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Summary Cache: A Scalable Wide-Area 
Web Cache Sharing Protocol 

Li Fan, Member, IEEE, Pei Cao,  Jussara Almeida ,  and Andre i  Z. Brode r  

Abstract--The sharing of caches among Web proxies is an im- 
portant technique to reduce Web traffic and alleviate network bot- 
tlenecks. Nevertheless it is not widely deployed due to the overhead 
of existing protocols. In this paper we demonstrate the benefits 
of cache sharing, measure the overhead of the existing protocols, 
and propose a new protocol called "summary cache." In this new 
protocol, each proxy keeps a summary of the cache directory of 
each participating proxy, and checks these summaries for poten- 
tial hits before sending any queries. Two factors contribute to our 
protocors low overhead: the summaries are updated only periodi- 
cally, and the directory representations are very economical, as low 
as 8 bits per entry. Using trace-driven simulations and a prototype 
implementation, we show that, compared to existing protocols such 
as the internet cache protocol (ICP), summary cache reduces the 
number of intercache protocol messages by a factor of 25 to 60, re- 
duces the bandwidth consumption by over 50%, eliminates 30% to 
95% of the protocol CPU overhead, all while maintaining almost 
the same cache hit ratio as ICE Hence summary cache scales to a 
large number of proxies. (This is a revision of [18]. We add more 
data and analysis in this version.) 

Index Terms--Bloom filter, cache sharing, ICP, Web cache, Web 
proxy. 

I. INTRODUCTION 

A S THE tremendous growth of  the World Wide Web con- 
tinues to strain the Internet, caching has been recognized 

as one of  the most important techniques to reduce bandwidth 
consumption [32]. In particular, caching within Web proxies has 
been shown to be very effective [16], [36]. To gain the full ben- 
efits of  caching, proxy caches behind a common bottleneck link 
should cooperate and serve each other's misses, thus further re- 
ducing the traffic through the bottleneck. We call the process 
"Web cache sharing." 

Web cache sharing was first proposed in the context of  the 
Harvest project [28], [14]. The Harvest group designed the in- 
ternet cache protocol (ICP) [21] that supports discovery and 
retrieval of  documents from neighboring caches. Today, many 
institutions and many countries have established hierarchies of  
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proxy caches that cooperate via ICP to reduce traffic to the In- 
ternet [27], [33], [44], [6], [16]. 

Nevertheless, the wide deployment of  web cache sharing 
is currently hindered by the overhead of  the ICP protocol. 
ICP discovers cache hits in other proxies by having the proxy 
multicast a query message to the neighboring caches whenever 
a cache miss occurs. Suppose that N proxies configured in 
a cache mesh. The average cache hit ratio is H .  The average 
number of  requests received by one cache is R. Each cache 
needs to handle (N  - 1) • (1 - H)  • R inquiries from neigh- 
boring caches. There are a total N • (N  - 1) * (1 - H)  • R ICP 
inquiries. Thus, as the number of  proxies increases, both the 
total communication and the total CPU processing overhead 
increase quadratically. 

Several alternative protocols have been proposed to address 
the problem, for example, a cache array routing protocol that 
partitions the URL space among proxies [48]. However, such 
solutions are often not appropriate for wide-area cache sharing, 
which is characterized by limited network bandwidth among 
proxies and nonuniform network distances between proxies and 
their users (for example, each proxy might be much closer to one 
user group than to others). 

In this paper, we address the issue of  scalable protocols for 
wide-area Web cache sharing. We first quantify the overhead 
of the ICP protocol by running a set of  proxy benchmarks. We 
compared network traffic and CPU overhead of  proxies using 
ICP with proxies that are not using ICE The results show that 
even when the number of  cooperating proxies is as low as four, 
ICP increases the interproxy traffic by a factor of  70 to 90, the 
number of  network packets received by each proxy by 13% and 
higher, and the CPU overhead by over 15%. (The interproxy 
traffic with no ICP is keep-alive messages; the network packets 
include messages between proxy and client, messages between 
proxy and server, and messages between proxies.) In the ab- 
sence of  interproxy cache hits (also called remote cache hits), 
the overhead can increase the average user latency by up to 11%. 

We then propose a new cache sharing protocol called "sum- 
mary cache." Under this protocol, each proxy keeps a compact 
summary of  the cache directory of  every other proxy. When a 
cache miss occurs, a proxy first probes all the summaries to see 
if the request might be a cache hit in other proxies, and sends 
a query messages only to those proxies whose summaries show 
promising results. The summaries do not need to be accurate at 
all times. If  a request is not a cache hit when the summary indi- 
cates so (a false hit), the penalty is a wasted query message. If  
the request is a cache hit when the summary indicates otherwise 
(a false miss), the penalty is a higher miss ratio. 

1063--6692/00510.00 © 2000 IEEE 
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TABLE I 
STATISTICS ABOUT THE TRACES. THE MAXIMUM CACHE HIT RATIO AND BYTE HIT RATIO ARE ACHIEVED WITH THE INFINITE CACHE. 

Traces 
Time 
Requests 
Infinite Cache Size 
Max. Hit Ratio 
Max. Byte Hit Ratio 
Client Population 

DEC 
8/29-9/4, 1996 

3,543,968 
28.8GB 
49% 
36% 
10089 

UCB 
9/14-9/19, 1996 

1,907,762 
18.0GB 

30% 
14% 
5780 

UPisa 
Jan-March, 1997 

2,833,624 
20.7GB 

40% 
27% 
2203 

Questnet 
1/15-1/21, 1998 

2,885,285 
23.3GB 

30% 
15% 
N/A 

NLANR 
12/22, 1997 
1,766,409 
13.7GB 
36% 
27% 
N/A 

Client Groups 16 8 8 12 4 

We examine two key questions in the design of the protocol: 
the fi'equency of summary updates and the representation of 
summary. Using trace-driven simulations, we show that the up- 
date of summaries can be delayed until a fixed percentage (for 
example, 1%) of cached documents are new, and the hit ratio 
will degrade proportionally (for the 1% choice, the degradation 
is between 0.02% to 1.7% depending on the traces). 

To reduce the memory requirements, we store each summary 
as a "Bloom filter" [7]. This is a computationally very effi- 
cient hash-based probabilistic scheme that can represent a set 
of keys (in our case, a cache directory) with minimal memory 
requirements while answering membership queries with 0 prob- 
ability for false negatives and low probability for false positives. 
Trace-driven simulations show that with typical proxy config- 
urations, for N cached documents represented within just N 
bytes, the percentage of false positives is 1% to 2%. In fact, the 
memory can be further reduced at the cost of an increased false 
positive ratio. (We describe Bloom filters in more detail later.) 

Based on these results, we design the summary cache 
enhanced ICP protocol and implement a prototype within 
the Squid proxy. Using trace-driven simulations as well as 
experiments with benchmarks and trace-replays, we show that 
the new protocol reduces the number of interproxy messages 
by a factor of 25 to over 60, reduces the network bandwidth 
consumption (in terms of bytes transferred) by over 50%, 
and eliminates 30% to 95% of the protocol CPU overhead. 
Compared with no cache sharing, our experiments show that 
the protocol incurs little network traffic and increases CPU 
time only by 5% to 12% depending on the remote cache hit 
ratio. Yet, the protocol achieves a cache hit ratio similar to the 
ICP protocol most of the time. 

The results indicate that the summary cache enhanced ICP 
protocol can scale to a large number of proxies. Thus, it has the 
potential to significantly increase the deployment of Web cache 
sharing and reduce Web traffic on the Internet. Toward this end, 
we are making our implementation publicly available [17] and 
are in the process of transferring it to the ICP user community. 

II. TRACES AND _SIMULATIONS 

For this study we have collected five sets of traces of HTTP 
requests (for more details, see [19]): 

• DEC: Digital Equipment Corporation Web Proxy server 
traces [35]. 

• UCB: traces of HTTP requests fromthe University of Cal- 
ifornia at Berkeley Dial-IP service [26]. 

• UPisa: tracesofHTTPrequestsmadebyusersintheCom- 
puter Science Department, University of Pisa, Italy. 

• Questnet: logs of HTTP GET requests seen by the parent 
proxies at Questnet, a regional network in Australia. The 
trace consists only the misses of children proxies. The full 
set of user requests to the proxies are not avaliable. 

• NLANR: one-day log of HTTP requests to the four major 
parent proxies, "bo," "pb," "sd," and "uc," in the National 
Web Cache hierarchy by the National Lab of Applied Net- 
work Research [43]. 

Table I lists various information about the traces, including du- 
ration of each trace, the number of requests and the number of 
clients. The "infinite" cache size is the total size in bytes of 
unique documents in a trace (i.e., the size of the cache which 
incurs no cache replacement). 

To simulate cache sharing, we partition the clients in DEC, 
UCB and UPisa into groups, assuming that each group has its 
own proxy, and simulate the cache sharing among the proxies. 
This roughly corresponds to the scenario where each branch of 
a company or each department in a university has its own proxy 
cache, and the caches collaborate. The cache is restricted to each 
individual traces. We set the number of groups in DEC, UCB 
and UPisa traces to 16, 8, and 8, respectively. A client is put in 
a group if its clientlD mod the group size equals the group ID. 
Questnet traces contain HTTP GET requests coming from 12 
child proxies in the regional network. We assume that these are 
the requests going into the child proxies (since the child proxies 
send their cache misses to the parent proxy), and simulate cache 
sharing among the child proxies. NLANR traces contain actual 
HTTP requests going to the four major proxies, and we simulate 
the cache sharing among them. 

The simulation results reported here assume a cache size that 
is 10% of the "infinite" cache size. Results under other cache 
sizes are similar. The simulations all use least-recently-used 
(LRU) as the cache replacement algorithm, with the restriction 
that documents larger than 250 KB are not cached. The policy 
is similar to what is used in actual proxies. We do not simulate 
expiring documents based on age or time-to-live. Rather, 
most traces come with the last-modified time or the size of a 
document for every request, and if a request hits on a document 
whose last-modified time or size is changed, we count it as a 
cache miss. In other words, we assume that cache consistency 
mechanism is perfect. In practice, there are a variety of proto- 
cols [14], [37], [30] for Web cache consistency. 

III. BENEFITS OF CACHE SHARING 

Recent studies [10], [25], [16] have shown that under infi- 
nite cache capacity, Web cache hit ratio appears to grow loga- 
rithmically with the size of the user population served by the 



FAN et al.: SCALABLE WIDE-AREA WEB CACHE SHARING PROTOCOL 283 

Fig. 1. 

0.50 

0.40 

o.3o 

."- 0.20 2 

O.lO - 

0 .00  

- -A- .  Single-Copy Cache Sharing t Simple Cache Sharing - - -4 - - No Cache Sharing 
Global Cache - - x - .  Global 10% less cache 

°-'°" ..°" -" ° 

'"I ........ I ..... I ........ I " ..... I ........ I ..... I ........ I ..... I ........ I 

1 10 I 10 1 10 1 10 1 10 

Relative Cache Size (%) Relative Cache Size (%) Relative Cache Size (%) Relative Cache Size (%) Relative Cache Size (%) 

Graph 1:DEC-8-29-9-4 Graph 2: UCB Graph 3: NLANR Graph 4: UPisa Graph 5: Questnet 

Cache hit ratios under different cooperative caching schemes. Results on byte hit ratios are similar. The :v-axis is in log scale. 

cache. Clearly, the overlap of requests from different users re- 
duces the number of cold misses, often a significant portion of 
cache misses [3], since both first-time reference to documents 
and document modifications contribute to cold misses. 

To examine the benefits of cache sharing under finite cache 
sizes, we simulate the following schemes using the traces listed 
in the previous section. 

• No  Cache Sharing: Proxies do not collaborate to serve 
each other's cache misses. 

• Simple Cache Sharing: Proxies serve each other's cache 
misses. Once a proxy fetches a document from another 
proxy, it caches the document locally. Proxies do not co- 
ordinate cache replacements. This is the sharing imple- 
mented by the ICP protocol. 

• Single-Copy Cache Sharing: Proxies serve each other's 
cache misses, but a proxy does not cache documents 
fetched from another proxy. Rather, the other proxy 
marks the document as most-recently-accessed, and in- 
creases its caching priority. Compared with simple cache 
sharing, this scheme eliminates the storage of duplicate 
copies and increases the utilization of available cache 
space. 

• Global  Cache: Proxies share cache contents and coordi- 
nate replacement so that they appear as one unified cache 
with global LRU replacement to the users. This is the 
fully coordinated form of cooperative caching. We sim- 
ulate the scheme by assuming that all requests go to one 
cache whose size is the sum of all proxy cache sizes. 

We examine these schemes in order to answer two questions: 
whether simple cache sharing significantly reduces traffic 
to Web servers, and whether the more tightly coordinating 
schemes lead to a significantly higher hit ratio. Notice here the 
hit ratio includes both local hits and remote hits. Local hits are 
those requested documents found in the proxy's cache; remote 
hits are those documents found in the neighoring proxies' 
cache. Both kinds of hit avoid traffic to web servers. 

Fig. 1 shows the hit ratios under the different schemes con- 
sidered when the cache size is set to 0.5%, 5%, 10%, and 20% 
of the size of the "infinite cache size" (the minimum cache size 

needed to completely avoid replacements) for each trace. The 
results on byte hit ratios are very similar, and we omit them due 

to space constraints. 
Looking at Fig. 1, we see that, first, all cache sharing schemes 

significantly improve the hit ratio over no cache sharing. The 
results amply confirm the benefit of cache sharing even with 
fairly small caches. 

Second, the hit ratio under single-copy cache sharing and 
simple cache sharing are generally the same as or even higher 
than the hit ratio under global cache. We believe the reason is 
that global LRU sometimes performs less well than group-wise 
LRU. In particular, in the global cache setting a burst of rapid 
successive requests from one user might disturb the working 
set of many users. In single-copy or simple cache sharing, each 
cache is dedicated to a particular user group, and traffic from 
each group competes for a separate cache space. Hence, the dis- 
ruption is contained within a particular group. 

Third, when comparing single-copy cache sharing with 
simple cache sharing, we see that the waste of space has only 
a minor effect. The reason is that a somewhat smaller effective 
cache does not make a significant difference in the hit ratio. 
To demonstrate this, we also run the simulation with a global 
cache 10% smaller than the original. As can be seen from 

Fig. 1, the difference is very small. 
Thus, despite its simplicity, the ICP-style simple cache 

sharing reaps most of the benefits of more elaborate coopera- 
tive caching. Simple cache-sharing does not perform any load 
balancing by moving content from busy caches to less busy 
ones, and does not conserve space by keeping only one copy 
of each document. However, if the resource planning for each 
proxy is done properly, there is no need to perform load-bal- 
ancing and to incur the overhead of more tightly coordinating 
schemes. 

Finally, note that the results are obtained under the LRU re- 
placement algorithm as explained in Section II. Different re- 
placement algorithms [10] may give different results. Also, sep- 
arate simulations have confirmed that in case of severe load im- 
balance, the global cache will have a better cache hit ratio, and 
therefore it is important to allocate cache size of each proxy to 
be proportional to its user population size and anticipated use. 
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TABLE II 
OVERHEAD OF ICP IN THE FOUR-PROXY CASE. THE SC-ICP PROTOCOL IS INTRODUCED IN SECTION VI AND WILL BE EXPLAINED LATER. THE EXPERIMENTS ARE 
RUN THREE TIMES, AND THE VARIANCE FOR EACH MEASUREMENT IS LISTED IN THE PARENTHESIS. THE OVERHEAD ROW LISTS THE INCREASE IN PERCENTAGE 

OVER NO-ICP FOR EACH MEASUREMENT, NOTE THAT IN THESE SYNTHETIC EXPERIMENTS THERE IS NO INTERPROXY CACHE HIT 

Exp 1 
no ICP 
ICP 
Overhead 
SC-ICP 
Overhead 
Exp 2 
no ICP 
ICP 
Overhead 
SC-ICP 
Overhead 

Hit Ratio 
25% 
25% 

25% 

Client Latency User CPU System CPU 
2.75 (5%) 94.42 (5%) 133.65 (6%) 

3.07 (0.7%) 116.87 (5%) 146.50 (5%) 
1~% ~4% 10% 

2.85 (1%) 95.07 (6%) 134.61 (6%) 
4% 0.7% 0.7% 

Hit Ratio Client Latency User CPU System CPU 
45% 2.21 (1%) 80.83 (2%) 111.10 (2%) 
45% 2.39 (1%) 97.36 (1%) 118.59 (1%) 

8% ~0% 7% 
45% 2.25 (1%) 82.03 (3%) 111.87 (3%) 

~% I% I% 

UDP Msgs 
615 (28%) 
54774 (0%) 

9000% 
1079 (0%) 

75% 
UDP Msgs 
540 (3%) 

39968 (0%) 
78oo% 

799 (5%) 
48% 

TCP Msgs 
334K (8%) 
328K (4%) 

-$% 
330K (5%) 

-1% 

Total Packets 
355K(7%) 
402K (3%) 

13% 
351K (5%) 

-1% 
TCP Msgs Total Packets 
272K (3%) 290K (3%) 
257K (2%) 314K (1%) 

-1% 8% 
269K (5%) 287K (5%) 

-1% -1% 

IV. OVERHEAD OF ICP 

Though ICP [49] has been successful at encouraging Web 
cache sharing around the world, it is not a scalable protocol. It 
relies on query messages to find remote cache hits. Every time 
one proxy has a cache miss, everyone else receives and pro- 
cesses a query message. As the number of collaborating proxies 
increases, the overhead quickly becomes prohibitive. 

To measure the overhead of ICP and its impact on proxy 
performance, we run experiments using the Wisconsin proxy 
benchmark 1.0 [1]. The benchmark is designed by us and has 
been used by several proxy vendors as a tool to validate proxy 
performance [31]. It consists of a collection of client processes 
that issue requests following patterns observed in real traces (in- 
cluding request size distribution and temporal locality), and a 
collection of server processes that delay the replies to emulate 
Internet latencies. 

The experiments are performed on 10 Sun Sparc-20 work- 
stations connected with 100 Mb/s Ethernet. Four workstations 
act as four proxy systems running Squid 1.1.14, and each has 
75 MB of cache space. Another four workstations run 120 client 
processes, 30 processes on each workstation. The client pro- 
cesses on each workstation connect to one of the proxies. Client 
processes issue requests with no thinking time in between, and 
the document sizes follow the Pareto distribution with c~ = 1.1 
and k -- 3.0 [11]. Two workstations act as servers, each with 
15 servers listening on different ports. Each server forks a new 
process when handling an HTTP request, and the process waits 
for one second before sending the reply to simulate the network 
latency. 

We experiment with two different cache hit ratios, 25% and 
45%, as the overhead of ICP varies with the cache miss ratio in 
each proxy. In the benchmark, each client issues requests fol- 
lowing the temporal locality patterns observed in [38], [10], [8], 
and the inherent cache hit ratio in the request stream can be ad- 
justed. In eachexperiment, a client process issues 200 requests, 
for a total of 24 000 requests. 

We compare two configurations: no-ICP, where proxies do 
not collaborate, and ICP, where proxies collaborate via ICE 
Since we are only interested in the overhead, the requests is- 
sued by different clients do not overlap; there is no remote cache 
hit among proxies. This is the worst-case scenario for ICE and 
the results measure the overhead of the protocol. We use the 

same seeds in the random number generators for the no-ICP 
and ICP experiments to ensure comparable results; otherwise 
the heavy-tailed document size distribution would lead to high 
variance. The relative differences between no-ICP and ICP are 
the same across different settings of seeds. We present results 
from one set of experiments here. 

We measure the hit ratio in the caches, the average latency 
seen by the clients, the user and system CPU times consumed 
by the Squid proxy and network traffic. Using netstat, we collect 
the number of user datagram protocol (UDP) datagrams sent 
and received, the TCP packets sent and received, and the total 
number of IP packets handled by the Ethernet network interface. 
The third number is roughly the sum of the first two. The UDP 
traffic is incurred by the ICP query and reply messages. The 
TCP traffic includes the HTTP traffic between the proxy and 
the servers, and between the proxy and the clients. The results 
are shown in Table II. 

The results show that ICP incurs considerable overhead even 
when the number of cooperating proxies is as low as four. The 
number of UDP messages is increased by a factor of 73 to 90. 
Due to the increase in the UDP messages, the total network 
traffic seen by the proxies is increased by 8% to 13%. Protocol 
processing increases the user CPU time by 20% to 24%, and 
UDP processing increases the system CPU time by 7% to 10%. 
To the clients, the average latency of an HTTP request is in- 
creased by 8% to 12%. The degradations occur despite the fact 
that the experiments are performed on a high-speed local area 
network. 

The results highlight the dilemma faced by cache adminis- 
trators: there are clear benefits of cache sharing (as shown in 
Fig. 1), but the overhead of ICP is high. Furthermore, the effort 
spent on processing ICP is proportional to the total number of 
cache misses experienced by other proxies, instead of propor- 
tional to the number of actual remote cache hits. 

To address the problem, we propose a new scalable protocol: 
summary cache. 

W. SUMMARY CACHE 

In the summary cache scheme, each proxy stores a summary 
of its directory of cached document in every other proxy. When 
a user request misses in the local cache, the local proxy checks 
the stored summaries to see if the requested document might be 
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Fig. 2. Impact of summary update delays on total cache hit ratios. The cache size is 10% of the "infinite" cache size. 

stored in other proxies. I f  it appears so, the proxy sends out re- 
quests to the relevant proxies to fetch the document. Otherwise, 
the proxy sends the request directly to the Web server. 

The key to the scalability of  the scheme is that summaries 
do not have to be up-to-date or accurate. A summary does not 
have to be updated every time the cache directory is changed; 
rather, the update can occur upon regular time intervals or when 
a certain percentage of the cached documents are not reflected 
in the summary. A summary only needs to be inclusive (that is, 
depicting a superset of  the documents stored in the cache) to 
avoid affecting the total cache hit ratio. That is, two kinds of  
errors are tolerated. 

• False misses: The document requested is cached at some 
other proxy but its summary does not reflect the fact. In 
this case, a remote cache hit is not taken advantage of, and 
the total hit ratio within the collection of caches is reduced. 

• False hits: The document requested is not cached at some 
other proxy but its summary indicates that it is. The proxy 
will send a query message to the other proxy, only to be 
notified that the document is not cached there. In this case, 
a query message is wasted. 

The errors affect the total cache hit ratio or the interproxy traffic, 
but do not affect the correctness of  the caching scheme. For ex- 
ample, a false hit does not result in the wrong document being 
served. In general we strive for low false misses, because false 
misses increase traffic to the Internet and the goal of  cache 
sharing is to reduce traffic to the Internet. 

A third kind of  error, remote stale hits, occurs in both sum- 
mary cache and ICP. A remote stale hit is when a document is 
cached at another proxy, but the cached copy is stale. Remote 
stale hits are not necessarily wasted efforts, because delta com- 
pressions can be used to transfer the new document [42]. How- 
ever, it does contribute to the interproxy communication. 

Two factors limit the scalability of  summary cache: the net- 
work overhead (the interproxy traffic), and the memory required 
to store the summaries (for performance reasons, the summaries 
should be stored in DRAM, not on disk). The network overhead 
is determined by the frequency of  summary updates and by the 
number of  false hits and remote hits. The memory requirement is 
determined by the size of individual summaries and the number 

of cooperating proxies. Since the memory grows linearly with 
the number of  proxies, it is important to keep the individual sum- 
maries small. Below, we first address the update frequencies, 
and then discuss various summary representations. 

A. Impact o f  Update Delays 

We investigate delaying the update of  summaries until the 
percentage of cached documents that are "new" (that is, not re- 
flected in the summaries) reaches a threshold. The threshold cri- 
teria is chosen because the number of  false misses (and hence 
the degradation in total hit ratio) tends to be proportional to the 
number of  documents that are not reflected in the summary. An 
alternative is to update summaries upon regular time intervals. 
The false miss ratio under this approach can be derived through 
converting the intervals to thresholds. That is, based on request 
rate and typical cache miss ratio, one can calculate how many 
new documents enter the cache during each time interval and 
their percentage in the cached documents. 

Using the traces, we simulate the total cache hit ratio when 
the threshold is 0.1%, 1%, 2%, 5%, and 10% of the cached 
documents. For the moment we ignore the issue of  summary 
representations and assume that the summary is a copy of  the 
cache directory (i.e., the list of  document URL's). The results 
are shown in Fig. 2. The top line in the figure is the hit ratio 
when no update delay is introduced. The second line shows the 
hit ratio as the update delay increases. The difference between 
the two lines is the false miss ratio. The bottom two curves show 
the ratio of  remote stale hits and the ratio of  false hits (the delay 
does introduce some false hits because documents deleted from 
the cache may still be present in the summary). 

The results show that, except for the NLANR trace data, 
the degradation in total cache hit ratio grows almost linearly 
with the update threshold. At the threshold of  1%, the relative 
reductions in hit ratio are 0.2% (UCB), 0.1% (UPisa), 0.3% 
(Questnet), and 1.7% (DEC). The remote stale hit ratio is 
hardly affected by the update delay. The false hit ratio is very 
small since the summary is an exact copy of the cache directory, 
though it does increase linearly with the threshold. 

For the NLANR trace, it appears that some clients are simul- 
taneously sending two requests for the exact same document to 
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TABLE III 
STORAGE REQUIREMENT, IN TERMS OF PERCENTAGE OF PROXY CACHE 

SIZE, OF THE SUMMARY REPRESENTATIONS 

Approach DEC NLANR 
exact_dir 2.8% 0.70% 
server_name 0 .19% 0.08% 
bloom_filter_8 0.19% 0.038% 
bloom_filter_16 0.38% 0.075% 
bloom_filter_32 0.75% 0.15% 

proxy "bo" and another proxy in the NLANR collection. If  we 
only simulate the other three proxies in NLANR, the results are 
similar to those of other traces. With "bo" included, we also 
simulated the delay being 2 and 10 user requests, and the hit 
ratio drops from 30.7% to 26.1% and 20.2%, respectively. The 
hit ratio at the threshold of  0.1%, which roughly corresponds 
to 200 user requests, is 18.4%. Thus, we believe that the sharp 
drop in hit ratio is due to the anomaly in the NLANR trace. Un- 
fortunately, we cannot determine the offending clients because 
client ID 's  are not consistent across NLANR traces [43]. 

The results demonstrate that in practice, a summary update 
delay threshold of  1% to 10% results in a tolerable degradation 
of  the cache hit ratios. For the five traces, the threshold values 
translate into roughly 300 to 3000 user requests between up- 
dates, and on average, an update frequency of  roughly every five 
minutes to an hour. Thus, the bandwidth consumption of  these 
updates can be very low. 

B. Summary Representations 

The second issue affecting scalability is the size of  the sum- 
mary. Summaries need to be stored in the main memory not 
only because memory lookups are much faster, but also because 
disk arms are typically the bottlenecks in proxy caches [39]. Al- 
though DRAM prices continue to drop, we still need a careful 
design, since the memory requirement grows linearly with the 
number of  proxies. Summaries also take DRAM away from the 
in-memory cache of  hot documents, affecting the proxy perfor- 
mance. Thus, it is important to keep the summaries small. On 
the other hand, summaries only have to be inclusive to avoid af- 
fecting the cache hit ratio. Therefore, we could use an unprecise 
but small summary for the directory. 

We first investigate two naive summary representations: 
exact-directory and server-name. In the exact-directory ap- 
proach, the summary is essentially the cache directory, with 
each URL represented by its 16-byte MD5 signature [41], 
[24]. In the server-name approach, the summary is the list of  
the server name component of  the URL's  in cache. Since on 
average, the ratio of  different URL' s to different server names 
is about 10 to 1 (observed from our traces), the server-name 
approach can cut down the memory by a factor of  10. 

We simulate these approaches using the traces and found that 
neither of  them is satisfactory. The results are in Table III, along 
with those on another summary representation (Table III is dis- 
cussed in detail in Section V-D). The exact-directory approach 
consumes too much memory. In practice, proxies typically have 
8 GB to 20 GB of cache space. If  we assume 16 proxies of  8 GB 
each and an average file size of  8 KB, the exact-directory sum- 
mary would consume (16 - 1) * 16 * (8 GB/8  KB) = 240 MB 

Fig. 3. 

Bit Vector v 

Element a 

HI(a)=P 1 

H~a) = P2 ~ . ~ :  bits 

Bloom Filter with four  hash  functions.  

of main memory per proxy. The server-name approach, though 
consuming less memory, generates too many false hits that sig- 
nificantly increase the network messages. 

The requirements on an ideal summary representation are 
small size and low false hit ratio. After a few other tries, we 
found a solution in an old technique called Bloom filters. 

C. Bloom Filters--The Math 

A Bloom filter is a method for representing a set 
A = { a l , a 2 , . . . , a n }  of  n elements (also called keys) to 
support membership queries. It was invented by Burton Bloom 
in 1970 [7] and was proposed for use in the web context by 
Marais and Bharat [40] as a mechanism for identifying which 
pages have associated comments stored within a Common- 
Knowledge server. 

The idea (illustrated in Fig. 3) is to allocate a vector v of  m 
bits, initially all set to 0, and then choose k independent hash 
f u n c t i o n s ,  h i ,  h 2 ,  • • • , hk, each with range { 1 , . . . ,  rn}. For each 
element a C A, the bits at positions h i (a) ,  h 2 ( a ) , . . . ,  hk(a) 
in v are set to 1. (A particular bit might be set to 1 multiple 
times.) Given a query for b we check the bits at positions hi  (b), 
h2 (b ) , . . . ,  hk(b). If  any of  them is 0, then certainly b is not in 
the set A. Otherwise we conjecture that b is in the set although 
there is a certain probability that we are wrong. This is called 
a "false positive." or, for historical reasons, a "false drop." The 
parameters k and m should be chosen such that the probability 
of  a false positive (and hence a false hit) is acceptable. 

The salient feature of  Bloom filters is that there is a clear 
tradeoff between m and the probability of  a false positive. Ob- 
serve that after inserting n keys into a table of  size m, the prob- 
ability that a particular bit is still 0 is exactly 

( 1 _ 1 )  kn" 

Hence the probability of  a false positive in this situation is 

The right hand side is minimized for k = in 2 × re~n, in which 
case it becomes 

( )k='00185 m'  
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Fig. 4. Probability of false positives (log scale). The top curve is for four 
hash functions. The bottom curve is for the optimum (integral) number of hash 
functions. 

In fact k must be an integer and in practice we might chose a 
value less than optimal to reduce computational overhead. Some 
example values are 

m / n  = 6 k = 4 Perror = 0.0561 

m / n  = 8 k = 6 Perror = 0.0215 

m / n = 1 2  k = 8  p . . . . .  = 0 . 0 0 3 1 4  

m / n = 1 6  k = l l  p . . . .  r = 0 . 0 0 0 4 5 8 .  

The graph in Fig. 4 shows the probability of  a false positive as 
a function of the number of  bits allocated for each entry, that is, 
the ratio ce = n / m .  The above curve is for the case of  four hash 
functions. The below curve is for the optimum number of  hash 
functions. The scale is logarithmic so the straight line observed 
corresponds to an exponential decrease. It is clear that Bloom 
filters require very little storage per key at the slight risk of  some 
false positives. For instance for a bit array 10 times larger than 
the number of  entries, the probability of a false positive is 1.2% 
for four hash functions, and 0.9% for the optimum case of five 
hash functions. The probability of false positives can be easily 
decreased by allocating more memory. 

Since in our context each proxy maintains a local Bloom filter 
to represent its own cached documents, changes of set A must 
be supported. This is done by maintaining for each location g in 
the bit array a count c(g) of the number of times that the bit is set 
to 1 (that is, the number of  elements that hashed to g under any 
of  the hash functions). All the counts are initially 0. When a key 
a (in our case, the U R L  of a document) is inserted or deleted, 
the counts c( h l ( a ) ) , c( h z ( a ) ) , . . . , c( h k ( a ) ) are incremented or 
decremented accordingly. When a count changes from 0 to 1, 
the corresponding bit is turned on. When a count changes from 
1 to 0 the corresponding bit is turned off. Hence the local Bloom 
filter always reflects correctly the current directory. 

Since we also need to allocate memory for the counts, it is 
important to know how large they can become. The asymptotic 
expected maximum count after inserting n keys with k hash 
functions into a bit array of  size m is (see [24, p. 72]) 

l n ( k n / m )  1 
F - l ( m ) ( l + l n F - X ( m ) + O ( l n 2 F - l ( m ) )  ) 

and the probability that any count is greater or equal i is 

1 < m 
Pr (max(c)  >_ i) _< m m ---7 - \T-m--m / 

As already mentioned the optimum value for k (over reals) is 
in 2 m / n  so assuming that the number of  hash functions is less 
than in 2 m / n  we can further bound 

Pr (max(c)  > i) < m ----=--- 

Hence taking i = 16 we obtain that 

Pr (max(c)  _> 16) < 1.37 × 10 -15 × m. 

In other words if we allow 4 bits per count, the probability of  
overflow for practical values of  m during the initial insertion in 
the table is minuscule. 

In practice we must take into account that the hash functions 
are not truly random, and that we keep doing insertions and 
deletions. Nevertheless, it seems that 4 bits per count would be 
amply sufficient. Furthermore if the count ever exceeds 15, we 
can simply let it stay at 15; after many deletions this might lead 
to a situation where the Bloom filter allows a false negative (the 
count becomes 0 when it shouldn't be), but the probability of  
such a chain of  events is so low that it is much more likely that 
the proxy server would be rebooted in the meantime and the 
entire structure reconstructed. 

D. Bloom Filters as Summaries 

Bloom filters provide a straightforward mechanism to build 
summaries. A proxy builds a Bloom filter from the list of  URL's  
of  cached documents, and sends the bit array plus the specifica- 
tion of  the hash functions to other proxies. When updating the 
summary, the proxy can either specify which bits in the bit array 
are flipped, or send the whole array, whichever is smaller (the 
implementation detail is discussed in Section VI). 

Each proxy maintains a local copy of  the Bloom filter, and 
updates it as documents are added to and replaced from the 
cache. As explained, to update the local filter, a proxy maintains 
an array of  counters, each counter remembering the number of  
times the corresponding bit is set to 1. When a document is 
added into the cache, the counters for the corresponding bits 
are incremented; when it is deleted from the cache, the counters 
are decremented. When a counter increases from 0 to 1 or drops 
from 1 to 0, the corresponding bit is set to 1 or 0, and a record 
is added to the list remembering the updates. 

The advantage of Bloom filters is that they provide a tradeoff 
between the memory requirement and the false positive ratio 
(which induces false hits). Thus, if proxies want to devote less 
memory to the summaries, they can do so at a slight increase of  
interproxy traffic. 

We experimented with three configurations for Bloom filter 
based summaries: the number of  bits being 8, 16, and 32 times 
the average number of  documents in the cache (the ratio is also 
called a "load factor"). The average number of  documents is 
calculated by dividing the cache size by 8 K (the average doc- 
ument size). All three configurations use four hash functions. 
The number of  hash functions is not the optimal choice for each 
configuration, but suffices to demonstrate the performance of  
Bloom filters. The hash functions are built by first calculating 
the MD5 signature [41] of  the URL, which yields 128 bits, then 
dividing the 128 bits into four 32-bit word, and finally taking the 
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Fig. 5. Total hit ratio under different summary representations. 
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Fig. 6. Ratio of false hits under different summary representations. The y-axis is in log scale. 

modulus of  each 32-bit word by the table size ra. MD5 is a cryp- 
tographic message digest algorithm that hashes arbitrary length 
strings to 128 bits [41]. We select it because of  its well-known 
properties and relatively fast implementation. 

The performance of  these three summary representations, 
the exact-directory approach, and the server-name approach 
are shown in Figs. 5-8 and in Table III. In Fig. 5 we show 
the total cache hit ratios and in Fig. 6 we show the false hit 
ratios. Note that the y-axis in Fig. 6 is in log scale. The Bloom 
filter based summaries have virtually the same cache hit ratio 
as the exact-directory approach, and have slightly higher false 
hit ratio when the bit array is small. Server-name has a much 
higher false hit ratio. It has a higher cache hit ratio, probably 
because its many false hits help to avoid false misses. 

Fig. 7 shows the total number of  interproxy network mes- 
sages, including the number of  summary updates and the 
number of query messages (which includes remote cache hits, 
false hits and remote stale hits). The y-axis in Fig. 7 is in log 
scale. For comparison we also list the number of  messages 
incurred by ICP in each trace. All messages are assumed to 
be uni-cast messages. The figure normalizes the number of  
messages by the number of  HTTP requests in each trace. Both 
exact-directory and Bloom filter based summaries perform 

well, and server-name and ICP generate many more messages. 
For Bloom filters, there is a tradeoff between bit array size and 
the number of  messages, as expected. However, once the false 
hit ratio is small enough, false hits are no longer a dominant 
contributor to interproxy messages. Rather, remote cache hits 
and remote stale hits become dominant. Thus, the difference 
in terms of  network messages between load factor 16 and 
load factor 32 is small. Compared to ICE Bloom filter based 
summaries reduce the number of  messages by a factor of  25 to 
60. 

Fig. 8 shows the estimated total size of  interproxy network 
messages in bytes. We estimate the size because update mes- 
sages tend to be larger than query messages. The average size 
of  query messages in both ICP and other approaches is assumed 
to be 20 bytes of  header and 50 bytes of  average URL. The size 
of  summary updates in exact-directory and server-name is as- 
sumed to be 20 bytes of  header and 16 bytes per change. The 
size of  summary updates in Bloom filter based summaries is es- 
timated at 32 bytes of  header (see Section VI) plus 4 bytes per 
bit-flip. The results show that in terms of  message bytes, Bloom 
filter based summaries improves over ICP by 55% to 64%. In 
other words, summary cache uses occasional burst of  large mes- 
sages to avoid continuous stream of small messages. Looking at 
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Fig. 7. Number of network messages per user request under different summary forms. The y-axis is in log scale. 
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Fig. 8. Bytes of network messages per user request under different summary forms. 

TABLE IV 
PERFORMANCE OF ICP AND SUMMARY-CACHE FOR UPISA TRACE IN EXPERIMENT 3. NUMBERS IN PARENTHESIS 

SHOW THE VARIANCE OF THE MEASUREMENT AMONG THREE EXPERIMENTS. 

Exp 3 Hit Ratio 
no ICP 16.94 
ICP 19.3 
Overhead 
SC-ICP 19.0 
Overhead 

Client Latency 
6.22(0.4%) 
6.31(0.5%) 

1.4~% 
6.07 (0.1%) 

-2.4% 

User CPU System CPU 
81.72(0.1%) 115.63(0.1%) 
116.81(0.1%) 137.12(0.1%) 

43~o 19~ 
91.53(0.4%) 121.75(0.5%) 

1 ~  5~  

UDP Traffic 
4718(1%) 
72761(0%) 

14OO~o 
5765(2%) 

22Vo 

TCP Traffic 
242K(0.1%) 
245K(0.1%) 

244K(0.1%) 

Total Packets 
259K(0.1%) 
325K(0.2%)' 

Z5~ 
262K(0.1%) 

Exp 4 
no ICP 
ICP 
Overhead 
SC-ICP 
Overhead 

TABLE V 
PERFORMANCE OF ICP AND SUMMARY-CACHE FOR UPISA TRACE 1N EXPERIMENT 4. 

Hit Ratio Client Latency 
9.94 7.11 
17.9 7.22 

1.6% 
16.2 6.80 

-4.3~o 

User CPU System CPU UDP Traffic TCP Traffic Total Packets 
81.75 119.7 1608 248K 265K 
121.5 146.4 75226 257K 343K 
4 9 ~ 2~ ~o 4 5 77~o 3.7~o ~9 ~o 
90.4 126.5 4144 254K 274K 

the C P U  overhead and ne twork  interface packets in Tables II, 

IV and V (in which SC- ICP  stands for the summary  cache ap- 
proach),  we  can see that it is a good tradeoff.  

Table III shows the m e m o r y  per  proxy o f  the summary  

cache approaches,  in terms of  percentage  o f  cache size. The  

three B l o o m  filter configurat ions  consume  much  less m e m o r y  
than exact-directory,  and yet  per form similar ly to it in all 

o ther  aspects. The  B l o o m  filter summary  at the load factor of  8 

has a s imilar  or  less m e m o r y  requi rement  to the server-name 
approach, and much  fewer  false hits and ne twork  messages.  

Consider ing  all the results, we see that B l o o m  filter summaries  

provide  the best  per formance  in terms of  low ne twork  overhead 

and low m e m o r y  requirements .  This  approach is s imple  and 
easy to implement .  In addit ion to MD5,  other  faster hashing 
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methods are available, for instance hash functions can be based 
on polynomial arithmetic as in Rabin's fingerprinting method 
(See [45], [9]), or a simple hash function (e.g., [24, p. 48]) 
can be used to generate, say 32 bits, and further bits can be 
obtained by taking random linear transformations of these 32 
bits viewed as an integer. A disadvantage is that these faster 
functions are efficiently invertible (that is, one can easily build 
an URL that hashes to a particular location), a fact that might 
be used by malicious users to nefarious purposes. 

E. Recommended Configurations 

Combining the above results, we recommend the following 
configuration for the summary cache approach. The update 
threshold should be between 1% and 10% to avoid significant 
reduction of total cache hit ratio. If a time-based update 
approach is chosen, the time interval should be chosen such 
that the percentage of new documents is between 1% and 10%. 
The proxy can either broadcast the changes (or the entire bit 
array if it is smaller), or let other proxies fetch the updates 
from it. The summary should be in the form of a Bloom filter. 
A load factor between 8 and 16 works well, though proxies 
can lower or raise it depending on their memory and network 
traffic concerns. Based on the load factor, four or more hash 
functions should be used. The data provided here and in [19] 
can be used as references in making the decisions. For hash 
functions, we recommend taking disjoint groups of bits from 
the 128-bit MD5 signature of the URL. If more bits are needed, 
one can calculate the MD5 signature of the URL concatenated 
with itself. In practice, the computational overhead of MD5 is 
negligible compared with the user and system CPU overhead 
incurred by caching documents (see Section VII). 

F. Scalability 

Although our simulations are done for 4 to 16 proxies, we 
can easily extrapolate the results. For example, assume that 100 
proxies each with 8 GB of cache would like to cooperate. Each 
proxy stores on average about 1M Web pages. The Bloom filter 
memory needed to represent 1M pages is 2 MB at load factor 16. 
Each proxy needs about 200 MB to represent all the summaries 
plus another 8 MB to represent its own counters. The interproxy 
messages consist of update messages, false hits, remote cache 
hits and remote stale hits. The threshold of 1% corresponds to 
10 K requests between updates, each update consisting of 99 
messages, and the number of update messages per request is 
less than 0.01. The false hit ratios are around 4.7% for the load 
factor of 16 with 10 hash functions. (The probability of a false 
positive is less than 0.000 47 for each summary, but there are 
100 of them.) Thus, not counting the messages introduced by re- 
mote cache hits and remote stale hits (which are relatively stable 
across the number of proxies), the overhead introduced by the 
protocol is under 0.06 messages per request for 100 proxies: Of 
these messages, only the update message is large, on the order 
of several hundreds KB. Fortunately, update messages can be 
transferred via a nonreliable multicast scheme (the implementa- 
tion detail is discussed in Section VI). Our simulations predict 
that, while keeping the overhead low, this scheme reduces the 
total hit ratio by less than 2% compared to the theoretical hit 
ratio of ICP. 

Though none of the traces are large enough to enable mean- 
ingful simulation of 100 proxies, we have performed simula- 
tions with larger number of proxies and the results verify these 
"back of the envelope" calculations. Thus, we are confident that 
summary cache scales well. 

VI. IMPLEMENTATION OF SUMMARY-CACHE ENHANCED ICP 

Based on the simulation results, we propose the following 
summary cache enhanced Intemet cache protocol as an opti- 
mization of ICP. The protocol has been implemented in a pro- 
totype built on top of Squid 1.1.14 and the prototype is publicly 
available [17]. A variant of our approach called cache digest is 
also implemented in Squid 1.2b20 [46]. 

A. Protocol 

The design of our protocol is geared toward small delay 
thresholds. Thus, it assumes that summaries are updated via 
sending the differences. If the delay threshold is large, then it 
is more economical to send the entire bit array; this approach is 
adopted in the Cache Digest prototype in Squid 1.2b20 [46]. 

We added a new opcode in ICP version 2 [49], 
ICP_OPA3IRUPDATE (=20), which stands for directory 
update messages. In an update message, an additional 
header follows the regular ICP header and consists of: 16 
bits of Function_Num, 16 bits of Function_Bits, 
32 bits of BitArray_Size_InBits, and 32 bits of 
Number_of_Updates. The header completely specifies 
the hashing functions used to probe the filter. There are 
F u n c t i o n _ N u m  of hashing functions. The functions are 
calculated by first taking bits 0 to M - 1, M to 2 M  - 1, 2M to 
3M - 1, etc. out of the MD5 signature [41], [24] of the URL, 
where M is F u n c t i o n _ B i t s ,  and then modular the bits by 
BitArray_Size_InBits. If 128 bits are not enough, more 
bits are generated by computing the MD5 signature of the URL 
concatenated with itself. 

The header is followed by a list of 32-bit integers. The most 
significant bit in an integer specifies whether the bit should be 
set to 0 or 1, and the rest of the bits specify the index of the bit 
that needs to be changed. The design is due to the concern that 
if the message specifies only which bits should be flipped, loss 
of previous update messages would have cascading effects. The 
design enables the messages to be sent via a unreliable multicast 
protocol. Furthermore, every update message carries the header, 
which specifies the hash functions, so that receivers can verify 
the information. The design limits the hash table size to be less 
than 2 billion, which for the time being is large enough. 

B. Prototype Implementation 

We modified the Squid 1.1.4 software to implement the above 
protocol. An additional bit array is added to the data structure 
for each neighbor. The structure is initialized when the first sum- 
mary update message is received from the neighbor. The proxy 
also allocates an array of byte counters for maintaining the local 
copy of the bloom filter, and an integer array to remember the 
filter changes. 

The current prototype sends the update messages via UDR 
since ICP is built on top of UDE A variant of the design would 
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be to send the messages via TCP or multicast. Due to the size of 
these messages, it is perhaps better to send them via TCP or mul- 
ticast. Furthermore, since the collection of cooperating proxies 
is relatively static, the proxies can just maintain a permanent 
TCP connection with each other to exchange update messages. 
Unfortunately, the implementation of ICP in Squid is on top of 
UDP only. Thus, the prototype deviates from the recommenda- 
tion in Section 5.5 and sends updates whenever there are enough 
changes to fill an IP packet. The implementation further lever- 
ages Squid's built-in support to detect failure and recovery of 
neighbor proxies, and reinitializes a failed neighbor's bit array 
when it recovers. 

VII. EXPERIMENTS 

We ran four experiments with the prototype. The first two 
experiments repeat the tests in Section IV and the results are 
included in Table II in Section IV, under the title "SC-ICP." The 
improved protocol reduces the UDP traffic by a factor of 50, 
and has network traffic, CPU times and client latencies similar 
to those of no-ICE 

Our third and fourth experiments replay the first 24 000 
requests from the UPisa trace. We use a collection of 80 client 
processes running on four workstations, and client processes 
on the same workstation connect to the same proxy server. In 
the third experiment, we replay the trace by having each client 
process emulate a set of real-life clients through issuing their 
Web requests. In the fourth experiment, we replay the trace by 
having the client processes issuing requests round-robin from 
the trace file, regardless of which real-life client each request 
comes from. The third experiment preserves the bounding 
between a client and its requests, and a client's requests all 
go to the same proxy. However, it does not preserve the order 
among requests from different clients. The fourth experiment 
does not preserve the bounding between requests and clients, 
but do preserve the timing order among the requests. The 
proxies are more load-balanced in the fourth experiment than 
in the third experiment. 

In both experiments, each request's URL carries the size of 
the request in the trace file, and the server replies with the spec- 
ified number of bytes. The rest of the configuration is similar 
to the experiments in Section IV. Different from the synthetic 
benchmark, the trace contains a noticeable number of remote 
hits. The results from experiment 3 are listed in Table IV, and 
those from experiment 4 are listed in Table V. 

The results show that the enhanced ICP protocol reduces 
the network traffic and CPU overhead significantly, while 
only slightly decreasing the total hit ratio. The enhanced ICP 
protocol lowers the client latency slightly compared to the 
no-ICP case, even though it increases the CPU time by about 
12%. The reduction in client latency is due to the remote cache 
hits. Separate experiments show that most of the CPU time 
increase is due to servicing remote hits, and the CPU time 
increase due to MD5 calculation is less than 5%. Though the 
experiments do not replay the trace faithfully, they do illustrate 
the performance of summary cache in practice. 

Our results indicate that the summary-cache enhanced 
ICP solves the overhead problem of ICE requires minimal 

changes, and enables scalable Web cache sharing over a 
wide-area network. 

VIII. RELATED WORK 

Web caching is an active research area. There are many 
studies on Web client access characteristics [12], [4], [16], [36], 
[25], Web caching algorithms [50], [38], [10] as well as Web 
cache consistency [30], [34], [37], [15]. Our study does not 
address caching algorithms or cache consistency maintenance, 
but overlaps some of client traffic studies in our investigation 
of the benefits of Web cache sharing. 

Recently, there have been a number of new cache sharing ap- 
proaches proposed in the literature. The cache array routing pro- 
tocol [48] divides URL-space among an array of loosely coupled 
proxy servers, and lets each proxy cache only the documents 
whose URL's are hashed to it. An advantage of the approach is 
that it eliminates duplicate copies of documents. However, it is 
not clear how well the approach performs for wide-area cache 
sharing, where proxies are distributed over a regional network. 
The Relais project [29] also proposes using local directories to 
find documents in other caches, and updating the directories 
asynchronously. The idea is similar to summary cache. How- 
ever, the project does not seem to address the issue of memory 
demands. From the publications on Relais that we can find and 
read [5], it is also not clear to us whether the project addresses 
the issue of directory update frequencies. Proxies built out of 
tightly-coupled clustered workstations also use various hashing 
and partitioning approaches to utilize the memory and disks 
in the cluster [22], but the approaches are not appropriate in 
wide-area networks. 

Our study is partially motivated by an existing proposal called 
directory server [23]. The approach uses a central server to keep 
track of the cache directories of all proxies, and all proxies query 
the server for cache hits in other proxies. The drawback of the 
approach is that the central server can easily become a bottle- 
neck. The advantage is that little communication is needed be- 
tween sibling proxies except for remote hits. 

There have also been many studies on Web cache hierar- 
chies and cache sharing. Hierarchical Web caching is first pro- 
posed in the Harvest project [28], [14], which also introduces 
the ICP protocol. Currently, the Squid proxy server implements 
version 2 of the ICP protocol [49], upon which our summary 
cached enhanced ICP is based. Adaptive Web caching [51] pro- 
poses a multicast-based adaptive caching infrastructure for doc- 
ument dissemination in the Web. In particular, the scheme seeks 
to position the documents at the fight caches along the routes to 
the servers. Our study does not address the positioning issues. 
Rather, we note that our study is complimentary in the sense 
that the summary cache approach can be used as a mechanism 
for communicating caches' contents. 

Though we did not simulate the scenario, summary cache 
enhanced ICP can be used between parent and child proxies. 
Hierarchical Web caching includes not only cooperation among 
neighboring (sibling) proxies, but also parent and child proxies. 
The difference between a sibling proxy and a parent proxy is 
that a proxy can not ask a sibling proxy to fetch a document 
from the server, but can ask a parent proxy to do so. Though 
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our simulations only involve the cooperation among sibling 
proxies, the summary cache approach can be used to propagate 
information about the parent cache's content to the child 
proxies, and eliminate the ICP queries from the child proxies to 
the parent. Our inspection of the Questnet traces shows that the 
child-to-parent ICP queries can be a significant portion (over 
two-thirds) of the messages that the parent has to process. 

In the operating system context, there have been a lot of 
studies on cooperative file caching [13], [2] and the global 
memory system (GMS) [20]. The underlying assumption in 
these systems is that the high-speed local area networks are 
faster than disks, and workstations should use each other's idle 
memory to cache file pages or virtual memory pages to avoid 
traffic to disks. In this aspect, the problem is quite different 
from Web cache sharing. On the other hand, in both contexts 
there is the issue of how tightly coordinated the caches should 
be. Most cooperative file caching and GMS systems try to 
emulate the global LRU replacement algorithm, sometimes 
also using hints in doing so [47]. It is interesting to note that 
we arrive at quite different conclusions on whether global 
replacement algorithm is necessary [20]. The reason is that in 
the OS context, the global replacement algorithm is used for 
stealing memory from idle workstations (i.e., load-balancing 
the caches), while in Web cache sharing, every proxy is busy 
all the time. Thus, while simple cache sharing performs poorly 
in the OS context, it suffices for Web proxy cache sharing as 
long as each proxy's resource configuration is appropriate for 
its load. Finally, note that the technique of Bloom filter based 
summary cache is not restricted to the Web proxy caching 
context, but can be used wherever the knowledge of other 
caches' contents is beneficial, for example, in caching and 
load-balancing in clustered servers. 

IX. CONCLUSIONS AND FUTURE WORK 

We propose the summary cache enhanced ICE a scalable 
wide-area Web cache sharing protocol. Using trace-driven sim- 
ulations and measurements, we demonstrate the benefits of Web 
proxy cache sharing, illustrate the overhead of current cache 
sharing protocols, and show that the summary cache approach 
substantially reduces the overhead. We study two key aspects of 
this approach: the effects of delayed updates, and the succinct 

representation of summaries. Our solution, Bloom filter based 
summaries with update delay thresholds, has low demand on 
memory and bandwidth, and yet achieves a hit ratio similar to 
that of the original ICP protocol. In particular, trace-driven sim- 
ulations show that, compared to ICP, the new protocol reduces 
the number of interproxy protocol messages by a f a c t o r  o f  25  to 

60, reduces the bandwidth consumption by over  50%,  while in- 
curring almost no degradation in the cache hit ratios. Simulation 
and analysis further demonstrate the scalability of the protocol. 

We have built a prototype implementation in Squid 1.1.14. 
Synthetic and trace-replay experiments show that, in addition to 
the network traffic reduction, the new protocol reduces the CPU 
overhead between 3 0 %  to 9 5 %  and improves the client latency. 
The prototype implementation is publicly available [17]. 

Much future work remains. We plan to investigate the im- 
pact of the protocol on parent-child proxy cooperations, and 

the optimal hierarchy configuration for a given workload. We 
also plan to study the application of summary cache to var- 
ious Web cache consistency protocols. Last, summary cache can 
be used in individual proxy implementation to speed up cache 
lookup, and we will quantify the effect through modifying a 
proxy implementation. 
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