The only way a connection is removed from
the MIGRATE_WAIT state is on the receipt of a Migrate SYN with
the corresponding connection key. The connection then responds in
the same fashion as if it were in the ESTABLISHED state when it
received the SYN.

The MIGRATE_WAIT state prevents connections from being in-
advertently dropped if the address allocation policy on the mobile
host's previous network reassigns the mobile host's old IP address
before the mobile host has reconnected at a new location and had
a chance to migrate the connection. It also prevents the continued
retransmission of data to an unreachable host.

This passive approach to disconnection discovery is preferred over
an active, mobile-initiated squelch message because any such mes-
sage could be lost. 6 Furthermore, a mobile host may not have suf-
ficient (if any) notice of address reassignment to issue such mes-
sages. As an added performance enhancement, however, mobile
hosts aware of an impending migration may themselves emit a
special RST to the peer, which will force the connection into MI-
GRATE_WAIT, preventing additional packet transmission until the

6And any guaranteed-reliable transmission mechanism could
take unbounded time.

161

mobile host has successfully relocated, although such action in-
vokes the strict 2MSL time bound on the allowable delay for host
relocation and connection migration.

5 Security issues

An end-to-end approach to mobility simplifies the trust relation-
ships required to securely support end-host mobility compared to
network-layer approaches such as Mobile IP. In addition to the re-
lationship between a mobile host and any proxies or home agents,
several Mobile IP-based proposals require that a correspondent host
in communication with a mobile host assume the responsibility
of authenticating communication with an arbitrary set of foreign
agents. In their route optimization draft [28], Perkins and Johnson
state:

One of the most difficult aspects of Route Optimization
for Mobile IP in the Intemet today is that of providing
authentication for all messages that affect the routing of
datagrams to a mobile node.

Since no third parties are required or even authorized to speak on
the mobile host's behalf in an end-to-end architecture, the only trust
relationship required for secure relocation is between the mobile
and correspondent host. Clearly they already must have a level of
trust commensurate with the nature of their communications since
they chose to communicate in the first place.

Regardless of the simplicity of trust relationships, there remains the
possibility that untrusted parties could launch attacks against the
end hosts or connections between them utilizing either dynamic
DNS updates or the Migrate and Migrate-Permitted options. The
security of dynamic DNS updates is addressed in RFC 2137 [8],
resting on the strength of the digital signature scheme used to au-
thenticate mobile hosts.

Possible attacks against the Migrate TCP options include both
denial-of-service attacks and methods of migrating connections
away from their appropriate end hosts. We discuss these attacks
below, and either show why the Migrate options are not vulnerable,
or explain why the attack presents no additional threat in relation to
standard TCE

5.1 Denial of service

SYN flooding is a common form of Denial-of-Service (DOS) at-
tack, and most modem TCP implementations have taken great care
to avoid consuming unnecessary resources unless a three-way hand-
shake is complete. To validate a Migrate request, the correspondent
host performs a significant computation (the SHA-1 hash), which
implies we need to be especially vigilant against DoS attacks that
attempt to deplete the CPU resources of a target host. The vali-
dation is not performed unless an attacker succeeds in guessing a
valid, pre-computable token (with a 1 in 284 probability); since a
RST message is generated if either the token or the request is in-
valid, an attacker has no way to identify when it has found a valid
token. Because a would-be attacker would therefore have to issue
roughly 2 ~a Migrate SYNs to force a request validation, we argue
that the TCP Migrate option does not introduce any additional DoS
concerns above standard TCP.

5.2 Connection hijacking

Since a Migrate request contains a hash of both the SYN segment's
sequence number and migrate request sequence number, a replayed
Migrate option can only be used until either a new byte of data or
another migrate connection is sent on the connection. Since self-
migration is not allowed, duplicate Migrate SYNs (received out-
side of the three-way handshake) are ignored by the peer TCP. If,
however, the mobile host moves rapidly to a another new location,
a replayed Migrate SYN could be used to migrate the connection
back to the mobile host's previous IP, which may have been subse-
quently assumed by the attacker. In order to prevent this attack, the
Migrate Request option processing ignores the source address and
port in duplicate packets, as a valid request from a relocated mobile
host would include a higher request number.

More worrisome, however, is the fact that once a Migrate SYN has
been transmitted, the token is known by any hosts on the new path,
and denial-of-service attacks could be launched by sending bogus
Migrate SYNs with valid tokens. If a mobile host includes a new
Migrate-Permitted option in its Migrate SYN, however, the window
of opportunity when the previous connection token can be used (if
it was snooped) is quite small--only until the new three-way hand-
shake is successfully completed.

5.3 Key security

The connection key used by the Migrate option is negotiated via
Elliptic Curve Diffie-Hellman to make it extremely difficult even
for hosts that can eavesdrop on the connection in both directions
to guess the key. Without sufficient information to verify possible
keys off-line, an attacker would have to continually generate Mi-
grate SYNs and transmit them to one of the end hosts, hoping to
receive a SYN/ACK in response to a correct guess. Clearly such an
attack is of little concern in practice, as the expected 283 SYN pack-
ets required to successfully guess the key would generate sufficient
load as to be a DoS problem in and of themselves.

Hosts that lie on the path between end hosts, however, have suf-
ficient information (namely the two Elliptic Curve Diffie-Hellman
components) to launch an attack against the Elliptic Curve system
itself. The best known attack is a distributed version of Pollard's
rho-algorithm [30], which [17] uses to show that a 193-bit EC sys-
tem would require 8.52.1014 MIPS years, or about 1.89.1012 years
on a 450Mhz Pentium II, to defeat.

While this seems more than secure against ordinary attackers, an
extremely well-financed attacker might be able to launch such an at-
tack on a long-running connection in the not-too-distant future. The
obvious response is to increase the key space. Unfortunately, we
are restricted by the 40-byte limitation on TCP options. Given the
prevalence of the MSS (4 bytes), Window Scale (3 bytes), SACK
Permitted (2 bytes), and Timestamp (10 bytes) options (of which
we are already using 8 bytes) in today's SYN segments, the 20-byte
Migrate-Permitted option is already as large as is feasible. We argue
that further securing the connection key against brute-force attacks
from hosts on the path between the two end hosts is largely irrel-
evant, given the ability of such hosts to launch man-in-the-middle
attacks against TCP with much less difficulty!

The security of TCP connections, migrateable or not, continues to
remain with the authentication of end hosts, and the establishment

162

of strong session keys to authenticate ongoing communication. Al-
though we have taken care to ensure the Migrate option does not
further decrease the security of TCP connections, the latter are
inherently insecure, as IP address spoofing and sequence number
guessing are not very difficult. Hence we strongly caution users
concerned with connection security to use additional application-
layer cryptographic techniques to authenticate end points and the
payload traffic.

5.4 IPsec

When used in conjunction with IPsec [4], there are additional is-
sues raised by the use of the Migrate options. IPsec Security As-
sociations (SAs) are established on an IP-address basis. When a
connection with an associated SA is migrated, a new SA must be
established with the new destination address before communica-
tion is resumed. If the establishment of a this new SA conflicts with
existing policy, the connection is dropped. This seemingly unfor-
tunate result is actually appropriate. Since IPsec's Security Policy
Database (SPD) is keyed on IP network address, the policies speci-
fied within speak to a belief about the trustworthiness of a particular
portion of the network.

Ira mobile host attaches to a foreign network, any security assump-
tions based on its normal point of attachment are invalid. If the end
host itself continues to have sufficient credentials independent of its
point of attachment, an end-to-end authentication method should be
used, and a secure tunnel established for communication over the
untrusted network. A discussion of such techniques is outside of
the scope of this document.

6 Implementation

We have implemented this architecture in the Linux 2.2.15 kernel,
using Bind 8.2.2-P3 as the name server for mobile hosts. The IPv4
TCP stack has been modified to support the Migrate options. Con-
nection migration can be affected through two methods. Applica-
tions with open connections may explicitly request a migration by
issuing an ±oct] . () on the connection's file descriptor specify-
ing the address to migrate to. Most current applications, however,
lack a notification method so the system can inform them the host
has moved. Hence we also provide a mechanism for processes to
migrate open connections, regardless of whether they have the file
descriptor open or not.

This is done through the Linux / p r o c file system. A directory
/ p r o c / n e l : / r M . g r a t : e contains files of the form source ad-
dress : source port- >dest address : dest port for each open connec-
tion that has successfully negotiated the Migrate-Permitted option.
These files are owned by the user associated with the process that
opened the connection. Any process with appropriate permissions
can then write a new IP address to these files, causing the corre-
sponding connection to be migrated to the specified address. This
method has the added benefit of being readily accessed by a user
directly through the command line.

It is expected that mobile hosts will run a mobility daemon that
tracks current points of network attachment, and migrates open con-
nections based on some policy about the user's preference for cer-
tain methods of attachment. For instance, when an 802.11 interface
comes up on a laptop that previously established connections on

l OOMbps Ethernet

19. 2Kbps ~,~ ~ /
Modem

/
I Fixed
Basestat ion I

1 9 . 2 K b p ~ s / ~ - - - . ~
Modem /v" x

(, Mobi le ,)

Figure 5: Network topology used for migration experiments

a CDPD link, it seems likely that the user would opt to migrate
most open connections to the address associated with the 802.11
link. Similarly the daemon could watch for address changes on at-
tached interfaces (possibly as a result of DHCP lease expirations
and renewals) and migrate connections appropriately. We plan to
implement such a daemon in the near future.

6.1 Experiments
Figure 5 shows the network topology used to gather the TCP traces
shown in figures 6 and 7. The traces were collected at the fixed
basestation, which is on the path between the fixed host and both
mobile host locations, We conducted TCP bulk transfers from a
server on the fixed host to a client on the mobile host. The client
initiates the connection from one location, and migrates to another
location at some later point. Both mobile host locations use iden-
tical connections, a 19.2Kbps serial link with ~100ms round-trip
latency. The basestation and fixed host are on a 100Mbps Ether-
net segment, hence the link to the mobile host is the connection
bottleneck. This topology is intentionally simple in order to isolate
the various subtleties of migrating TCP connections, as discussed
below.

Figure 6 shows the TCP sequence trace of a migrated TCP connec-
tion. At time t ~ 4.9s the mobile host moved to a new address
and issued a Migrate SYN, as depicted by the dotted line. Since
the host is no longer attached at its previous address, all of the en-
queued segments at the bottleneck are lost. (The amount of lost data
is bounded by the advertised receive window of the mobile host. A
host that moves frequently across low-bandwidth connections may
wish to advertise a smaller receive window to reduce the number of
wasted segments.) Finally, at t ~ 6.8s the fixed host's SYN/ACK
passes through the bottleneck, and is ACKed by the fixed host a
RTT later.

The fixed host does not immediately restart data transmissions
because the TCP Migrate options do not change the congestion-
avoidance or retransmission behavior of TCP. The sender is still
waiting for ACKs for the lost segments; as far as it is concerned,
it has only received two (identical) ACKs--the original ACK, and
one duplicate as part of the Migrate SYN three-way handshake.

163

86OOO

82OOO

E ~ 7e~x~

i 7 ~ I

m

7~4J00

72000

70000

÷~

+

+ + x
~ x ** x

****x x

/ x x
x

÷ x

I I I i

2 4 6 8

Time (~)

A~
l o

Before: Data +
ACK= x

Ho~l Migrat ion
After: Data •

AC~ t o

10 12

Figure 6: A TCP connection sequence trace showing the migra-
tion of an open connection

: ++

~+
÷.+

72000 ++ x ÷+%x
+* x r0ooo *** *x x

x

~ooo 2'4 '
22 26

84O0O

B 2 0 0 0

8OOOO

7.0o0

|

°/°°

+ ÷ •~l

I |
28 30

Th-no (~)

Before: Data +
ACKa x

Hoot Migrat ion
N l ec Data •

ACI (s a
i i

34

Figure 7: A TCP Migrate connection (with SACK) sequence
trace with losses just before migration

Finally, at t ~ 7.8s the retransmission timer expires (the inter-
vat is from the first ACK, sent earlier at t ~ 4.9s) and the fixed
host retransmits the first of the lost segments. It is immediately ac-
knowledged by the mobile host, and TCP resumes transmission in
slow-start after the timeout.

Figure 7 shows the TCP sequence trace of a similar migrate TCP
connection. As before, the dashed line indicates the mobile host is-
sued a migrate request at time t ,~ 27.1s. This time, however, there
were additional losses on the connection that occurred just before
the migration, as can be seen at t ~ 24.9s. These segments are fast-
retransmitted, and pass through the bottleneck at t ~ 28s due to the
DUP-ACKs generated by the remaining SYNs. Unfortunately, this
is after the mobile host has migrated, so they, along with all the seg-
ments addressed to the mobile host's initial address after t ~ 27.1s,
are lost.

At t ~, 29s, the Migrate SYN/ACK makes it out of the queue
at the bottleneck, and the mobile host immediately generates an
ACK. As in the previous example, however, the fixed host is still
awaiting ACKs for previously transmitted segments. It is only at
t ~ 31s that the timer expires and the missing segments are re-

transmitted. Notice that because SACK prevents the retransmission
of the previously-received segments, only those segments lost due
to the mobile host's address change are retransmitted, and the con-
nection continues as before. The success of this trace demonstrates
that the Migrate options work well with SACK due to the consis-
tency of the sequence space across migrations.

6.2 Performance enhancements
Several enhancements can be made by implementations to improve
overall connection throughput during connection migration. The
most obvious of these is issuing three DUP-ACKs immediately af-
ter a migrate request, thereby triggering the fast-retransmit algo-
rithm and avoiding the timeout seen in the previous example [6].
By preempting the timeout, the connection further avoids dropping
into slow-start and congestion avoidance.

Such techniques should be used with care, however, as they assume
the available bandwidth of the new path between mobile and fixed
host is on the same order-of-magnitude as the previous path. For
migrations across homogeneous technologies this may be a reason-
able assumption. When moving from local to wide-area technolo-
gies, however, there may be order-of-magnitude discrepancies in
the available bandwidth. Hence we do not include such speed-ups
in the TCP Migrate specification, and leave it to particular imple-
mentations to responsibly evaluate the circumstances and provide
behavior compatible with standard TCP.

7 Deployment Issues
As with any scheme for mobility support, there are some deploy-
ment issues to be addressed. By pushing the implementation of mo-
bility mechanisms--connection migration in particular--to the end
points, our system requires changes to each transport protocol. For-
tunately, our TCP connection migration protocol can be generalized
to other UDP-based protocols with little difficulty. Significant ex-
amples include streaming protocols such as RTP and proprietary
protocols like Real, Quicktime and Netshow. We note that most of
these already have a control channel used for congestion and quality
control, and such applications would likely wish to be informed of
changes due to mobility as well. Furthermore, we argue that not all
applications require network-layer mobility, especially those char-
acterized by short transactions where an application-level retry of
the transaction is easy to perform; we therefore make the case using
the end-to-end argument that mobility might be best implemented
as a higher-level, end-to-end function just like reliability.

Perhaps the biggest limitation of our approach is that both peers
cannot move simultaneously. 7 Because our scheme has no anchor
point like Mobile IP's home agent, any IP address change must be
completed before the other can proceed. We do not view this as
a serious limitation to the widespread applicability of the protocol,
since we are primarily targeting infrastructure-based rather than ad-
hoc network topologies in this work.

In addition to these two limitations, there are several issues that
crop up when one considers presently-deployed applications. While
it is currently possible for Internet hosts to be re-addressed while

7,,Simultaneously,, is defined as whenever the intervals between
address change and the (would-be) reception of the Migrate SYN
by the corresponding host for both end hosts overlap.

1 6 4

operating (due to a DHCP lease expiration or similar event), it is
quite rare. Hence some applications have made assumptions about
the stability of network addresses, which are no longer valid in our
architecture. We discuss some of these issues below.

7.1 Address caching

There is a class of applications that store IP addresses within the ap-
plication, and communicate these addresses to a remote host. Such
applications would not function properly under our architecture.
They are readily identifiable, however, as another currently widely-
deployed technology also breaks such applications: Network Ad-
dress Translators (NATs). While the wisdom of Network Address
Translation is a hotly debated topic, there is little chance it will dis-
appear any time soon. Hence most applications designed today take
care not to transmit addresses as part of the application-layer com-
munication, and therefore will also work in our architecture. In fact,
one can make the case that such applications are broken, since IP
addresses are only identifiers of attachment points, not hosts.

Another, larger class of applications cache the results of gethost-
bynameO, and may not perform further hostname resolution) Fur-
thermore, DNS resolvers themselves cache hostname bindings as
discussed in Section 3. Unfortunately many older name servers en-
force a local TTL minimum, often set to five minutes. Since newer
versions of popular name servers adhere to the TTL specified in the
returned resource record, this problem should disappear as upgrades
are made.

7.2 Proxies and NATs

Proxies actually help the deployment of our scheme, as we only
need to modify the proxy itself, and all communications through
the proxy will support mobility. Similarly, NATs can also provide
transparent support without remote system modification. In fact, a
NAT doesn't even need a modified TCP stack. It need only snoop on
TCP SYNs (which it does anyway), note the presence of a Migrate-
Permitted option, and snoop for the SYN/ACK (which it does any-
way). If the SYN/ACK does not contain a Migrate-Permitted op-
tion, the NAT can support connection migration internal to its net-
work by inserting a corresponding Migrate-Permitted option, and
continuing to snoop the flow looking for any Migrate SYNs. It need
only fabricate a corresponding SYN/ACK and update its address-
to-port mappings, without passing anything to the end host. Further,
by avoiding any explicit addressing in migrate requests, the Migrate
options function properly though legacy NATs, and even allow a
mobile host to move between NATs, as connections may change
not only address but port as well.

7.3 Non-transactional UDP applications

Many UDP applications are transactional in nature. UDP is, by def-
inition, a datagram protocol, and an inopportune change of IP ad-
dress is only one of many reasons for an unsuccessful UDP trans-
action. The transaction will need to be retried, although a new host-
name binding should be obtained first.

There exists at least one glaring exception to this rule. The Network
File System protocol (NFS) represents one of the most prevalent

SSome popular Web browsers display this behavior.

UDP applications in use today and uses IP addresses in its mount
points. 9 We believe, given the characteristics of network links likely
to be encountered by mobile hosts, it is likely that NFS-over-TCP
is a better choice than UDP. Otherwise, a mobile host would need
to dismount and re-mount NFS filesystems upon reconnection.

8 Conclusion

This paper presents an end-to-end architecture for Internet host mo-
bility that makes no changes to the underlying IP communication
substrate. It uses secure updates to the DNS upon an address change
to allow Internet hosts to locate a mobile host, and a set of connec-
tion migration options to securely and efficiently negotiate a change
in the IP address of a peer without breaking the end-to-end connec-
tion. We have implemented this architecture in the Linux operat-
ing system and are encouraged by the ease with which mobility
can be achieved without any router support, the flexibility to mo-
bile hosts provided by it, and performance comparable to Mobile
IP with route optimization.

Our architecture allows end systems to choose a mobility mode
best suited to their needs. Routing paths are efficient with no tri-
angle routing, and any connection involving the mobile host shares
fate only with the communicating peer and not with any other en-
tity like a home agent. When a mobile host is in a foreign network
and communicating with another host, the disruption in connec-
tivity caused by a sudden IP address change is proportional to the
round-trip time of the connection. When a mobile host accepts no
passive connections, the protocol does not require even the DNS
update notification, and seamless connectivity across host mobility
is achieved using completely end-to-end machinery.

The security of our approach is based on a combination of the well-
documented secure DNS update protocol in conjunction with a new
secure connection migration mechanism. Our architecture and im-
plementation function across a variety of other components of the
Internet architecture, including firewalls, NATs, proxies, IPsec, and
IPv6. We believe that our architecture scales well even when most
Internet hosts become mobile because lookups and updates are dis-
tributed across administratively-delegated, replicated DNS servers.

We note that our connection migration scheme, the MI-
GRATE_WAIT state in particular, avoids address assignment race
conditions, but does not support host disconnectivity. Hence, as
with Mobile 1P and other mobility schemes, TCP connections may
be lost if the mobile host's relocation is accompanied by a pro-
longed period of disconnectivity. We are hopeful our end-to-end
approach may be extended to support general host disconnectivity
as well.

Acknowledgements

We thank John Ankcorn, Frans Kaashoek, Eddie Kohler, Robert
Morris, Srinivasan Seshan, Tim Sheppard, and Karen Sollins for
helpful comments on earlier drafts of this paper. We are indebted to
David Andersen, who helped improve the security of our initial Mi-
grate scheme, and David Mazieres, who suggested we use Elliptic
Curve Diffie-Hellman key exchange for additional key strength.

9We note that most other advanced file systems, such as
Coda [22] and newer versions of NFS use TCP, which gives good
congestion control and reliability behavior.

165

References
[1] ADJIE-WINOTO, W., SCHWARTZ, E., BALAKRISHNAN, H.,

AND LILLEY, J. The design and implementation of an inten-
tional naming system. In Pros. ACM SOSP '99 (Dec. 1999),
pp. 186--201.

[2] AKAMAI TECHNOLOGIES, INC. http : //www. akamai.
com.

[3] AMERICAN NATIONAL STANDARDS INSTITUTE. Public key
cryptography for the financial service industry: The elliptic
curve digital signature algorithm. ANSI X9.62 - 1998, Jan.
1999.

[4] ATKINSON, R. Security architecture for the intemet protocol.
RFC 1825, IETF, Aug. 1995.

[5] BALAKRISHNAN, H., SESHAN, S., AND KATZ, R. H. Im-
proving reliable transport and handoff performance in cellular
wireless networks. ACM Wireless Networks 1, 4 (Dec. 1995),
469--481.

[6] CACERES, R., AND IFTODE, L. Improving the performance
of reliable transport protocols in mobile computing environ-
ments. IEEE JSAC 13, 5 (June 1995).

[7] DROMS, R. Dynamic Host Configuration Protocol.
RFC 2131, IETF, Mar. 1997.

[8] EASTLAKE, 3RD, D. E. Secure domain name system dy-
namic update. RFC 2137, IETF, Apr. 1997.

[9] FERGUSON, P., AND GENIE, D. Network ingress filtering:
Defeating denial of service attacks which employ IP source
address spoofing. RFC 2267, IETF, Jan. 1998.

[10] GUPTA, S., AND REDDY, A. L. N. A client oriented, IP level
redirection mechanism. In Proc. IEEE Infocom '99 (Mar.
1999).

[11] HUITEMA, C. Multi-homed TCP. Intemet Draft, IETF, May
1995. (expired).

[12] IEEE. Wireless medium access control (MAC) and physical
layer (PHY) specifications. Standard 802.11, 1999.

[13] JACOBSON, V. Congestion avoidance and control. In Proc.
ACM SIGCOMM '88 (Aug. 1988), pp. 314-329.

[14] JACOBSON, V., BRADEN, R., AND BORMAN, D. TCP ex-
tensions for high performance. RFC 1323, IETF, May 1992.

[15] JOSEPH, A. D., TAUBER, J. A., AND KAASHOEK, M. F.
Mobile computing with the rover toolkit. IEEE Trans. on
Computers 46, 3 (Mar. 1997), 337-352.

[16] KARN, P. Qualcomm white paper on mobility and IP
addressing, http : //people. qualcomm, com/karn/
papers/mobi i ity. html, Feb. 1997.

[17] LENSTRA, A. K., AND VERHEUL, E. R. Selecting cryp-
tographic key sizes, h t t p : //www. c r y p t o s a v v y , corn,
Nov. 1999.

[18] MALTZ, D., AND BHAGWAT, P. MSOCKS: An architecture
for transport layer mobility. In Proc. IEEE lnfocom '98 (Mar.
1998).

[19] MATHIS, M., MAHDAVl, J., FLOYD, S., AND ROMANOW,
A. TCP selective acknowledgment options. RFC 2018, IETF,
Oct. 1996.

166

[20] MOCKAPETRIS, P. V., AND DUNLAP, K. Development of
the domain name system. In Proc. ACM SIGCOMM '88 (Aug.
1988), pp. 123-133.

[21] MORRIS, R. T. A weakness in the 4.2BSD UNIX TCP/IP
software. Computing science technical report 117, AT&T Bell
Laboratories, Murray Hill, New Jersey, Feb. 1985.

[22] MUMMERT, L. B., EBLING, M. R., AND SATYA-
NARAYANAN, M. Exploiting weak connectivity for mobile
file access. In Proc. ACM SOSP '95 (Dec. 1995), pp. 143-
155.

[23] MYSORE, J., AND BHARGHAVAN, V. A new multicasting-
based architecture for internet host mobility. In Proc.
ACM/IEEE Mobicom '97 (Sept. 1997), pp. 161-172.

[24] NATIONAL INSTITUTE OF STANDARDS AND TECHNOL-
OGY. The Secure Hash Algorithm (SHA- 1). NIST FIPS PUB
180-1, U.S. Department of Commerce, Apr. 1995.

[25] NOBLE, B. D., SATYANARAYANAN, M., NARAYANAN, D.,
TILTON, J. E., FL1NN, J., AND WALKER, K. R. Agile
application-aware adaptation for mobility. In Proc. ACM
SOSP '97 (Oct. 1997), pp. 276--287.

[26] PERKINS, C. E., AND CALHOUN, P. R. Mobile IP chal-
lenge/response extensions. Internet Draft, IETF, Feb. 2000.
draft-ietf-mobileip-challenge-09, txt (work
in progress).

[27] PERKINS, C. E., AND JOHNSON, D. B. Mobility support in
IPv6. In Proc. ACM/IEEE Mobicom '96 (Nov. 1996), pp. 27-
37.

[28] PERKINS, C. E., AND JOHNSON, D. B. Route optimiza-
tion in mobile IP. Internet Draft, IETF, Feb. 2000. d r a f t -
iet f-mobi leip- opt im- 09. txt (work in progress).

[29] PERKINS, ED., C. E. IP mobility support. RFC 2002, IETF,
Oct. 1996.

[30] POLLARD, J. Monte carlo methods for index computation
mod p. Mathematics of Computation 32 (1978), 918-924.

[31] POSTEL, ED., J. Transmission Control Protocol. RFC 793,
IETF, Sept. 1981.

[32] SALTZER, J. H., REED, D. P., AND CLARK, n . n. End-
to-end arguments in system design. ACM TOCS 2, 4 (Nov.
1984), 277-288.

[33] STEVENS, W. R. TCP/IP Illustrated, Volume 1: The Proto-
cols. Addison Wesley, Reading, Massachusetts, 1994.

[34] THOMSON, S., AND NARTEN, T. IPv6 stateless address au-
toconfiguration. RFC 2462, IETF, Dec. 1998.

[35] VIXIE, P., THOMSON, S., REKHTER, Y., AND BOUND, J.
Dynamic updates in the domain name system (DINS UP-
DATE). RFC 2136, IETF, Apr. 1997.

[36] ZUCCHERATO, R., AND ADAMS, C. Using elliptic curve
Diffie-Hellman in the SPKM GSS-API. Internet Draft, IETF,
Aug. 1999. draft-ietf-cat-ecdh-spkm-00, txt
(work in progress).

