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Abstract 

We present the design and implementation of an end-to-end ar- 
chitecture for Internet host mobility using dynamic updates to the 
Domain Name System (DNS) to track host location. Existing TCP 
connections are retained using secure and efficient connection mi- 
gration, enabling established connections to seamlessly negotiate a 
change in endpoint IP addresses without the need for a third party. 
Our architecture is secure--name updates are effected via the se- 
cure DNS update protocol, while TCP connection migration uses 
a novel set of Migrate options--and provides a pure end-system 
altemative to routing-based approaches such as Mobile IP. 

Mobile IP was designed under the principle that fixed Internet 
hosts and applications were to remain unmodified and only the un- 
derlying IP substrate should change. Our architecture requires no 
changes to the unicast IP substrate, instead modifying transport pro- 
tocols and applications at the end hosts. We argue that this is not a 
hindrance to deployment; rather, in a significant number of cases, it 
allows for an easier deployment path than Mobile IP, while simul- 
taneously giving better performance. We compare and contrast the 
strengths of end-to-end and network-layer mobility schemes, and 
argue that end-to-end schemes are better suited to many common 
mobile applications. Our performance experiments show that hand- 
off times are governed by TCP migrate latencies, and are on the 
order of a round-trip time of the communicating peers. 

1 Introduction 

The proliferation of mobile computing devices and wireless net- 
working products over the past decade has made host and service 
mobility on the Internet an important problem. Delivering data to 
a mobile host across a network address change without disrupting 
existing connections can be tackled by introducing a level of indi- 
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rection in the routing system. This is the approach taken by Mobile 
IP [27, 29], which deploys a home agent that intercepts packets des- 
tined for a host currently away from its home network, and delivers 
it to the mobile host via a foreign agent in the foreign network. This 
approach does not require any changes to the fixed (correspondent) 
hosts in the Intemet, but does require changing the underlying IP 
substrate to effect this triangle routing, and an authentication proto- 
col to ensure that connections are not hijacked by a malicious party. 
Mobile IP is a "pure" routing solution, a network-layer scheme that 
requires no changes to any higher layer of the Internet protocol 
stack. 

There are many classes of mobile applications [16]: those where 
other hosts originate connections to a mobile host and can benefit 
from both host location and handoff support (e.g., a mobile Web 
server, mobile telephony); those where the mobile host originates 
all connections, which do not require host location services but can 
benefit from handoff support (e.g., mall readers, Web browsers); 
and those where an application-level retry suffices if the network 
address changes unexpectedly during a short transaction, which 
need neither to work well (e.g., DNS resolution). We believe that a 
good end-to-end architecture for host mobility will support all these 
modes, and empower applications to make the choice best suited to 
their needs. Our architecture is motivated by, and meets, this goal. 
It is an end-to-end approach; no changes to the IP substrate are re- 
quired. 

In our mobility architecture, the decision of whether to support 
transparent connectivity across network address changes (espe- 
cially useful for mobile servers) or not (not needed for short client- 
server transactions) is left to the application. While Mobile IP-style, 
fully-transparent mobility support is general and sufficient for mo- 
bile applications, this generality comes at significant cost, complex- 
ity, and performance degradation. 

To locate mobile hosts as they change their network attachment 
point, we take advantage of the widely-deployed Domain Name 
System (DNS) [20] and its ability to support secure dynamic up- 
dates [8, 35]. Because most Internet applications resolve hostnames 
to an IP address at the beginning of a transaction or connection, this 
approach is viable for initiating new sessions with mobile hosts. 
When a host changes its network attachment point (IP address), it 
sends a secure DNS update to one of the name servers in its home 
domain updating its current location. The name-to-address map- 
pings for these hosts are uncacheable by other domains, so stale 
bindings are eliminated. 

The ability to support continuous communication during periods of 
mobility without modifying the IP substrate is a more challenging 
problem. Because TCP is a connection-oriented reliable protocol, 
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many TCP applications reasonably expect this service model in the 
face of losses and transient link failures, route changes, or mobility. 
The two communicating peers must securely negotiate a change in 
the underlying network-layer IP address and then seamlessly con- 
tinue communication. Furthermore, an approach that requires either 
communicating peer to learn about the new network-layer address 
before a move occurs is untenable because network-layer moves 
may be quite sudden and unpredictable. 

We design a new end-to-end TCP option to support the secure 
migration of an established TCP connection across an IP address 
change. Using this option, a TCP peer can suspend an open con- 
nection and reactivate it from another IP address, transparent to an 
application that expects uninterrupted reliable communication with 
the peer. In this protocol, security is achieved through the use of a 
connection identifier, or token, which may be secured by a shared 
secret key negotiated through an Elliptic Curve Diffie-Hellman 
(ECDH) key exchange [36] during initial connection establishment. 
It requires no third party to authenticate migration requests, thereby 
allowing the end points to use whatever authentication mechanism 
they choose to establish a trust relationship. Although we only de- 
scribe details for TCP migration, we find that this idea is general 
and can be implemented in a like manner for specific UDP-based 
protocols such as the Real-time Transport Protocol (RTP) to achieve 
seamless mobility for those protocols as well. 

One way of thinking of our work is in the context of the end-to-end 
argument [32], which observes that functionality is often best im- 
plemented in a higher layer at an end system, where it can be done 
according to the application's specific requirements. We show that it 
is possible to implement mobility as an end-to-end service without 
network-layer support, while providing multiple mobility modes. In 
this sense, this is akin to applications deciding between UDP and 
TCP as a transport protocol; many opt for UDP's simplicity and 
timeliness over TCP's reliability. In the same fashion, applications 
should be able to select the mobility mode of their choice. 

The other significant advantage of handling mobility on an end-to- 
end basis is that it enables higher layers like TCP and HTTP to learn 
about mobility and adapt to it. For example, it is a good idea after a 
network route change to restart TCP transmissions from slow start 
or a window-halving [13] since the bottleneck might have changed, 
or adapt the transmitted content to reflect new network conditions. 
These optimizations can be made naturally if mobility is handled 
end-to-end, since no extra signalling is needed. Indeed, the large 
body of work in mobile-aware applications [15, 22, 25] can benefit 
from our architecture. 

Experience with previous end-to-end enhancements such as various 
TCP options (e.g., SACK [19]), path MTU discovery, HTTP/1.1, 
etc., has shown that such techniques often meet with less resistance 
to widespread deployment than changes to the IP substrate. This 
supports our belief that, in addition to the flexibility it offers, an 
end-to-end approach may be successfully deployed. 

We have implemented this mobility architecture in Linux 2.2 and 
have conducted several experiments with it. We are encouraged by 
the ease with which seamless mobility can be achieved, the flexibil- 
ity it provides, and the lack of performance degradation. Since our 
scheme does not impose any triangle routing anomalies, end-to-end 
latency for active connections is better than standard Mobile IP, and 
similar to Mobile IP with route optimization. 

The rest of this paper describes the technical details of our ap- 
proach. In Section 2, we survey related work in the area of mo- 
bility support. We describe our architecture in Section 3, and detail 
our new Migrate TCP option in Section 4. We discuss the security 
ramifications of our approach in Section 5 and our implementation 
and performance results in Section 6. We address some deployment 
issues in Section 7 and conclude in Section 8. 

2 Related work 
The problem of Internet host mobility has been approached from 
many angles in the literature, but they can be classified into two 
categories. Some techniques attempt to handle host relocation in 
a completely transparent fashion, hiding any changes in network 
structure from the end hosts. We term these techniques network- 
layer mobility. By contrast, many other approaches attempt to han- 
dle relocation at a higher level in the end host. 

2.1 Network-layer mobility 

Mobile IP (RFC 2002) [29] is the current IETF standard for sup- 
porting mobility on the Intemet. It provides transparent support for 
host mobility by inserting a level of indirection into the routing ar- 
chitecture. By elevating the mobile host's home address from its 
function as an interface identifier to an end-point identifier (EID), 
Mobile IP ensures the delivery of packets destined to a mobile 
host's home address, independent of the host's physical point of at- 
tachment to the Internet, as reflected in its care-of address. Mobile 
IP does this by creating a routing tunnel between a mobile host's 
home network and its care-of address. 

Such routing tunnels need to be implemented with care because 
advertising explicit host routes into the wide-area routing tables de- 
stroys routing scalability. Mobile IP uses a home agent physically 
attached to the mobile host's home network to intercept and tunnel 
packets to the mobile host. Hence, packets undergo triangle rout- 
ing, which is often longer than the optimal unicast path. 

Further compounding the problem is the widespread deployment 
of ingress filters [9], ratified in February 2000 by the IETF as a 
"Best Current Practice" to combat denial-of-service attacks. With 
this mechanism, a router does not forward packets with a source 
address foreign to the local network, which implies that a packet 
sent by a mobile host in a foreign network with its source address 
set to its home address will not be forwarded. The solution to this 
is to use reverse tunneling, which tunnels packets originating at the 
mobile host first to the host's home agent (using the host's care-of 
address as a source address), and then from there on to the desti- 
nation using the home address as the source address. Thus, routing 
anomalies occur in both directions. 

Perkins and Johnson present a route optimization option for Mo- 
bile IP to avoid triangle routing [28]. Here, correspondent hosts 
cache the care-of address of mobile hosts, allowing communication 
to proceed directly. It requires an authenticated message exchange 
from the home agent to the correspondent host [26]. The resulting 
Mobile IP scheme achieves performance almost equivalent to ours, 
but requires modifications to the end hosts' IP layer ~ as well as the 

lln fact, the draft allows on-path routers to cache the care-of 
addresses instead of the end host, but this requires modifying yet 
another level of infrastructure. 
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infrastructure. In contrast, our approach achieves secure, seamless 
connection migration without a third-party home agent. It also pro- 
vides a mobile host the ability to pick a mobility mode based on the 
needs of its applications. 

IPv6 provides native support for multiple simultaneous host ad- 
dresses, and Mobile IPv6 provides mobility support for IPv6 in 
much the same fashion as Mobile IP for IPv4. IPv6 extensions allow 
for the specification of a care-of address, which explicitly separates 
the role of the EID (the host's canonical IP address) and routing 
location (the care-of address). Gupta and Reddy propose a similar 
redirection mechanism for IPv4 through the use of ICMP-like con- 
trol messages which establish care-of bindings at the end hosts [10]. 

Mysore and Bharghavan propose an interesting approach to 
network-layer mobility [23], where each mobile host is issued a per- 
manent Class DIP multicast address that can serve as a unique EID. 
If multicast were widely deployed, this is a promising approach; be- 
cause a Class D EID has the benefit of being directly routable by 
the routing infrastructure, it removes the need for an explicit care-of 
address. However, this scheme requires a robust, scalable, and effi- 
cient multicast infrastructure for a large number of sparse groups. 

3 An end-to-end architecture 

In this section, we describe our end-system mobility architecture. 
There are three important components in this system: addressing, 
mobile host location, and connection migration. By giving the mo- 
bile host explicit control over its mobility mode, we remove the 
need for an additional (third-party) home-agent to broker packet 
routing. The DNS already provides a host location service, and any 
further control is managed by the communicating peers themselves, 
triggered by the mobile host when it changes network location. 

We assume, like most mobility schemes, that mobile hosts do not 
change IP addresses more than a few times a minute. We believe 
this is a reasonable assumption for most common cases of mobil- 
ity. We emphasize that this does not preclude physical mobility at 
rapid velocities across a homogeneous link technology, since that 
can be handled at the physical and link layers, e.g., via link-layer 
bridging [12]. 

The rest of this section discusses addressing in a foreign network 
and host location using the DNS. Section 4 is devoted to a detailed 
description of TCP connection migration. 

2.2 Higher-layer methods 

The home-agent-based approach has also been applied at the trans- 
port layer, as in MSOCKS [18], where connection redirection was 
achieved using a split-connection proxy. 

The general idea of using names as a level-of-indirection to handle 
object and node mobility is part of computer systems folklore. For 
some years now, people have talked about using the DNS to effect 
the level-of-indirection needed to support host mobility, but to our 
knowledge ours is the first specific and complete architecture that 
uses the DNS to support Internet host mobility. Recently, Adjie- 
Winoto et al. proposed the integration of name resolution and mes- 
sage routing in an Intentional Naming System to implement a "late 
binding" option that tracks highly mobile services and nodes [1], 
and it seems possible to improve the performance of that scheme 
using our connection migration approach. 

Our approach differs fundamentally from EID/locator techniques 
since it requires no additional level of global addressing or indi- 
rection, but only a (normally pre-existing) DNS entry and a shared 
connection key between the two end hosts. Furthermore, unlike pre- 
vious connection-ID draft proposals such as Huitema's ETCP [11] 
for TCP connection re-addressing, it requires no modification to 
the TCP header, packet format, or semantics. 2 Instead, it uses an 
additional TCP option and the inserts an additional field into the 
Transmission Control Block (TCB). 

There is a large body of work relating to improving TCP perfor- 
mance in wireless and mobile environments [5, 6]. While not the 
focus of our work, our adherence to standard TCP semantics allows 
these schemes to continue to work well in our architecture. Fur- 
thermore, since end hosts are explicitly notified of mobility, signif- 
icant performance enhancements can be achieved at the application 
level [25]. 

2Special RST handling is required on some networks that may 
rapidly reassign IP addresses; Section 4.5 discusses this issue. 

3.1 Addressing 

The key to the scalability of the Internet architecture is that the IP 
address serves as a routing locator, reflecting the addressee's point 
of attachment in the network topology. This enables aggregation 
based on address prefixes and allows routing to scale well. Our mo- 
bility architecture explicitly preserves this crucial property of Inter- 
net addressing. 

Like Mobile IP, we separate the issues of obtaining an IP address 
in a foreign domain from locating and seamlessly communicating 
with mobile hosts. Any suitable mechanism for address allocation 
may be employed, such as manual assignment, the Dynamic Host 
Configuration Protocol (DHCP) [7], or an autoconfiguration proto- 
col [34]. 

While IP addresses fundamentally denote a point of attachment in 
the Internet topology and say nothing about the identity of the host 
that may be connected to that attachment point, they have implic- 
itly become associated with other properties as well. For example, 
they are often used to specify security and access policies as in the 
case of ingress filtering to alleviate denial-of-service attacks. Our 
architecture works without violating this trust model and does not 
require any form of forward or reverse tunneling to maintain seam- 
less connectivity. In a foreign network, a mobile host uses a locally 
obtained interface address valid in the foreign domain as its source 
address while communicating with other Internet hosts. 

3.2 Locating a mobile host 

Once a mobile host obtains an IP address, there are two ways in 
which it can communicate with correspondent hosts. First, as a 
client, when it actively opens connections to the correspondent host. 
In this case, there is no special host location task to be performed 
in our architecture; using the DNS as before works. However, if 
the mobile host were to move to another network attachment point 
during a connection, a new address would be obtained as described 
in the previous section, and the current connection would continue 
seamlessly via a secure negotiation with the communicating peer as 
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described in Section 4. If a mobile host were always a client (not 
an uncommon case today), then no updates need to be made to any 
third party such as a home agent or the DNS. 

To support mobile servers and other applications where Internet 
hosts actively originate communication with a mobile host, we use 
the DNS to provide a level of indirection between a host's current 
location and an invariant end-point identifier. In Mobile IP, a host's 
home address is the invariant, and all routing (in the absence of 
route optimization) occurs via the home agent that intercepts pack- 
ets destined to this invariant. Ours is not a network-layer solution 
and we can therefore avoid the indirection for every packet trans- 
mission. We take advantage of the fact that a hostname lookup is 
ubiquitously done by most applications that originate communica- 
tion with a network host, and use the DNS name as the invariant. 
We believe that this is a good architectural model: a DNS name 
identifies a host and does not assume anything about the network 
attachment point to which it may currently be attached, and the in- 
direction occurs only when the initial lookup is done via a control 
message (a DNS lookup). 

This implies that when the mobile host changes its attachment 
point, it must detect this and change the hostname-to-address ("A- 
record") mapping in the DNS. Fortunately, both tasks are easy to 
accomplish, the former by using a user-level daemon as in Mobile 
IP, and the latter by using the well-understood and widely avail- 
able secure DNS update protocol [8, 35]. We note that some DHCP 
servers today issue a DNS update at client boot time when handing 
out a new address to a known client based on a static MAC-to-DNS 
table. This augurs well for the incremental deployability of our ar- 
chitecture, since DNS update support is widely available. 

The DNS provides a mechanism by which name resolvers can cache 
name mappings for some period of time, specified in the time-to- 
live (TTL) field of the A-record. To avoid a stale mapping from be- 
ing used from the name cache, we set the time-to-live (TTL) field 
for the A-record of the name of the mobile host to zero, which pre- 
vents this from being cached. 3 Contrary to what some might expect, 
this does not cause a significant scaling problem; name lookups for 
an uncached A-record do not have to start from a root name server, 
because in general the "NS-record" (name server record) of the mo- 
bile host's DNS name is cacheable for a long period of  time (many 
hours by default). This causes the name lookup to start at the name 
server of the mobile host's domain, which scales well because of 
administrative delegation of the namespace and DNS server replica- 
tion in any domain. We note that some content distribution networks 
for Web server replication of popular sites use the same approach 
of  small-to-zero TTL values to redirect client requests to appropri- 
ate servers (e.g., Akamai [2]). There is no central hot spot because 
the name server records for a domain are themselves cacheable for 
relatively long periods of time. 

Even with uncacheable DNS entries there still exists a possible race 
condition where a mobile host moves between when a correspon- 
dent host receives the result of its DNS query and when it initiates a 
TCP connection. Assuming a mobile host updates its DNS entry im- 
mediately upon reconnection, the chances of such an occurrence are 
quite small, but non-zero, especially for a mobile host that makes 
frequent moves. In this case, the correspondent host will attempt to 

SModern versions of BIND honor this correctly. 

open a TCP connection to the mobile host's old address, and has no 
automatic fail-over mechanism. 

In this case, the application must perform another DNS lookup to 
find the new location of the mobile host. We note that the trend 
towards dynamic DNS records has caused such application-level 
retries to find their way into applications already--for instance, 
current FreeBSD t : e l n e t  and r s h  applications try alternate ad- 
dresses if  an initial connection fails to a host that has multiple DNS 
A-records. It seems to be only a minor addition to refresh DNS 
bindings if  connection establishment fails. 

4 TCP connection migration 

A TCP connection [31] is uniquely identified by a 4-tuple: (source 
address, source port, dest address, dest port). Packets addressed to 
a different address, even if successfully delivered to the TCP stack 
on the mobile host, must not be demultiplexed to a connection es- 
tablished from a different address. Similarly, packets from a new 
address are also not associated with connections established from a 
previous address. This is crucial to the proper operation of servers 
on well-known ports. 

We propose a new Migrate TCP option, included in SYN segments, 
that identifies a SYN packet as part of a previously established con- 
nection, rather than a request for a new connection. This Migrate 
option contains a token that identifies a previously established con- 
nection on the same destination (address, port) pair. The token is 
negotiated during initial connection establishment through the use 
of a Migrate-Permitted option. After a successful token negotia- 
tion, TCP connections may be uniquely identified by either their 
traditional (source address, source port, dest address, dest port) 4- 
tuple, or a new (source address, source port, token) triple on each 
host. 

A mobile host may restart a previously-established TCP connection 
from a new address by sending a special Migrate SYN packet that 
contains the token identifying the previous connection. The fixed 
host will than re-synchronize the connection with the mobile host at 
the new end point. A migrated connection maintains the same con- 
trol block and state (with a different end point, of course), including 
the sequence number space, so any necessary retransmissions can 
be requested in the standard fashion. This also ensures that SACK 
and any similar options continue to operate properly. Furthermore, 
any options negotiated on the initial SYN exchange remain in ef- 
fect after connection migration, and need not be resent in a Migrate 
SYN. 4 

Since SYN segments consume a byte in the TCP sequence number 
space, Migrate SYNs are issued with the same sequence number as 
the last transmitted byte of data. This results in two bytes of data 
in a migrated TCP connection with the same sequence number (the 
new SYN and the previously-transmitted actual data), but this is not 
a problem since the Migrate SYN segment need never be explicitly 
acknowledged. Any packet received from the fixed host by a mi- 
grating host at the mobile host's new address that has a sequence 
number in the appropriate window for the current connection im- 
plicitly acknowledges the Migrate SYN. Similarly, any further seg- 

4They can be, if  needed. For example, it might be useful to rene- 
gotiate a new maximum segment size (MSS) reflecting the proper- 
ties of the new path. We have not yet explored this in detail. 
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Figure 1: TCP Connection Migration 

ments from the mobile host provide the fixed host an implicit ac- 
knowledgement of its SYN/ACK. Thus, there is exactly one byte in 
the sequence space that needs explicit acknowledgement even when 
the Migrate SYN is used. 

4.1 An example 

Figure 1 shows a sample connection where a mobile client con- 
nects to a fixed host and later moves to a new address. The mobile 
client initiates the TCP connection in standard fashion in message 
1, including a Migrate-Permitted option in the SYN packet. The 
values km and Tm are parameters used in the token negotiation, de- 
scribed in Section 4.3. The fixed server, with a migrate-compliant 
TCP stack, indicates its acceptance of the Migrate-Permitted option 
by including the Migrate-Permitted option in its response (message 
2). The client completes the three-way handshake with message 3, 
an ACK. The connection then proceeds as any other TCP connec- 
tion would, until message 4, the last packet from the fixed host to 
the mobile host at its current address. 

At some time later the mobile host moves to a new address, and 
notifies the fixed server by sending a SYN packet from its new ad- 
dress in message 5. This SYN includes the Migrate option, which 
contains the previously computed connection token as part of a mi- 
gration request. Note that the sequence number of this Migrate SYN 
segment is the same as the last byte of transmitted data. The server 
responds in kind in message 6, also using the sequence number of 
its last transmitted byte of data. The ACK, however, is from the 
same sequence space as the previous connection. While in this ex- 
ample it acknowledges the same sequence number as the SYN that 
generated it, it could be the case that segments were lost during 
a period of disconnect while the mobile host moves, and that the 
ACK will be a duplicate ACK for the last successfully received in- 
sequence byte. Since it is addressed to the mobile host's new lo- 
cation, however, it serves as an implicit ACK of the SYN as well. 

Upon receipt of this SYN/ACK, the mobile host similarly ACKs in 
the previous sequence space, and the connection resumes as before. 
All of the options negotiated on the initial SYN except the Migrate- 
Permitted option are still in effect, and need not be replicated in this 
or any subsequent migrations. 

4.2 Securing the migration 
It is possible to partially hijack TCP connections if an attacker 
can guess the sequence space being used by the connection [21]. 
With the Migrate options, an attacker who can guess both the se- 
quence space and the connection token can hijack the connection 
completely. Furthermore, the ability to generate a Migrate SYN 
from anywhere greatly increases the connection's exposure. While 
ingress filtering can be used to prevent connection hijacking by at- 
tackers not on the path between the end hosts, such methods are 
ineffective in our case. We must therefore take care to secure the 
connection token. 

The problem is relatively easy to solve if IP security (IPsec) [4] 
were deployed. While the spectrum of approaches that could be 
used is outside the scope of this paper, we note that IPsec pro- 
vides sufficient mechanisms to secure migrateable connections. 
Currently, however, IPsec has not found wide-spread deployment. 
Hence, we provide a mechanism to self-secure the Migrate options. 
End hosts may elect to secretly negotiate an unguessable connec- 
tion token, which then reduces the security of a migrateable TCP 
connection to that of a standard TCP connection, since no addi- 
tional attacks are possible against a migrateable connection without 
guessing the token, and any attack against a standard TCP connec- 
tion clearly remains feasible against a migrateable TCP connection. 

An unguessable connection token is secured with a secret connec- 
tion key. Since any host that obtains the connection key could fab- 
ricate the token and issue a Migrate request, we select the key with 
an Elliptic Curve Diffie-Hellman key exchange [36], as described 
below. Hosts using IPsec, or unconcerned with connection security, 
may choose to disable key negotiation to avoid excess computation. 

4.3 Migrate-Permitted option 
Hosts wishing to initiate a migrateable TCP connection send a 
Migrate-Permitted option in the initial SYN segment. Similar to 
the SACK-Permitted option [19], it should only be sent on SYN 
segments, and not during an established connection. Additionally, 
hosts wishing to cryptographically secure the connection token may 
conduct an Elliptic Curve Diffie-Hellman (ECDH) key exchange 
through the option negotiation. (Elliptic Curve Diffie-Hellman is 
preferred to other methods of key establishment due to its high 
security-to-bit-length ratio. Readers unfamiliar with Elliptic Curve 
cryptography can find the necessary background material in [3].) 

As seen in figure 2, the Migrate-Permitted option comes in two 
variants--the insecure version, of length 3, and the secure version, 
with length 20. The secure version is used to negotiate a secret con- 
nection key, and contains an 8-bit Curve Name and a 136-bit ECDH 
Public Key fragment. The curve name field selects a particular set 
of domain parameters (the curve, underlying finite field, F,  and its 
representation, the generating point, P, and the order of P, n), as 
specified in [3]. Use of the insecure version, which contains only a 
Curve Name field (which must be set to zero) allows the end host 
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Figure 2: TCP Migrate-Permitted option 

to skip the key negotiation process. In that case, the connection key 
is set to all zeros. 

The secure variant of the Migrate-Permitted option also requires the 
use of the Timestamp [14] option in order to store up to 200 bits of 
ECDH keying material. The EDCH Public Key is encoded using 
the compressed conversion routine described in [3, Section 4.3.6]. 
The 136 least-significant bits are stored in the EDCH Public Key 
field of the Migrate-Permitted option, while the remaining 64 bits 
of the key are encoded in the Timestamp option. The timestamp op- 
tion, while often included, is not used on SYN segments. The Pro- 
tection Against Wrapped Sequence Numbers (PAWS) [14] check 
is only performed on synchronized connections, which by defini- 
tion [31] includes only segments after the three-way handshake. 
Similarly, the Round-Trip Time Measurement (RTTM) [14] pro- 
cedure only functions when a timestamp has been echoed---clearly 
this is never the case on an initial SYN segment. Hence the value of 
the Timestamp option on SYN segments is entirely irrelevant to cur- 
rent TCP stacks. Legacy TCP stacks will never receive a Migrate- 
Permitted option on a SYN/ACK, hence the Timestamp option will 
be processed normally. Special handing is only required for the 
SYN/ACK and following ACK segment on connections that have 
negotiated the Migrate-Permitted option, as Timestamp fields on 
these segments will not contain timestamps. Hence the RTTM algo- 
rithm must not be invoked for SYN/ACK or initial ACK segments 
of connections that have negotiated the Migrate-Permitted option. 

The Timestamp TSVal field contains the 32 most-significant bits of 
the public key, while the TSecr field contains the next 32 most- 
significant bits. These two components, combined with the 136-bit 
EDCH Public Key field of the Migrate-Permitted option, constitute 
the host's public key, k. If the public key is less than 200 bits, it is 
left-padded with zeros. For any host, i, k~ is generated by selecting 
a random number, Xi  E [1, n - 1], where n is the order of P ,  and 
computing 

ki = X i  * P 

The * operation is the scalar multiplication operation over the field 
F .  The security of the connection hinges on the secrecy of the ne- 
gotiated key, hence X~ should be randomly generated and stored in 
the control block for each new connection. Any necessary retrans- 
missions of the SYN or SYN/ACK must include identical values 
for the Migrate-Permitted and Timestamp option. 

Upon receipt of an initial SYN with a Migrate-Permitted option, 
a host, j ,  with a compliant TCP stack must include a Migrate- 
Permitted option (and a Timestamp option if the secure variant 

Figure 3: TCP Migrate option 

is used) in its SYN/ACK segment. It similarly selects a random 
X~ E [1, n - 1] which it uses to construct k~, its public key, which 
it sends in the same fashion. 

After the initiating host's reception of the SYN/ACK with the 
Migrate-Permitted and Timestamp options, both hosts can then 
compute a shared secret key, K,  as specified in [36]: 

K = k i * X j  = kj * X i  

This secret key is then used to compute a connection validation to- 
ken. This token, T, is computed by hashing together the key and 
the initial sequence numbers Ni and Nj  using the Secure Hash Al- 
gorithm (SHA-1) [24] in the following fashion (recall that host i 
initiated the connection with an active open, and host j is perform- 
ing a passive open): 

T = S H A I ( N i ,  N~, K )  

While SHA-I produces a 160-bit hash, all but the 64 most- 
significant bits are discarded, resulting in a cryptographicaUy- 
secure 64-bit token that is unique to the particular connection. Since 
SHA-1 is collision-resistant, the chance that another connection on 
the same (address, port) pair has an identical token is extremely 
unlikely. If a collision is detected, however, the connection must be 
aborted by sending a RST segment. (The host performing a passive 
open can check for collisions before i~uing a SYN/ACK, and se- 
lect a new random X j  until a unique token is obtained. Hence the 
only chance of collision occurs on the host performing the active 
open.) 

4.4 Migrate option 
The Migrate option is used to request the migration of a currently 
open TCP connection to a new address. It is sent in a SYN segment 
to a host with which a previously-established connection already 
exists (in the ESTABLISHED or FIN_WAIT states), over which the 
Migrate-Permitted option has been negotiated. 

There are two 64-bit fields in a Migrate option: a token, and a re- 
quest. In addition, there is an 8-bit sequence number field, reqNo, 
which must be monotonically increasing with each new migrate re- 
quest issued by an end host for a connection. (The sequence num- 
ber allows correspondent hosts to ensure Migrate SYNs were not 
reordered by the network. Sequence space wrap-around is dealt 
with in the standard fashion.) The token is simply the 64 most- 
significant bits of the connection's SHA-1 hash as computed in the 
Migrate-Permitted option exchange. The request, R, is similarly 
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the 64 most-significant bits of a SHA-1 hash calculated from the 
sequence number of the connection initial sequence numbers N, 
Migrate SYN segment, S, the connection key, K, and the request 
sequence number, I. 

R = SHAI(N~,  N~, K, S, I)  

SYN segments may now correctly arrive on a bound port not in 
the LISTEN state. They should be processed only if they contain 
the Migrate option as specified above. Otherwise, they should be 
treated as specified in [31 ]. Upon receipt of a SYN packet with the 
Migrate option, a TCP stack that supports migration attempts to 
locate the connection on the receiving port with the corresponding 
token. The token values for each connection were precomputed at 
connection establishment, reducing the search to a hash lookup. 

If the token is valid, meaning an established connection on this 
(address, port) pair has the same token, and the reqNo is greater 
than any previously received migrate request, the fixed host then 
computes R = S H A I ( Ni , N~ , K,  S, I)  as described above, and 
compares it with the value of the request in the Migrate SYN. If 
the comparison fails, or the token was invalid, a RST is sent to the 
address and port issuing the Migrate SYN, and the SYN ignored. 
If, on the other hand, the token and request are valid, but the reqNo 
is smaller than a previdusly received request, the SYN is assumed 
to be out-of-order and silently discarded. If the reqNo is identical 
to the most recently reegived migrate request this SYN is assumed 
to be a duplicate of the most recently received SYN, and processed 
accordingly. 

Otherwise, the destina"fion address and port 5 associated with the 
matching connection should be updated to reflect the source of the 
Migrate SYN, and a SYN/ACK packet generated, with the ACK 
field set to the last received contiguous byte of data, and the con- 
nection placed in the SYN_RCVD state. Upon receipt of an ACK, 
the connection continues as before. 

4.5 MIGRATE_WAIT state 

This section assumes that the reader is familiar with the TCP state 
machine and transitions [33, Chapter 18]. 

Special processing of TCP RST messages is required with migrate- 
able connections, as a mobile host's old 1P address may be reas- 
signed before it has issued a migrate request to the fixed host. Figure 
4 shows the modified TCP state transition diagram for connections 
that have successfully negotiated the Migrate-Permitted option. The 
receipt of a RST that passes the standard sequence number checks 
in the ESTABLISHED state does not immediately terminate the 
connection, as specified in [31]. Instead, the connection is placed 
into a new MIGRATE_WAlT state. (A similar, but far less likely sit- 
uation can occur if the fixed host is in the FIN_WAITI state--the 
application on the fixed host has closed the connection, but there 
remains data in the connection buffer to be transmitted. For sim- 
plicity, these additional state transitions are not shown in figure 4.) 

Connections in the MIGRATE_WAIT state function as if they were 
in the ESTABLISHED state, except that they do not emit any seg- 
ments (data or ACKs), and are moved to CLOSED if they remain 

5Migrated connections will generally originate from the same 
port as before. However, if the mobile host is behind a NAT, it is 
possible the connection has been mapped to a different port. 
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Figure 4: Partial TCP state transition diagram with Migrate 
transitions (adapted from [33, figure 18.12]) 

in MIGRATE_WAIT for over a specified period of time. We recom- 
mend using the 2MSL ([31] specifies a Maximum Segment Lifetime 
(MSL) as 2 minutes, but common implementations also use values 
of l minute or 30 seconds for MSL [33]) period of time specified 
for the TIME_WAIT state. 

Any segments received while in the MIGRATE_WAIT state should 
be processed as in the ESTABLISHED state, except that no ACKs 
should be generated. The only way a connection is removed from 
the MIGRATE_WAIT state is on the receipt of a Migrate SYN with 
the corresponding connection key. The connection then responds in 
the same fashion as if it were in the ESTABLISHED state when it 
received the SYN. 

The MIGRATE_WAIT state prevents connections from being in- 
advertently dropped if the address allocation policy on the mobile 
host's previous network reassigns the mobile host's old IP address 
before the mobile host has reconnected at a new location and had 
a chance to migrate the connection. It also prevents the continued 
retransmission of data to an unreachable host. 

This passive approach to disconnection discovery is preferred over 
an active, mobile-initiated squelch message because any such mes- 
sage could be lost. 6 Furthermore, a mobile host may not have suf- 
ficient (if any) notice of address reassignment to issue such mes- 
sages. As an added performance enhancement, however, mobile 
hosts aware of an impending migration may themselves emit a 
special RST to the peer, which will force the connection into MI- 
GRATE_WAIT, preventing additional packet transmission until the 

6And any guaranteed-reliable transmission mechanism could 
take unbounded time. 
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mobile host has successfully relocated, although such action in- 
vokes the strict 2MSL time bound on the allowable delay for host 
relocation and connection migration. 

5 Security issues 

An end-to-end approach to mobility simplifies the trust relation- 
ships required to securely support end-host mobility compared to 
network-layer approaches such as Mobile IP. In addition to the re- 
lationship between a mobile host and any proxies or home agents, 
several Mobile IP-based proposals require that a correspondent host 
in communication with a mobile host assume the responsibility 
of authenticating communication with an arbitrary set of foreign 
agents. In their route optimization draft [28], Perkins and Johnson 
state: 

One of the most difficult aspects of Route Optimization 
for Mobile IP in the Intemet today is that of providing 
authentication for all messages that affect the routing of 
datagrams to a mobile node. 

Since no third parties are required or even authorized to speak on 
the mobile host's behalf in an end-to-end architecture, the only trust 
relationship required for secure relocation is between the mobile 
and correspondent host. Clearly they already must have a level of 
trust commensurate with the nature of their communications since 
they chose to communicate in the first place. 

Regardless of the simplicity of trust relationships, there remains the 
possibility that untrusted parties could launch attacks against the 
end hosts or connections between them utilizing either dynamic 
DNS updates or the Migrate and Migrate-Permitted options. The 
security of dynamic DNS updates is addressed in RFC 2137 [8], 
resting on the strength of the digital signature scheme used to au- 
thenticate mobile hosts. 

Possible attacks against the Migrate TCP options include both 
denial-of-service attacks and methods of migrating connections 
away from their appropriate end hosts. We discuss these attacks 
below, and either show why the Migrate options are not vulnerable, 
or explain why the attack presents no additional threat in relation to 
standard TCE 

5.1 Denial of service 

SYN flooding is a common form of Denial-of-Service (DOS) at- 
tack, and most modem TCP implementations have taken great care 
to avoid consuming unnecessary resources unless a three-way hand- 
shake is complete. To validate a Migrate request, the correspondent 
host performs a significant computation (the SHA-1 hash), which 
implies we need to be especially vigilant against DoS attacks that 
attempt to deplete the CPU resources of a target host. The vali- 
dation is not performed unless an attacker succeeds in guessing a 
valid, pre-computable token (with a 1 in 284 probability); since a 
RST message is generated if either the token or the request is in- 
valid, an attacker has no way to identify when it has found a valid 
token. Because a would-be attacker would therefore have to issue 
roughly 2 ~a Migrate SYNs to force a request validation, we argue 
that the TCP Migrate option does not introduce any additional DoS 
concerns above standard TCP. 

5.2 Connection hijacking 

Since a Migrate request contains a hash of both the SYN segment's 
sequence number and migrate request sequence number, a replayed 
Migrate option can only be used until either a new byte of data or 
another migrate connection is sent on the connection. Since self- 
migration is not allowed, duplicate Migrate SYNs (received out- 
side of the three-way handshake) are ignored by the peer TCP. If, 
however, the mobile host moves rapidly to a another new location, 
a replayed Migrate SYN could be used to migrate the connection 
back to the mobile host's previous IP, which may have been subse- 
quently assumed by the attacker. In order to prevent this attack, the 
Migrate Request option processing ignores the source address and 
port in duplicate packets, as a valid request from a relocated mobile 
host would include a higher request number. 

More worrisome, however, is the fact that once a Migrate SYN has 
been transmitted, the token is known by any hosts on the new path, 
and denial-of-service attacks could be launched by sending bogus 
Migrate SYNs with valid tokens. If a mobile host includes a new 
Migrate-Permitted option in its Migrate SYN, however, the window 
of opportunity when the previous connection token can be used (if 
it was snooped) is quite small--only until the new three-way hand- 
shake is successfully completed. 

5.3 Key security 

The connection key used by the Migrate option is negotiated via 
Elliptic Curve Diffie-Hellman to make it extremely difficult even 
for hosts that can eavesdrop on the connection in both directions 
to guess the key. Without sufficient information to verify possible 
keys off-line, an attacker would have to continually generate Mi- 
grate SYNs and transmit them to one of the end hosts, hoping to 
receive a SYN/ACK in response to a correct guess. Clearly such an 
attack is of little concern in practice, as the expected 283 SYN pack- 
ets required to successfully guess the key would generate sufficient 
load as to be a DoS problem in and of themselves. 

Hosts that lie on the path between end hosts, however, have suf- 
ficient information (namely the two Elliptic Curve Diffie-Hellman 
components) to launch an attack against the Elliptic Curve system 
itself. The best known attack is a distributed version of Pollard's 
rho-algorithm [30], which [17] uses to show that a 193-bit EC sys- 
tem would require 8.52.1014 MIPS years, or about 1.89.1012 years 
on a 450Mhz Pentium II, to defeat. 

While this seems more than secure against ordinary attackers, an 
extremely well-financed attacker might be able to launch such an at- 
tack on a long-running connection in the not-too-distant future. The 
obvious response is to increase the key space. Unfortunately, we 
are restricted by the 40-byte limitation on TCP options. Given the 
prevalence of the MSS (4 bytes), Window Scale (3 bytes), SACK 
Permitted (2 bytes), and Timestamp (10 bytes) options (of which 
we are already using 8 bytes) in today's SYN segments, the 20-byte 
Migrate-Permitted option is already as large as is feasible. We argue 
that further securing the connection key against brute-force attacks 
from hosts on the path between the two end hosts is largely irrel- 
evant, given the ability of such hosts to launch man-in-the-middle 
attacks against TCP with much less difficulty! 

The security of TCP connections, migrateable or not, continues to 
remain with the authentication of end hosts, and the establishment 
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of strong session keys to authenticate ongoing communication. Al- 
though we have taken care to ensure the Migrate option does not 
further decrease the security of TCP connections, the latter are 
inherently insecure, as IP address spoofing and sequence number 
guessing are not very difficult. Hence we strongly caution users 
concerned with connection security to use additional application- 
layer cryptographic techniques to authenticate end points and the 
payload traffic. 

5.4 IPsec 

When used in conjunction with IPsec [4], there are additional is- 
sues raised by the use of the Migrate options. IPsec Security As- 
sociations (SAs) are established on an IP-address basis. When a 
connection with an associated SA is migrated, a new SA must be 
established with the new destination address before communica- 
tion is resumed. If the establishment of a this new SA conflicts with 
existing policy, the connection is dropped. This seemingly unfor- 
tunate result is actually appropriate. Since IPsec's Security Policy 
Database (SPD) is keyed on IP network address, the policies speci- 
fied within speak to a belief about the trustworthiness of a particular 
portion of the network. 

Ira mobile host attaches to a foreign network, any security assump- 
tions based on its normal point of attachment are invalid. If the end 
host itself continues to have sufficient credentials independent of its 
point of attachment, an end-to-end authentication method should be 
used, and a secure tunnel established for communication over the 
untrusted network. A discussion of such techniques is outside of 
the scope of this document. 

6 Implementation 

We have implemented this architecture in the Linux 2.2.15 kernel, 
using Bind 8.2.2-P3 as the name server for mobile hosts. The IPv4 
TCP stack has been modified to support the Migrate options. Con- 
nection migration can be affected through two methods. Applica- 
tions with open connections may explicitly request a migration by 
issuing an ±oct] .  ( ) on the connection's file descriptor specify- 
ing the address to migrate to. Most current applications, however, 
lack a notification method so the system can inform them the host 
has moved. Hence we also provide a mechanism for processes to 
migrate open connections, regardless of whether they have the file 
descriptor open or not. 

This is done through the Linux / p r o c  file system. A directory 
/ p r o c / n e l : / r M . g r a t : e  contains files of the form source ad- 
dress : source port-  >dest address : dest port for each open connec- 
tion that has successfully negotiated the Migrate-Permitted option. 
These files are owned by the user associated with the process that 
opened the connection. Any process with appropriate permissions 
can then write a new IP address to these files, causing the corre- 
sponding connection to be migrated to the specified address. This 
method has the added benefit of being readily accessed by a user 
directly through the command line. 

It is expected that mobile hosts will run a mobility daemon that 
tracks current points of network attachment, and migrates open con- 
nections based on some policy about the user's preference for cer- 
tain methods of attachment. For instance, when an 802.11 interface 
comes up on a laptop that previously established connections on 
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Figure 5: Network topology used for migration experiments 

a CDPD link, it seems likely that the user would opt to migrate 
most open connections to the address associated with the 802.11 
link. Similarly the daemon could watch for address changes on at- 
tached interfaces (possibly as a result of DHCP lease expirations 
and renewals) and migrate connections appropriately. We plan to 
implement such a daemon in the near future. 

6.1 Experiments 
Figure 5 shows the network topology used to gather the TCP traces 
shown in figures 6 and 7. The traces were collected at the fixed 
basestation, which is on the path between the fixed host and both 
mobile host locations, We conducted TCP bulk transfers from a 
server on the fixed host to a client on the mobile host. The client 
initiates the connection from one location, and migrates to another 
location at some later point. Both mobile host locations use iden- 
tical connections, a 19.2Kbps serial link with ~100ms round-trip 
latency. The basestation and fixed host are on a 100Mbps Ether- 
net segment, hence the link to the mobile host is the connection 
bottleneck. This topology is intentionally simple in order to isolate 
the various subtleties of migrating TCP connections, as discussed 
below. 

Figure 6 shows the TCP sequence trace of a migrated TCP connec- 
tion. At time t ~ 4.9s the mobile host moved to a new address 
and issued a Migrate SYN, as depicted by the dotted line. Since 
the host is no longer attached at its previous address, all of the en- 
queued segments at the bottleneck are lost. (The amount of lost data 
is bounded by the advertised receive window of the mobile host. A 
host that moves frequently across low-bandwidth connections may 
wish to advertise a smaller receive window to reduce the number of 
wasted segments.) Finally, at t ~ 6.8s the fixed host's SYN/ACK 
passes through the bottleneck, and is ACKed by the fixed host a 
RTT later. 

The fixed host does not immediately restart data transmissions 
because the TCP Migrate options do not change the congestion- 
avoidance or retransmission behavior of TCP. The sender is still 
waiting for ACKs for the lost segments; as far as it is concerned, 
it has only received two (identical) ACKs--the original ACK, and 
one duplicate as part of the Migrate SYN three-way handshake. 
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Figure 7: A TCP Migrate connection (with SACK) sequence 
trace with losses just before migration 

Finally, at t ~ 7.8s the retransmission timer expires (the inter- 
vat is from the first ACK, sent earlier at t ~ 4.9s) and the fixed 
host retransmits the first of the lost segments. It is immediately ac- 
knowledged by the mobile host, and TCP resumes transmission in 
slow-start after the timeout. 

Figure 7 shows the TCP sequence trace of a similar migrate TCP 
connection. As before, the dashed line indicates the mobile host is- 
sued a migrate request at time t ,~ 27.1s. This time, however, there 
were additional losses on the connection that occurred just before 
the migration, as can be seen at t ~ 24.9s. These segments are fast- 
retransmitted, and pass through the bottleneck at t ~ 28s due to the 
DUP-ACKs generated by the remaining SYNs. Unfortunately, this 
is after the mobile host has migrated, so they, along with all the seg- 
ments addressed to the mobile host's initial address after t ~ 27.1s, 
are lost. 

At t ~, 29s, the Migrate SYN/ACK makes it out of the queue 
at the bottleneck, and the mobile host immediately generates an 
ACK. As in the previous example, however, the fixed host is still 
awaiting ACKs for previously transmitted segments. It is only at 
t ~ 31s that the timer expires and the missing segments are re- 

transmitted. Notice that because SACK prevents the retransmission 
of the previously-received segments, only those segments lost due 
to the mobile host's address change are retransmitted, and the con- 
nection continues as before. The success of this trace demonstrates 
that the Migrate options work well with SACK due to the consis- 
tency of the sequence space across migrations. 

6.2 Performance enhancements 
Several enhancements can be made by implementations to improve 
overall connection throughput during connection migration. The 
most obvious of these is issuing three DUP-ACKs immediately af- 
ter a migrate request, thereby triggering the fast-retransmit algo- 
rithm and avoiding the timeout seen in the previous example [6]. 
By preempting the timeout, the connection further avoids dropping 
into slow-start and congestion avoidance. 

Such techniques should be used with care, however, as they assume 
the available bandwidth of the new path between mobile and fixed 
host is on the same order-of-magnitude as the previous path. For 
migrations across homogeneous technologies this may be a reason- 
able assumption. When moving from local to wide-area technolo- 
gies, however, there may be order-of-magnitude discrepancies in 
the available bandwidth. Hence we do not include such speed-ups 
in the TCP Migrate specification, and leave it to particular imple- 
mentations to responsibly evaluate the circumstances and provide 
behavior compatible with standard TCP. 

7 Deployment Issues 
As with any scheme for mobility support, there are some deploy- 
ment issues to be addressed. By pushing the implementation of mo- 
bility mechanisms--connection migration in particular--to the end 
points, our system requires changes to each transport protocol. For- 
tunately, our TCP connection migration protocol can be generalized 
to other UDP-based protocols with little difficulty. Significant ex- 
amples include streaming protocols such as RTP and proprietary 
protocols like Real, Quicktime and Netshow. We note that most of 
these already have a control channel used for congestion and quality 
control, and such applications would likely wish to be informed of 
changes due to mobility as well. Furthermore, we argue that not all 
applications require network-layer mobility, especially those char- 
acterized by short transactions where an application-level retry of 
the transaction is easy to perform; we therefore make the case using 
the end-to-end argument that mobility might be best implemented 
as a higher-level, end-to-end function just like reliability. 

Perhaps the biggest limitation of our approach is that both peers 
cannot move simultaneously. 7 Because our scheme has no anchor 
point like Mobile IP's home agent, any IP address change must be 
completed before the other can proceed. We do not view this as 
a serious limitation to the widespread applicability of the protocol, 
since we are primarily targeting infrastructure-based rather than ad- 
hoc network topologies in this work. 

In addition to these two limitations, there are several issues that 
crop up when one considers presently-deployed applications. While 
it is currently possible for Internet hosts to be re-addressed while 

7,,Simultaneously,, is defined as whenever the intervals between 
address change and the (would-be) reception of the Migrate SYN 
by the corresponding host for both end hosts overlap. 
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operating (due to a DHCP lease expiration or similar event), it is 
quite rare. Hence some applications have made assumptions about 
the stability of network addresses, which are no longer valid in our 
architecture. We discuss some of these issues below. 

7.1 Address caching 

There is a class of applications that store IP addresses within the ap- 
plication, and communicate these addresses to a remote host. Such 
applications would not function properly under our architecture. 
They are readily identifiable, however, as another currently widely- 
deployed technology also breaks such applications: Network Ad- 
dress Translators (NATs). While the wisdom of Network Address 
Translation is a hotly debated topic, there is little chance it will dis- 
appear any time soon. Hence most applications designed today take 
care not to transmit addresses as part of the application-layer com- 
munication, and therefore will also work in our architecture. In fact, 
one can make the case that such applications are broken, since IP 
addresses are only identifiers of attachment points, not hosts. 

Another, larger class of applications cache the results of gethost- 
bynameO, and may not perform further hostname resolution) Fur- 
thermore, DNS resolvers themselves cache hostname bindings as 
discussed in Section 3. Unfortunately many older name servers en- 
force a local TTL minimum, often set to five minutes. Since newer 
versions of popular name servers adhere to the TTL specified in the 
returned resource record, this problem should disappear as upgrades 
are made. 

7.2 Proxies and NATs 

Proxies actually help the deployment of our scheme, as we only 
need to modify the proxy itself, and all communications through 
the proxy will support mobility. Similarly, NATs can also provide 
transparent support without remote system modification. In fact, a 
NAT doesn't even need a modified TCP stack. It need only snoop on 
TCP SYNs (which it does anyway), note the presence of a Migrate- 
Permitted option, and snoop for the SYN/ACK (which it does any- 
way). If the SYN/ACK does not contain a Migrate-Permitted op- 
tion, the NAT can support connection migration internal to its net- 
work by inserting a corresponding Migrate-Permitted option, and 
continuing to snoop the flow looking for any Migrate SYNs. It need 
only fabricate a corresponding SYN/ACK and update its address- 
to-port mappings, without passing anything to the end host. Further, 
by avoiding any explicit addressing in migrate requests, the Migrate 
options function properly though legacy NATs, and even allow a 
mobile host to move between NATs, as connections may change 
not only address but port as well. 

7.3 Non-transactional UDP applications 

Many UDP applications are transactional in nature. UDP is, by def- 
inition, a datagram protocol, and an inopportune change of IP ad- 
dress is only one of many reasons for an unsuccessful UDP trans- 
action. The transaction will need to be retried, although a new host- 
name binding should be obtained first. 

There exists at least one glaring exception to this rule. The Network 
File System protocol (NFS) represents one of the most prevalent 

SSome popular Web browsers display this behavior. 

UDP applications in use today and uses IP addresses in its mount 
points. 9 We believe, given the characteristics of network links likely 
to be encountered by mobile hosts, it is likely that NFS-over-TCP 
is a better choice than UDP. Otherwise, a mobile host would need 
to dismount and re-mount NFS filesystems upon reconnection. 

8 Conclusion 

This paper presents an end-to-end architecture for Internet host mo- 
bility that makes no changes to the underlying IP communication 
substrate. It uses secure updates to the DNS upon an address change 
to allow Internet hosts to locate a mobile host, and a set of connec- 
tion migration options to securely and efficiently negotiate a change 
in the IP address of a peer without breaking the end-to-end connec- 
tion. We have implemented this architecture in the Linux operat- 
ing system and are encouraged by the ease with which mobility 
can be achieved without any router support, the flexibility to mo- 
bile hosts provided by it, and performance comparable to Mobile 
IP with route optimization. 

Our architecture allows end systems to choose a mobility mode 
best suited to their needs. Routing paths are efficient with no tri- 
angle routing, and any connection involving the mobile host shares 
fate only with the communicating peer and not with any other en- 
tity like a home agent. When a mobile host is in a foreign network 
and communicating with another host, the disruption in connec- 
tivity caused by a sudden IP address change is proportional to the 
round-trip time of the connection. When a mobile host accepts no 
passive connections, the protocol does not require even the DNS 
update notification, and seamless connectivity across host mobility 
is achieved using completely end-to-end machinery. 

The security of our approach is based on a combination of the well- 
documented secure DNS update protocol in conjunction with a new 
secure connection migration mechanism. Our architecture and im- 
plementation function across a variety of other components of the 
Internet architecture, including firewalls, NATs, proxies, IPsec, and 
IPv6. We believe that our architecture scales well even when most 
Internet hosts become mobile because lookups and updates are dis- 
tributed across administratively-delegated, replicated DNS servers. 

We note that our connection migration scheme, the MI- 
GRATE_WAIT state in particular, avoids address assignment race 
conditions, but does not support host disconnectivity. Hence, as 
with Mobile 1P and other mobility schemes, TCP connections may 
be lost if the mobile host's relocation is accompanied by a pro- 
longed period of disconnectivity. We are hopeful our end-to-end 
approach may be extended to support general host disconnectivity 
as well. 
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