
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 3, JUNE 2000 281

Summary Cache: A Scalable Wide-Area
Web Cache Sharing Protocol

Li Fan, Member, IEEE, Pei Cao, Jussara Almeida , and Andre i Z. Brode r

Abstract--The sharing of caches among Web proxies is an im-
portant technique to reduce Web traffic and alleviate network bot-
tlenecks. Nevertheless it is not widely deployed due to the overhead
of existing protocols. In this paper we demonstrate the benefits
of cache sharing, measure the overhead of the existing protocols,
and propose a new protocol called "summary cache." In this new
protocol, each proxy keeps a summary of the cache directory of
each participating proxy, and checks these summaries for poten-
tial hits before sending any queries. Two factors contribute to our
protocors low overhead: the summaries are updated only periodi-
cally, and the directory representations are very economical, as low
as 8 bits per entry. Using trace-driven simulations and a prototype
implementation, we show that, compared to existing protocols such
as the internet cache protocol (ICP), summary cache reduces the
number of intercache protocol messages by a factor of 25 to 60, re-
duces the bandwidth consumption by over 50%, eliminates 30% to
95% of the protocol CPU overhead, all while maintaining almost
the same cache hit ratio as ICE Hence summary cache scales to a
large number of proxies. (This is a revision of [18]. We add more
data and analysis in this version.)

Index Terms--Bloom filter, cache sharing, ICP, Web cache, Web
proxy.

I. INTRODUCTION

A S THE tremendous growth of the World Wide Web con-
tinues to strain the Internet, caching has been recognized

as one of the most important techniques to reduce bandwidth
consumption [32]. In particular, caching within Web proxies has
been shown to be very effective [16], [36]. To gain the full ben-
efits of caching, proxy caches behind a common bottleneck link
should cooperate and serve each other's misses, thus further re-
ducing the traffic through the bottleneck. We call the process
"Web cache sharing."

Web cache sharing was first proposed in the context of the
Harvest project [28], [14]. The Harvest group designed the in-
ternet cache protocol (ICP) [21] that supports discovery and
retrieval of documents from neighboring caches. Today, many
institutions and many countries have established hierarchies of

Manuscript received November 25, 1998; revised January 20, 1999 and Au-
gust 17, 1999; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor
M. Ammar.

L. Fan and P. Can were with the 'Department of Computer Science,
University of Wisconsin-Madison, Madison, WI 53706 USA. They are now
with Cisco Systems Inc., San Jose, CA 95134 USA (e-mail: lfan@cisco.com;
cao@cisco.com).

J. Almeida is with the Department of Computer Science, University of Wis-
consin, Madison, WI 53706 USA (e-maih jussara@cs.wisc.edu).

A. Z. Broder was with the Systems Research Center, Digital Equipment Cor-
poration, Palo Alto, CA 94301 USA. He is now with AltaVista Search, San
Mateo, CA 94402 USA (e-mail: andrei.broder@av.com).

Publisher Item Identifier S 1063-6692(00)05004-4.

proxy caches that cooperate via ICP to reduce traffic to the In-
ternet [27], [33], [44], [6], [16].

Nevertheless, the wide deployment of web cache sharing
is currently hindered by the overhead of the ICP protocol.
ICP discovers cache hits in other proxies by having the proxy
multicast a query message to the neighboring caches whenever
a cache miss occurs. Suppose that N proxies configured in
a cache mesh. The average cache hit ratio is H . The average
number of requests received by one cache is R. Each cache
needs to handle (N - 1) • (1 - H) • R inquiries from neigh-
boring caches. There are a total N • (N - 1) * (1 - H) • R ICP
inquiries. Thus, as the number of proxies increases, both the
total communication and the total CPU processing overhead
increase quadratically.

Several alternative protocols have been proposed to address
the problem, for example, a cache array routing protocol that
partitions the URL space among proxies [48]. However, such
solutions are often not appropriate for wide-area cache sharing,
which is characterized by limited network bandwidth among
proxies and nonuniform network distances between proxies and
their users (for example, each proxy might be much closer to one
user group than to others).

In this paper, we address the issue of scalable protocols for
wide-area Web cache sharing. We first quantify the overhead
of the ICP protocol by running a set of proxy benchmarks. We
compared network traffic and CPU overhead of proxies using
ICP with proxies that are not using ICE The results show that
even when the number of cooperating proxies is as low as four,
ICP increases the interproxy traffic by a factor of 70 to 90, the
number of network packets received by each proxy by 13% and
higher, and the CPU overhead by over 15%. (The interproxy
traffic with no ICP is keep-alive messages; the network packets
include messages between proxy and client, messages between
proxy and server, and messages between proxies.) In the ab-
sence of interproxy cache hits (also called remote cache hits),
the overhead can increase the average user latency by up to 11%.

We then propose a new cache sharing protocol called "sum-
mary cache." Under this protocol, each proxy keeps a compact
summary of the cache directory of every other proxy. When a
cache miss occurs, a proxy first probes all the summaries to see
if the request might be a cache hit in other proxies, and sends
a query messages only to those proxies whose summaries show
promising results. The summaries do not need to be accurate at
all times. If a request is not a cache hit when the summary indi-
cates so (a false hit), the penalty is a wasted query message. If
the request is a cache hit when the summary indicates otherwise
(a false miss), the penalty is a higher miss ratio.

1063--6692/00510.00 © 2000 IEEE

282 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 3, JUNE 2000

TABLE I
STATISTICS ABOUT THE TRACES. THE MAXIMUM CACHE HIT RATIO AND BYTE HIT RATIO ARE ACHIEVED WITH THE INFINITE CACHE.

Traces
Time
Requests
Infinite Cache Size
Max. Hit Ratio
Max. Byte Hit Ratio
Client Population

DEC
8/29-9/4, 1996

3,543,968
28.8GB
49%
36%
10089

UCB
9/14-9/19, 1996

1,907,762
18.0GB

30%
14%
5780

UPisa
Jan-March, 1997

2,833,624
20.7GB

40%
27%
2203

Questnet
1/15-1/21, 1998

2,885,285
23.3GB

30%
15%
N/A

NLANR
12/22, 1997
1,766,409
13.7GB
36%
27%
N/A

Client Groups 16 8 8 12 4

We examine two key questions in the design of the protocol:
the fi'equency of summary updates and the representation of
summary. Using trace-driven simulations, we show that the up-
date of summaries can be delayed until a fixed percentage (for
example, 1%) of cached documents are new, and the hit ratio
will degrade proportionally (for the 1% choice, the degradation
is between 0.02% to 1.7% depending on the traces).

To reduce the memory requirements, we store each summary
as a "Bloom filter" [7]. This is a computationally very effi-
cient hash-based probabilistic scheme that can represent a set
of keys (in our case, a cache directory) with minimal memory
requirements while answering membership queries with 0 prob-
ability for false negatives and low probability for false positives.
Trace-driven simulations show that with typical proxy config-
urations, for N cached documents represented within just N
bytes, the percentage of false positives is 1% to 2%. In fact, the
memory can be further reduced at the cost of an increased false
positive ratio. (We describe Bloom filters in more detail later.)

Based on these results, we design the summary cache
enhanced ICP protocol and implement a prototype within
the Squid proxy. Using trace-driven simulations as well as
experiments with benchmarks and trace-replays, we show that
the new protocol reduces the number of interproxy messages
by a factor of 25 to over 60, reduces the network bandwidth
consumption (in terms of bytes transferred) by over 50%,
and eliminates 30% to 95% of the protocol CPU overhead.
Compared with no cache sharing, our experiments show that
the protocol incurs little network traffic and increases CPU
time only by 5% to 12% depending on the remote cache hit
ratio. Yet, the protocol achieves a cache hit ratio similar to the
ICP protocol most of the time.

The results indicate that the summary cache enhanced ICP
protocol can scale to a large number of proxies. Thus, it has the
potential to significantly increase the deployment of Web cache
sharing and reduce Web traffic on the Internet. Toward this end,
we are making our implementation publicly available [17] and
are in the process of transferring it to the ICP user community.

II. TRACES AND _SIMULATIONS

For this study we have collected five sets of traces of HTTP
requests (for more details, see [19]):

• DEC: Digital Equipment Corporation Web Proxy server
traces [35].

• UCB: traces of HTTP requests fromthe University of Cal-
ifornia at Berkeley Dial-IP service [26].

• UPisa: tracesofHTTPrequestsmadebyusersintheCom-
puter Science Department, University of Pisa, Italy.

• Questnet: logs of HTTP GET requests seen by the parent
proxies at Questnet, a regional network in Australia. The
trace consists only the misses of children proxies. The full
set of user requests to the proxies are not avaliable.

• NLANR: one-day log of HTTP requests to the four major
parent proxies, "bo," "pb," "sd," and "uc," in the National
Web Cache hierarchy by the National Lab of Applied Net-
work Research [43].

Table I lists various information about the traces, including du-
ration of each trace, the number of requests and the number of
clients. The "infinite" cache size is the total size in bytes of
unique documents in a trace (i.e., the size of the cache which
incurs no cache replacement).

To simulate cache sharing, we partition the clients in DEC,
UCB and UPisa into groups, assuming that each group has its
own proxy, and simulate the cache sharing among the proxies.
This roughly corresponds to the scenario where each branch of
a company or each department in a university has its own proxy
cache, and the caches collaborate. The cache is restricted to each
individual traces. We set the number of groups in DEC, UCB
and UPisa traces to 16, 8, and 8, respectively. A client is put in
a group if its clientlD mod the group size equals the group ID.
Questnet traces contain HTTP GET requests coming from 12
child proxies in the regional network. We assume that these are
the requests going into the child proxies (since the child proxies
send their cache misses to the parent proxy), and simulate cache
sharing among the child proxies. NLANR traces contain actual
HTTP requests going to the four major proxies, and we simulate
the cache sharing among them.

The simulation results reported here assume a cache size that
is 10% of the "infinite" cache size. Results under other cache
sizes are similar. The simulations all use least-recently-used
(LRU) as the cache replacement algorithm, with the restriction
that documents larger than 250 KB are not cached. The policy
is similar to what is used in actual proxies. We do not simulate
expiring documents based on age or time-to-live. Rather,
most traces come with the last-modified time or the size of a
document for every request, and if a request hits on a document
whose last-modified time or size is changed, we count it as a
cache miss. In other words, we assume that cache consistency
mechanism is perfect. In practice, there are a variety of proto-
cols [14], [37], [30] for Web cache consistency.

III. BENEFITS OF CACHE SHARING

Recent studies [10], [25], [16] have shown that under infi-
nite cache capacity, Web cache hit ratio appears to grow loga-
rithmically with the size of the user population served by the

FAN et al.: SCALABLE WIDE-AREA WEB CACHE SHARING PROTOCOL 283

Fig. 1.

0.50

0.40

o.3o

."- 0.20 2

O.lO -

0 .00

- -A- . Single-Copy Cache Sharing t Simple Cache Sharing - - -4 - - No Cache Sharing
Global Cache - - x - . Global 10% less cache

°-'°" ..°" -" °

'"I I I I " I I I I I I

1 10 I 10 1 10 1 10 1 10

Relative Cache Size (%) Relative Cache Size (%) Relative Cache Size (%) Relative Cache Size (%) Relative Cache Size (%)

Graph 1:DEC-8-29-9-4 Graph 2: UCB Graph 3: NLANR Graph 4: UPisa Graph 5: Questnet

Cache hit ratios under different cooperative caching schemes. Results on byte hit ratios are similar. The :v-axis is in log scale.

cache. Clearly, the overlap of requests from different users re-
duces the number of cold misses, often a significant portion of
cache misses [3], since both first-time reference to documents
and document modifications contribute to cold misses.

To examine the benefits of cache sharing under finite cache
sizes, we simulate the following schemes using the traces listed
in the previous section.

• No Cache Sharing: Proxies do not collaborate to serve
each other's cache misses.

• Simple Cache Sharing: Proxies serve each other's cache
misses. Once a proxy fetches a document from another
proxy, it caches the document locally. Proxies do not co-
ordinate cache replacements. This is the sharing imple-
mented by the ICP protocol.

• Single-Copy Cache Sharing: Proxies serve each other's
cache misses, but a proxy does not cache documents
fetched from another proxy. Rather, the other proxy
marks the document as most-recently-accessed, and in-
creases its caching priority. Compared with simple cache
sharing, this scheme eliminates the storage of duplicate
copies and increases the utilization of available cache
space.

• Global Cache: Proxies share cache contents and coordi-
nate replacement so that they appear as one unified cache
with global LRU replacement to the users. This is the
fully coordinated form of cooperative caching. We sim-
ulate the scheme by assuming that all requests go to one
cache whose size is the sum of all proxy cache sizes.

We examine these schemes in order to answer two questions:
whether simple cache sharing significantly reduces traffic
to Web servers, and whether the more tightly coordinating
schemes lead to a significantly higher hit ratio. Notice here the
hit ratio includes both local hits and remote hits. Local hits are
those requested documents found in the proxy's cache; remote
hits are those documents found in the neighoring proxies'
cache. Both kinds of hit avoid traffic to web servers.

Fig. 1 shows the hit ratios under the different schemes con-
sidered when the cache size is set to 0.5%, 5%, 10%, and 20%
of the size of the "infinite cache size" (the minimum cache size

needed to completely avoid replacements) for each trace. The
results on byte hit ratios are very similar, and we omit them due

to space constraints.
Looking at Fig. 1, we see that, first, all cache sharing schemes

significantly improve the hit ratio over no cache sharing. The
results amply confirm the benefit of cache sharing even with
fairly small caches.

Second, the hit ratio under single-copy cache sharing and
simple cache sharing are generally the same as or even higher
than the hit ratio under global cache. We believe the reason is
that global LRU sometimes performs less well than group-wise
LRU. In particular, in the global cache setting a burst of rapid
successive requests from one user might disturb the working
set of many users. In single-copy or simple cache sharing, each
cache is dedicated to a particular user group, and traffic from
each group competes for a separate cache space. Hence, the dis-
ruption is contained within a particular group.

Third, when comparing single-copy cache sharing with
simple cache sharing, we see that the waste of space has only
a minor effect. The reason is that a somewhat smaller effective
cache does not make a significant difference in the hit ratio.
To demonstrate this, we also run the simulation with a global
cache 10% smaller than the original. As can be seen from

Fig. 1, the difference is very small.
Thus, despite its simplicity, the ICP-style simple cache

sharing reaps most of the benefits of more elaborate coopera-
tive caching. Simple cache-sharing does not perform any load
balancing by moving content from busy caches to less busy
ones, and does not conserve space by keeping only one copy
of each document. However, if the resource planning for each
proxy is done properly, there is no need to perform load-bal-
ancing and to incur the overhead of more tightly coordinating
schemes.

Finally, note that the results are obtained under the LRU re-
placement algorithm as explained in Section II. Different re-
placement algorithms [10] may give different results. Also, sep-
arate simulations have confirmed that in case of severe load im-
balance, the global cache will have a better cache hit ratio, and
therefore it is important to allocate cache size of each proxy to
be proportional to its user population size and anticipated use.

284 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 3, JUNE 2000

TABLE II
OVERHEAD OF ICP IN THE FOUR-PROXY CASE. THE SC-ICP PROTOCOL IS INTRODUCED IN SECTION VI AND WILL BE EXPLAINED LATER. THE EXPERIMENTS ARE
RUN THREE TIMES, AND THE VARIANCE FOR EACH MEASUREMENT IS LISTED IN THE PARENTHESIS. THE OVERHEAD ROW LISTS THE INCREASE IN PERCENTAGE

OVER NO-ICP FOR EACH MEASUREMENT, NOTE THAT IN THESE SYNTHETIC EXPERIMENTS THERE IS NO INTERPROXY CACHE HIT

Exp 1
no ICP
ICP
Overhead
SC-ICP
Overhead
Exp 2
no ICP
ICP
Overhead
SC-ICP
Overhead

Hit Ratio
25%
25%

25%

Client Latency User CPU System CPU
2.75 (5%) 94.42 (5%) 133.65 (6%)

3.07 (0.7%) 116.87 (5%) 146.50 (5%)
1~% ~4% 10%

2.85 (1%) 95.07 (6%) 134.61 (6%)
4% 0.7% 0.7%

Hit Ratio Client Latency User CPU System CPU
45% 2.21 (1%) 80.83 (2%) 111.10 (2%)
45% 2.39 (1%) 97.36 (1%) 118.59 (1%)

8% ~0% 7%
45% 2.25 (1%) 82.03 (3%) 111.87 (3%)

~% I% I%

UDP Msgs
615 (28%)
54774 (0%)

9000%
1079 (0%)

75%
UDP Msgs
540 (3%)

39968 (0%)
78oo%

799 (5%)
48%

TCP Msgs
334K (8%)
328K (4%)

-$%
330K (5%)

-1%

Total Packets
355K(7%)
402K (3%)

13%
351K (5%)

-1%
TCP Msgs Total Packets
272K (3%) 290K (3%)
257K (2%) 314K (1%)

-1% 8%
269K (5%) 287K (5%)

-1% -1%

IV. OVERHEAD OF ICP

Though ICP [49] has been successful at encouraging Web
cache sharing around the world, it is not a scalable protocol. It
relies on query messages to find remote cache hits. Every time
one proxy has a cache miss, everyone else receives and pro-
cesses a query message. As the number of collaborating proxies
increases, the overhead quickly becomes prohibitive.

To measure the overhead of ICP and its impact on proxy
performance, we run experiments using the Wisconsin proxy
benchmark 1.0 [1]. The benchmark is designed by us and has
been used by several proxy vendors as a tool to validate proxy
performance [31]. It consists of a collection of client processes
that issue requests following patterns observed in real traces (in-
cluding request size distribution and temporal locality), and a
collection of server processes that delay the replies to emulate
Internet latencies.

The experiments are performed on 10 Sun Sparc-20 work-
stations connected with 100 Mb/s Ethernet. Four workstations
act as four proxy systems running Squid 1.1.14, and each has
75 MB of cache space. Another four workstations run 120 client
processes, 30 processes on each workstation. The client pro-
cesses on each workstation connect to one of the proxies. Client
processes issue requests with no thinking time in between, and
the document sizes follow the Pareto distribution with c~ = 1.1
and k -- 3.0 [11]. Two workstations act as servers, each with
15 servers listening on different ports. Each server forks a new
process when handling an HTTP request, and the process waits
for one second before sending the reply to simulate the network
latency.

We experiment with two different cache hit ratios, 25% and
45%, as the overhead of ICP varies with the cache miss ratio in
each proxy. In the benchmark, each client issues requests fol-
lowing the temporal locality patterns observed in [38], [10], [8],
and the inherent cache hit ratio in the request stream can be ad-
justed. In eachexperiment, a client process issues 200 requests,
for a total of 24 000 requests.

We compare two configurations: no-ICP, where proxies do
not collaborate, and ICP, where proxies collaborate via ICE
Since we are only interested in the overhead, the requests is-
sued by different clients do not overlap; there is no remote cache
hit among proxies. This is the worst-case scenario for ICE and
the results measure the overhead of the protocol. We use the

same seeds in the random number generators for the no-ICP
and ICP experiments to ensure comparable results; otherwise
the heavy-tailed document size distribution would lead to high
variance. The relative differences between no-ICP and ICP are
the same across different settings of seeds. We present results
from one set of experiments here.

We measure the hit ratio in the caches, the average latency
seen by the clients, the user and system CPU times consumed
by the Squid proxy and network traffic. Using netstat, we collect
the number of user datagram protocol (UDP) datagrams sent
and received, the TCP packets sent and received, and the total
number of IP packets handled by the Ethernet network interface.
The third number is roughly the sum of the first two. The UDP
traffic is incurred by the ICP query and reply messages. The
TCP traffic includes the HTTP traffic between the proxy and
the servers, and between the proxy and the clients. The results
are shown in Table II.

The results show that ICP incurs considerable overhead even
when the number of cooperating proxies is as low as four. The
number of UDP messages is increased by a factor of 73 to 90.
Due to the increase in the UDP messages, the total network
traffic seen by the proxies is increased by 8% to 13%. Protocol
processing increases the user CPU time by 20% to 24%, and
UDP processing increases the system CPU time by 7% to 10%.
To the clients, the average latency of an HTTP request is in-
creased by 8% to 12%. The degradations occur despite the fact
that the experiments are performed on a high-speed local area
network.

The results highlight the dilemma faced by cache adminis-
trators: there are clear benefits of cache sharing (as shown in
Fig. 1), but the overhead of ICP is high. Furthermore, the effort
spent on processing ICP is proportional to the total number of
cache misses experienced by other proxies, instead of propor-
tional to the number of actual remote cache hits.

To address the problem, we propose a new scalable protocol:
summary cache.

W. SUMMARY CACHE

In the summary cache scheme, each proxy stores a summary
of its directory of cached document in every other proxy. When
a user request misses in the local cache, the local proxy checks
the stored summaries to see if the requested document might be

FAN et al.: SCALABLE WIDE-AREA WEB CACHE SHARING PROTOCOL 285

,~, stale-hit o exact_dir
0.50

- - ICP ~false-hi t

z

0.40

0.30

0.20

O.IO

0.00-
2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Threshold (%) Threshold (%) Threshold (%) Threshold (%) Threshold (%)

Graph 1:DEC-8-29-9-4 Graph 2: UCB Graph 3: NLANR Graph 4: UPisa Graph 5: Questnet

Fig. 2. Impact of summary update delays on total cache hit ratios. The cache size is 10% of the "infinite" cache size.

stored in other proxies. I f it appears so, the proxy sends out re-
quests to the relevant proxies to fetch the document. Otherwise,
the proxy sends the request directly to the Web server.

The key to the scalability of the scheme is that summaries
do not have to be up-to-date or accurate. A summary does not
have to be updated every time the cache directory is changed;
rather, the update can occur upon regular time intervals or when
a certain percentage of the cached documents are not reflected
in the summary. A summary only needs to be inclusive (that is,
depicting a superset of the documents stored in the cache) to
avoid affecting the total cache hit ratio. That is, two kinds of
errors are tolerated.

• False misses: The document requested is cached at some
other proxy but its summary does not reflect the fact. In
this case, a remote cache hit is not taken advantage of, and
the total hit ratio within the collection of caches is reduced.

• False hits: The document requested is not cached at some
other proxy but its summary indicates that it is. The proxy
will send a query message to the other proxy, only to be
notified that the document is not cached there. In this case,
a query message is wasted.

The errors affect the total cache hit ratio or the interproxy traffic,
but do not affect the correctness of the caching scheme. For ex-
ample, a false hit does not result in the wrong document being
served. In general we strive for low false misses, because false
misses increase traffic to the Internet and the goal of cache
sharing is to reduce traffic to the Internet.

A third kind of error, remote stale hits, occurs in both sum-
mary cache and ICP. A remote stale hit is when a document is
cached at another proxy, but the cached copy is stale. Remote
stale hits are not necessarily wasted efforts, because delta com-
pressions can be used to transfer the new document [42]. How-
ever, it does contribute to the interproxy communication.

Two factors limit the scalability of summary cache: the net-
work overhead (the interproxy traffic), and the memory required
to store the summaries (for performance reasons, the summaries
should be stored in DRAM, not on disk). The network overhead
is determined by the frequency of summary updates and by the
number of false hits and remote hits. The memory requirement is
determined by the size of individual summaries and the number

of cooperating proxies. Since the memory grows linearly with
the number of proxies, it is important to keep the individual sum-
maries small. Below, we first address the update frequencies,
and then discuss various summary representations.

A. Impact o f Update Delays

We investigate delaying the update of summaries until the
percentage of cached documents that are "new" (that is, not re-
flected in the summaries) reaches a threshold. The threshold cri-
teria is chosen because the number of false misses (and hence
the degradation in total hit ratio) tends to be proportional to the
number of documents that are not reflected in the summary. An
alternative is to update summaries upon regular time intervals.
The false miss ratio under this approach can be derived through
converting the intervals to thresholds. That is, based on request
rate and typical cache miss ratio, one can calculate how many
new documents enter the cache during each time interval and
their percentage in the cached documents.

Using the traces, we simulate the total cache hit ratio when
the threshold is 0.1%, 1%, 2%, 5%, and 10% of the cached
documents. For the moment we ignore the issue of summary
representations and assume that the summary is a copy of the
cache directory (i.e., the list of document URL's). The results
are shown in Fig. 2. The top line in the figure is the hit ratio
when no update delay is introduced. The second line shows the
hit ratio as the update delay increases. The difference between
the two lines is the false miss ratio. The bottom two curves show
the ratio of remote stale hits and the ratio of false hits (the delay
does introduce some false hits because documents deleted from
the cache may still be present in the summary).

The results show that, except for the NLANR trace data,
the degradation in total cache hit ratio grows almost linearly
with the update threshold. At the threshold of 1%, the relative
reductions in hit ratio are 0.2% (UCB), 0.1% (UPisa), 0.3%
(Questnet), and 1.7% (DEC). The remote stale hit ratio is
hardly affected by the update delay. The false hit ratio is very
small since the summary is an exact copy of the cache directory,
though it does increase linearly with the threshold.

For the NLANR trace, it appears that some clients are simul-
taneously sending two requests for the exact same document to

286 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 3, JUNE 2000

TABLE III
STORAGE REQUIREMENT, IN TERMS OF PERCENTAGE OF PROXY CACHE

SIZE, OF THE SUMMARY REPRESENTATIONS

Approach DEC NLANR
exact_dir 2.8% 0.70%
server_name 0 .19% 0.08%
bloom_filter_8 0.19% 0.038%
bloom_filter_16 0.38% 0.075%
bloom_filter_32 0.75% 0.15%

proxy "bo" and another proxy in the NLANR collection. If we
only simulate the other three proxies in NLANR, the results are
similar to those of other traces. With "bo" included, we also
simulated the delay being 2 and 10 user requests, and the hit
ratio drops from 30.7% to 26.1% and 20.2%, respectively. The
hit ratio at the threshold of 0.1%, which roughly corresponds
to 200 user requests, is 18.4%. Thus, we believe that the sharp
drop in hit ratio is due to the anomaly in the NLANR trace. Un-
fortunately, we cannot determine the offending clients because
client ID 's are not consistent across NLANR traces [43].

The results demonstrate that in practice, a summary update
delay threshold of 1% to 10% results in a tolerable degradation
of the cache hit ratios. For the five traces, the threshold values
translate into roughly 300 to 3000 user requests between up-
dates, and on average, an update frequency of roughly every five
minutes to an hour. Thus, the bandwidth consumption of these
updates can be very low.

B. Summary Representations

The second issue affecting scalability is the size of the sum-
mary. Summaries need to be stored in the main memory not
only because memory lookups are much faster, but also because
disk arms are typically the bottlenecks in proxy caches [39]. Al-
though DRAM prices continue to drop, we still need a careful
design, since the memory requirement grows linearly with the
number of proxies. Summaries also take DRAM away from the
in-memory cache of hot documents, affecting the proxy perfor-
mance. Thus, it is important to keep the summaries small. On
the other hand, summaries only have to be inclusive to avoid af-
fecting the cache hit ratio. Therefore, we could use an unprecise
but small summary for the directory.

We first investigate two naive summary representations:
exact-directory and server-name. In the exact-directory ap-
proach, the summary is essentially the cache directory, with
each URL represented by its 16-byte MD5 signature [41],
[24]. In the server-name approach, the summary is the list of
the server name component of the URL's in cache. Since on
average, the ratio of different URL' s to different server names
is about 10 to 1 (observed from our traces), the server-name
approach can cut down the memory by a factor of 10.

We simulate these approaches using the traces and found that
neither of them is satisfactory. The results are in Table III, along
with those on another summary representation (Table III is dis-
cussed in detail in Section V-D). The exact-directory approach
consumes too much memory. In practice, proxies typically have
8 GB to 20 GB of cache space. If we assume 16 proxies of 8 GB
each and an average file size of 8 KB, the exact-directory sum-
mary would consume (16 - 1) * 16 * (8 GB/8 KB) = 240 MB

Fig. 3.

Bit Vector v

Element a

HI(a)=P 1

H~a) = P2 ~ . ~ : bits

Bloom Filter with four hash functions.

of main memory per proxy. The server-name approach, though
consuming less memory, generates too many false hits that sig-
nificantly increase the network messages.

The requirements on an ideal summary representation are
small size and low false hit ratio. After a few other tries, we
found a solution in an old technique called Bloom filters.

C. Bloom Filters--The Math

A Bloom filter is a method for representing a set
A = { a l , a 2 , . . . , a n } of n elements (also called keys) to
support membership queries. It was invented by Burton Bloom
in 1970 [7] and was proposed for use in the web context by
Marais and Bharat [40] as a mechanism for identifying which
pages have associated comments stored within a Common-
Knowledge server.

The idea (illustrated in Fig. 3) is to allocate a vector v of m
bits, initially all set to 0, and then choose k independent hash
f u n c t i o n s , h i , h 2 , • • • , hk, each with range { 1 , . . . , rn}. For each
element a C A, the bits at positions h i (a) , h 2 (a) , . . . , hk(a)
in v are set to 1. (A particular bit might be set to 1 multiple
times.) Given a query for b we check the bits at positions hi (b),
h2 (b) , . . . , hk(b). If any of them is 0, then certainly b is not in
the set A. Otherwise we conjecture that b is in the set although
there is a certain probability that we are wrong. This is called
a "false positive." or, for historical reasons, a "false drop." The
parameters k and m should be chosen such that the probability
of a false positive (and hence a false hit) is acceptable.

The salient feature of Bloom filters is that there is a clear
tradeoff between m and the probability of a false positive. Ob-
serve that after inserting n keys into a table of size m, the prob-
ability that a particular bit is still 0 is exactly

(1 _ 1) kn"

Hence the probability of a false positive in this situation is

The right hand side is minimized for k = in 2 × re~n, in which
case it becomes

()k='00185 m'

F A N et al.: S C A L A B L E W I D E - A R E A W E B C A C H E S H A R I N G P R O T O C O L 2 8 7

o.1

~.0ol

o.ooo:

1,-0.

1,-o~

i,-o8

?0 1 ~, 2'0 ' ' 2'~ ~'~ Is 4'0
Bits pe r entry

Fig. 4. Probability of false positives (log scale). The top curve is for four
hash functions. The bottom curve is for the optimum (integral) number of hash
functions.

In fact k must be an integer and in practice we might chose a
value less than optimal to reduce computational overhead. Some
example values are

m / n = 6 k = 4 Perror = 0.0561

m / n = 8 k = 6 Perror = 0.0215

m / n = 1 2 k = 8 p = 0 . 0 0 3 1 4

m / n = 1 6 k = l l p r = 0 . 0 0 0 4 5 8 .

The graph in Fig. 4 shows the probability of a false positive as
a function of the number of bits allocated for each entry, that is,
the ratio ce = n / m . The above curve is for the case of four hash
functions. The below curve is for the optimum number of hash
functions. The scale is logarithmic so the straight line observed
corresponds to an exponential decrease. It is clear that Bloom
filters require very little storage per key at the slight risk of some
false positives. For instance for a bit array 10 times larger than
the number of entries, the probability of a false positive is 1.2%
for four hash functions, and 0.9% for the optimum case of five
hash functions. The probability of false positives can be easily
decreased by allocating more memory.

Since in our context each proxy maintains a local Bloom filter
to represent its own cached documents, changes of set A must
be supported. This is done by maintaining for each location g in
the bit array a count c(g) of the number of times that the bit is set
to 1 (that is, the number of elements that hashed to g under any
of the hash functions). All the counts are initially 0. When a key
a (in our case, the U R L of a document) is inserted or deleted,
the counts c(h l (a)) , c(h z (a)) , . . . , c(h k (a)) are incremented or
decremented accordingly. When a count changes from 0 to 1,
the corresponding bit is turned on. When a count changes from
1 to 0 the corresponding bit is turned off. Hence the local Bloom
filter always reflects correctly the current directory.

Since we also need to allocate memory for the counts, it is
important to know how large they can become. The asymptotic
expected maximum count after inserting n keys with k hash
functions into a bit array of size m is (see [24, p. 72])

l n (k n / m) 1
F - l (m) (l + l n F - X (m) + O (l n 2 F - l (m)))

and the probability that any count is greater or equal i is

1 < m
Pr (max(c) >_ i) _< m m ---7 - \T-m--m /

As already mentioned the optimum value for k (over reals) is
in 2 m / n so assuming that the number of hash functions is less
than in 2 m / n we can further bound

Pr (max(c) > i) < m ----=---

Hence taking i = 16 we obtain that

Pr (max(c) _> 16) < 1.37 × 10 -15 × m.

In other words if we allow 4 bits per count, the probability of
overflow for practical values of m during the initial insertion in
the table is minuscule.

In practice we must take into account that the hash functions
are not truly random, and that we keep doing insertions and
deletions. Nevertheless, it seems that 4 bits per count would be
amply sufficient. Furthermore if the count ever exceeds 15, we
can simply let it stay at 15; after many deletions this might lead
to a situation where the Bloom filter allows a false negative (the
count becomes 0 when it shouldn't be), but the probability of
such a chain of events is so low that it is much more likely that
the proxy server would be rebooted in the meantime and the
entire structure reconstructed.

D. Bloom Filters as Summaries

Bloom filters provide a straightforward mechanism to build
summaries. A proxy builds a Bloom filter from the list of URL's
of cached documents, and sends the bit array plus the specifica-
tion of the hash functions to other proxies. When updating the
summary, the proxy can either specify which bits in the bit array
are flipped, or send the whole array, whichever is smaller (the
implementation detail is discussed in Section VI).

Each proxy maintains a local copy of the Bloom filter, and
updates it as documents are added to and replaced from the
cache. As explained, to update the local filter, a proxy maintains
an array of counters, each counter remembering the number of
times the corresponding bit is set to 1. When a document is
added into the cache, the counters for the corresponding bits
are incremented; when it is deleted from the cache, the counters
are decremented. When a counter increases from 0 to 1 or drops
from 1 to 0, the corresponding bit is set to 1 or 0, and a record
is added to the list remembering the updates.

The advantage of Bloom filters is that they provide a tradeoff
between the memory requirement and the false positive ratio
(which induces false hits). Thus, if proxies want to devote less
memory to the summaries, they can do so at a slight increase of
interproxy traffic.

We experimented with three configurations for Bloom filter
based summaries: the number of bits being 8, 16, and 32 times
the average number of documents in the cache (the ratio is also
called a "load factor"). The average number of documents is
calculated by dividing the cache size by 8 K (the average doc-
ument size). All three configurations use four hash functions.
The number of hash functions is not the optimal choice for each
configuration, but suffices to demonstrate the performance of
Bloom filters. The hash functions are built by first calculating
the MD5 signature [41] of the URL, which yields 128 bits, then
dividing the 128 bits into four 32-bit word, and finally taking the

288 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 3, JUNE 2000

exact_dir ~bloom_filter_8 o bloom_filter_l 6 ~ bloom_filter_32 + server

0.50 -

0.40 A

o 0.30- o~

~ 0.20-

O.lO-

0.00 ' I " I ' I ' I ' I I ' I ' I " I ' I ' I I ' I ' I ' I ' I ' I I ' I ' I ' I ' I " I I ' I " I ' I " I ' I

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 l0 0 2 4 6 8 10

Threshold (%) Threshold (%) Threshold (%) Threshold (%) Threshold (%)

Graph h DEC-8-29-9-4 Graph 2: UCB Graph 3: NLANR Graph 4: UPisa Graph 5: Questnet

Fig. 5. Total hit ratio under different summary representations.

Q

1.00000

0.10000

O.OlO00

O.OOlO0

O.O00lO

O.O000l

exact_dir ~,bloom filter 8 o bloom filter 16 ,a bloom_filter_32 + server
I I ---I- + I I I ~-l- +

• #-4-+----I- + -I*-+-I-----+ + +1 I ---F +

- &

OO-- - -O O O O O - - - O O
• o o o - - - o o o o o - - - o []

. 0 - 0 - - . ~ - - ' - - " ~ - -*- - -. .-. x* o a a - - - - a a _ - . - - -'. :'.x* ~-0-*'-- '0 *
. . - " " " , o . o "o " . , ~ , o . o . , o , . . x - - x

x . ° o • o

oo ' " , x * - - X" X) <" ..~j~ _ --...---'R . . . x " " "
: ¢ "" : X

: ~ : :
x : x

' I ' I ' I " I ' I I ' I ' I ' I ' I ' I I ' I ' I ' I ' I ' I I ' I ' I ' I ' I ' I I ' I ' I ' I ' I ' I

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Threshold (%) Threshold (%) Threshold (%) Threshold (%) Threshold (%)

Graph h DEC-8-29-9-4 Graph 2: UCB Graph 3: NLANR Graph 4" UPisa Graph 5: Questnet

Fig. 6. Ratio of false hits under different summary representations. The y-axis is in log scale.

modulus of each 32-bit word by the table size ra. MD5 is a cryp-
tographic message digest algorithm that hashes arbitrary length
strings to 128 bits [41]. We select it because of its well-known
properties and relatively fast implementation.

The performance of these three summary representations,
the exact-directory approach, and the server-name approach
are shown in Figs. 5-8 and in Table III. In Fig. 5 we show
the total cache hit ratios and in Fig. 6 we show the false hit
ratios. Note that the y-axis in Fig. 6 is in log scale. The Bloom
filter based summaries have virtually the same cache hit ratio
as the exact-directory approach, and have slightly higher false
hit ratio when the bit array is small. Server-name has a much
higher false hit ratio. It has a higher cache hit ratio, probably
because its many false hits help to avoid false misses.

Fig. 7 shows the total number of interproxy network mes-
sages, including the number of summary updates and the
number of query messages (which includes remote cache hits,
false hits and remote stale hits). The y-axis in Fig. 7 is in log
scale. For comparison we also list the number of messages
incurred by ICP in each trace. All messages are assumed to
be uni-cast messages. The figure normalizes the number of
messages by the number of HTTP requests in each trace. Both
exact-directory and Bloom filter based summaries perform

well, and server-name and ICP generate many more messages.
For Bloom filters, there is a tradeoff between bit array size and
the number of messages, as expected. However, once the false
hit ratio is small enough, false hits are no longer a dominant
contributor to interproxy messages. Rather, remote cache hits
and remote stale hits become dominant. Thus, the difference
in terms of network messages between load factor 16 and
load factor 32 is small. Compared to ICE Bloom filter based
summaries reduce the number of messages by a factor of 25 to
60.

Fig. 8 shows the estimated total size of interproxy network
messages in bytes. We estimate the size because update mes-
sages tend to be larger than query messages. The average size
of query messages in both ICP and other approaches is assumed
to be 20 bytes of header and 50 bytes of average URL. The size
of summary updates in exact-directory and server-name is as-
sumed to be 20 bytes of header and 16 bytes per change. The
size of summary updates in Bloom filter based summaries is es-
timated at 32 bytes of header (see Section VI) plus 4 bytes per
bit-flip. The results show that in terms of message bytes, Bloom
filter based summaries improves over ICP by 55% to 64%. In
other words, summary cache uses occasional burst of large mes-
sages to avoid continuous stream of small messages. Looking at

FAN et al. : SCALABLE WIDE-AREA WEB CACHE SHARING PROTOCOL 289

o ICP ~-bloom_filter_8 ~ exact_dir ~ bloom_filter_32 -+ server

t o : : : : : : o f ! - 2 - - - 2 +
....... , - . , _,

I~ ~'--- -~l.--~------~-gl ~ , - - ~ 1 It B ~ a ~ - ~ : ~ : : B
0.10 -

0.01 ' I ' I ' I ' I ' I I ' I ' I ' I ' 1 ' I I ' I ' I ' I ' I ' I I ' I • I ' J ' I ' I I ' I ' I ' I ' I ' I

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Threshold (%) Threshold (%) Threshold (%) Threshold (%) Threshold (%)

Graph 1:DEC-8-29-9-4 Graph 2: UCB Graph 3: NLANR Graph 4: UPisa Graph 5: Questnet

Fig. 7. Number of network messages per user request under different summary forms. The y-axis is in log scale.

o ICP ~bloom filter_8 ~ exact_dir .¢, bloom_filter 32 + server
900 - o bloom_filter_ 16
800 J ~ o o ' - ' o - -o

600~ 0-0 0 - - - -0 - -O

5002.
O.O O----O- -O

3 0 0 ~ 400! ~ ~ ~ O O O ' - ' O " -O

 200 ,
100 - t +1. : - -I- +

0] ' I " I " I ' I ' I I ' I ' I " I " I ' I I ' I ' I ' I ' I ' I I " I " I ' I " I ' I I " I ' I ' I ' I ' I

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 l0 0 2 4 6 8 10 0 2 4 6 8 l0

Threshold (%) Threshold (%) Threshold (%) Threshold (%) Threshold (%)

Graph 1:DEC-8-29-9-4 Graph 2: UCB Graph 3: NLANR Graph 4: UPisa Graph 5: Questnet

Fig. 8. Bytes of network messages per user request under different summary forms.

TABLE IV
PERFORMANCE OF ICP AND SUMMARY-CACHE FOR UPISA TRACE IN EXPERIMENT 3. NUMBERS IN PARENTHESIS

SHOW THE VARIANCE OF THE MEASUREMENT AMONG THREE EXPERIMENTS.

Exp 3 Hit Ratio
no ICP 16.94
ICP 19.3
Overhead
SC-ICP 19.0
Overhead

Client Latency
6.22(0.4%)
6.31(0.5%)

1.4~%
6.07 (0.1%)

-2.4%

User CPU System CPU
81.72(0.1%) 115.63(0.1%)
116.81(0.1%) 137.12(0.1%)

43~o 19~
91.53(0.4%) 121.75(0.5%)

1 ~ 5~

UDP Traffic
4718(1%)
72761(0%)

14OO~o
5765(2%)

22Vo

TCP Traffic
242K(0.1%)
245K(0.1%)

244K(0.1%)

Total Packets
259K(0.1%)
325K(0.2%)'

Z5~
262K(0.1%)

Exp 4
no ICP
ICP
Overhead
SC-ICP
Overhead

TABLE V
PERFORMANCE OF ICP AND SUMMARY-CACHE FOR UPISA TRACE 1N EXPERIMENT 4.

Hit Ratio Client Latency
9.94 7.11
17.9 7.22

1.6%
16.2 6.80

-4.3~o

User CPU System CPU UDP Traffic TCP Traffic Total Packets
81.75 119.7 1608 248K 265K
121.5 146.4 75226 257K 343K
4 9 ~ 2~ ~o 4 5 77~o 3.7~o ~9 ~o
90.4 126.5 4144 254K 274K

the C P U overhead and ne twork interface packets in Tables II,

IV and V (in which SC- ICP stands for the summary cache ap-
proach), we can see that it is a good tradeoff.

Table III shows the m e m o r y per proxy o f the summary

cache approaches, in terms of percentage o f cache size. The

three B l o o m filter configurat ions consume much less m e m o r y
than exact-directory, and yet per form similar ly to it in all

o ther aspects. The B l o o m filter summary at the load factor of 8

has a s imilar or less m e m o r y requi rement to the server-name
approach, and much fewer false hits and ne twork messages.

Consider ing all the results, we see that B l o o m filter summaries

provide the best per formance in terms of low ne twork overhead

and low m e m o r y requirements . This approach is s imple and
easy to implement . In addit ion to MD5, other faster hashing

290 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 3, JUNE 2000

methods are available, for instance hash functions can be based
on polynomial arithmetic as in Rabin's fingerprinting method
(See [45], [9]), or a simple hash function (e.g., [24, p. 48])
can be used to generate, say 32 bits, and further bits can be
obtained by taking random linear transformations of these 32
bits viewed as an integer. A disadvantage is that these faster
functions are efficiently invertible (that is, one can easily build
an URL that hashes to a particular location), a fact that might
be used by malicious users to nefarious purposes.

E. Recommended Configurations

Combining the above results, we recommend the following
configuration for the summary cache approach. The update
threshold should be between 1% and 10% to avoid significant
reduction of total cache hit ratio. If a time-based update
approach is chosen, the time interval should be chosen such
that the percentage of new documents is between 1% and 10%.
The proxy can either broadcast the changes (or the entire bit
array if it is smaller), or let other proxies fetch the updates
from it. The summary should be in the form of a Bloom filter.
A load factor between 8 and 16 works well, though proxies
can lower or raise it depending on their memory and network
traffic concerns. Based on the load factor, four or more hash
functions should be used. The data provided here and in [19]
can be used as references in making the decisions. For hash
functions, we recommend taking disjoint groups of bits from
the 128-bit MD5 signature of the URL. If more bits are needed,
one can calculate the MD5 signature of the URL concatenated
with itself. In practice, the computational overhead of MD5 is
negligible compared with the user and system CPU overhead
incurred by caching documents (see Section VII).

F. Scalability

Although our simulations are done for 4 to 16 proxies, we
can easily extrapolate the results. For example, assume that 100
proxies each with 8 GB of cache would like to cooperate. Each
proxy stores on average about 1M Web pages. The Bloom filter
memory needed to represent 1M pages is 2 MB at load factor 16.
Each proxy needs about 200 MB to represent all the summaries
plus another 8 MB to represent its own counters. The interproxy
messages consist of update messages, false hits, remote cache
hits and remote stale hits. The threshold of 1% corresponds to
10 K requests between updates, each update consisting of 99
messages, and the number of update messages per request is
less than 0.01. The false hit ratios are around 4.7% for the load
factor of 16 with 10 hash functions. (The probability of a false
positive is less than 0.000 47 for each summary, but there are
100 of them.) Thus, not counting the messages introduced by re-
mote cache hits and remote stale hits (which are relatively stable
across the number of proxies), the overhead introduced by the
protocol is under 0.06 messages per request for 100 proxies: Of
these messages, only the update message is large, on the order
of several hundreds KB. Fortunately, update messages can be
transferred via a nonreliable multicast scheme (the implementa-
tion detail is discussed in Section VI). Our simulations predict
that, while keeping the overhead low, this scheme reduces the
total hit ratio by less than 2% compared to the theoretical hit
ratio of ICP.

Though none of the traces are large enough to enable mean-
ingful simulation of 100 proxies, we have performed simula-
tions with larger number of proxies and the results verify these
"back of the envelope" calculations. Thus, we are confident that
summary cache scales well.

VI. IMPLEMENTATION OF SUMMARY-CACHE ENHANCED ICP

Based on the simulation results, we propose the following
summary cache enhanced Intemet cache protocol as an opti-
mization of ICP. The protocol has been implemented in a pro-
totype built on top of Squid 1.1.14 and the prototype is publicly
available [17]. A variant of our approach called cache digest is
also implemented in Squid 1.2b20 [46].

A. Protocol

The design of our protocol is geared toward small delay
thresholds. Thus, it assumes that summaries are updated via
sending the differences. If the delay threshold is large, then it
is more economical to send the entire bit array; this approach is
adopted in the Cache Digest prototype in Squid 1.2b20 [46].

We added a new opcode in ICP version 2 [49],
ICP_OPA3IRUPDATE (=20), which stands for directory
update messages. In an update message, an additional
header follows the regular ICP header and consists of: 16
bits of Function_Num, 16 bits of Function_Bits,
32 bits of BitArray_Size_InBits, and 32 bits of
Number_of_Updates. The header completely specifies
the hashing functions used to probe the filter. There are
F u n c t i o n _ N u m of hashing functions. The functions are
calculated by first taking bits 0 to M - 1, M to 2 M - 1, 2M to
3M - 1, etc. out of the MD5 signature [41], [24] of the URL,
where M is F u n c t i o n _ B i t s , and then modular the bits by
BitArray_Size_InBits. If 128 bits are not enough, more
bits are generated by computing the MD5 signature of the URL
concatenated with itself.

The header is followed by a list of 32-bit integers. The most
significant bit in an integer specifies whether the bit should be
set to 0 or 1, and the rest of the bits specify the index of the bit
that needs to be changed. The design is due to the concern that
if the message specifies only which bits should be flipped, loss
of previous update messages would have cascading effects. The
design enables the messages to be sent via a unreliable multicast
protocol. Furthermore, every update message carries the header,
which specifies the hash functions, so that receivers can verify
the information. The design limits the hash table size to be less
than 2 billion, which for the time being is large enough.

B. Prototype Implementation

We modified the Squid 1.1.4 software to implement the above
protocol. An additional bit array is added to the data structure
for each neighbor. The structure is initialized when the first sum-
mary update message is received from the neighbor. The proxy
also allocates an array of byte counters for maintaining the local
copy of the bloom filter, and an integer array to remember the
filter changes.

The current prototype sends the update messages via UDR
since ICP is built on top of UDE A variant of the design would

FAN et al.: SCALABLE WIDE-AREA WEB CACHE SHARING PROTOCOL 291

be to send the messages via TCP or multicast. Due to the size of
these messages, it is perhaps better to send them via TCP or mul-
ticast. Furthermore, since the collection of cooperating proxies
is relatively static, the proxies can just maintain a permanent
TCP connection with each other to exchange update messages.
Unfortunately, the implementation of ICP in Squid is on top of
UDP only. Thus, the prototype deviates from the recommenda-
tion in Section 5.5 and sends updates whenever there are enough
changes to fill an IP packet. The implementation further lever-
ages Squid's built-in support to detect failure and recovery of
neighbor proxies, and reinitializes a failed neighbor's bit array
when it recovers.

VII. EXPERIMENTS

We ran four experiments with the prototype. The first two
experiments repeat the tests in Section IV and the results are
included in Table II in Section IV, under the title "SC-ICP." The
improved protocol reduces the UDP traffic by a factor of 50,
and has network traffic, CPU times and client latencies similar
to those of no-ICE

Our third and fourth experiments replay the first 24 000
requests from the UPisa trace. We use a collection of 80 client
processes running on four workstations, and client processes
on the same workstation connect to the same proxy server. In
the third experiment, we replay the trace by having each client
process emulate a set of real-life clients through issuing their
Web requests. In the fourth experiment, we replay the trace by
having the client processes issuing requests round-robin from
the trace file, regardless of which real-life client each request
comes from. The third experiment preserves the bounding
between a client and its requests, and a client's requests all
go to the same proxy. However, it does not preserve the order
among requests from different clients. The fourth experiment
does not preserve the bounding between requests and clients,
but do preserve the timing order among the requests. The
proxies are more load-balanced in the fourth experiment than
in the third experiment.

In both experiments, each request's URL carries the size of
the request in the trace file, and the server replies with the spec-
ified number of bytes. The rest of the configuration is similar
to the experiments in Section IV. Different from the synthetic
benchmark, the trace contains a noticeable number of remote
hits. The results from experiment 3 are listed in Table IV, and
those from experiment 4 are listed in Table V.

The results show that the enhanced ICP protocol reduces
the network traffic and CPU overhead significantly, while
only slightly decreasing the total hit ratio. The enhanced ICP
protocol lowers the client latency slightly compared to the
no-ICP case, even though it increases the CPU time by about
12%. The reduction in client latency is due to the remote cache
hits. Separate experiments show that most of the CPU time
increase is due to servicing remote hits, and the CPU time
increase due to MD5 calculation is less than 5%. Though the
experiments do not replay the trace faithfully, they do illustrate
the performance of summary cache in practice.

Our results indicate that the summary-cache enhanced
ICP solves the overhead problem of ICE requires minimal

changes, and enables scalable Web cache sharing over a
wide-area network.

VIII. RELATED WORK

Web caching is an active research area. There are many
studies on Web client access characteristics [12], [4], [16], [36],
[25], Web caching algorithms [50], [38], [10] as well as Web
cache consistency [30], [34], [37], [15]. Our study does not
address caching algorithms or cache consistency maintenance,
but overlaps some of client traffic studies in our investigation
of the benefits of Web cache sharing.

Recently, there have been a number of new cache sharing ap-
proaches proposed in the literature. The cache array routing pro-
tocol [48] divides URL-space among an array of loosely coupled
proxy servers, and lets each proxy cache only the documents
whose URL's are hashed to it. An advantage of the approach is
that it eliminates duplicate copies of documents. However, it is
not clear how well the approach performs for wide-area cache
sharing, where proxies are distributed over a regional network.
The Relais project [29] also proposes using local directories to
find documents in other caches, and updating the directories
asynchronously. The idea is similar to summary cache. How-
ever, the project does not seem to address the issue of memory
demands. From the publications on Relais that we can find and
read [5], it is also not clear to us whether the project addresses
the issue of directory update frequencies. Proxies built out of
tightly-coupled clustered workstations also use various hashing
and partitioning approaches to utilize the memory and disks
in the cluster [22], but the approaches are not appropriate in
wide-area networks.

Our study is partially motivated by an existing proposal called
directory server [23]. The approach uses a central server to keep
track of the cache directories of all proxies, and all proxies query
the server for cache hits in other proxies. The drawback of the
approach is that the central server can easily become a bottle-
neck. The advantage is that little communication is needed be-
tween sibling proxies except for remote hits.

There have also been many studies on Web cache hierar-
chies and cache sharing. Hierarchical Web caching is first pro-
posed in the Harvest project [28], [14], which also introduces
the ICP protocol. Currently, the Squid proxy server implements
version 2 of the ICP protocol [49], upon which our summary
cached enhanced ICP is based. Adaptive Web caching [51] pro-
poses a multicast-based adaptive caching infrastructure for doc-
ument dissemination in the Web. In particular, the scheme seeks
to position the documents at the fight caches along the routes to
the servers. Our study does not address the positioning issues.
Rather, we note that our study is complimentary in the sense
that the summary cache approach can be used as a mechanism
for communicating caches' contents.

Though we did not simulate the scenario, summary cache
enhanced ICP can be used between parent and child proxies.
Hierarchical Web caching includes not only cooperation among
neighboring (sibling) proxies, but also parent and child proxies.
The difference between a sibling proxy and a parent proxy is
that a proxy can not ask a sibling proxy to fetch a document
from the server, but can ask a parent proxy to do so. Though

292 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 3, JUNE 2000

our simulations only involve the cooperation among sibling
proxies, the summary cache approach can be used to propagate
information about the parent cache's content to the child
proxies, and eliminate the ICP queries from the child proxies to
the parent. Our inspection of the Questnet traces shows that the
child-to-parent ICP queries can be a significant portion (over
two-thirds) of the messages that the parent has to process.

In the operating system context, there have been a lot of
studies on cooperative file caching [13], [2] and the global
memory system (GMS) [20]. The underlying assumption in
these systems is that the high-speed local area networks are
faster than disks, and workstations should use each other's idle
memory to cache file pages or virtual memory pages to avoid
traffic to disks. In this aspect, the problem is quite different
from Web cache sharing. On the other hand, in both contexts
there is the issue of how tightly coordinated the caches should
be. Most cooperative file caching and GMS systems try to
emulate the global LRU replacement algorithm, sometimes
also using hints in doing so [47]. It is interesting to note that
we arrive at quite different conclusions on whether global
replacement algorithm is necessary [20]. The reason is that in
the OS context, the global replacement algorithm is used for
stealing memory from idle workstations (i.e., load-balancing
the caches), while in Web cache sharing, every proxy is busy
all the time. Thus, while simple cache sharing performs poorly
in the OS context, it suffices for Web proxy cache sharing as
long as each proxy's resource configuration is appropriate for
its load. Finally, note that the technique of Bloom filter based
summary cache is not restricted to the Web proxy caching
context, but can be used wherever the knowledge of other
caches' contents is beneficial, for example, in caching and
load-balancing in clustered servers.

IX. CONCLUSIONS AND FUTURE WORK

We propose the summary cache enhanced ICE a scalable
wide-area Web cache sharing protocol. Using trace-driven sim-
ulations and measurements, we demonstrate the benefits of Web
proxy cache sharing, illustrate the overhead of current cache
sharing protocols, and show that the summary cache approach
substantially reduces the overhead. We study two key aspects of
this approach: the effects of delayed updates, and the succinct

representation of summaries. Our solution, Bloom filter based
summaries with update delay thresholds, has low demand on
memory and bandwidth, and yet achieves a hit ratio similar to
that of the original ICP protocol. In particular, trace-driven sim-
ulations show that, compared to ICP, the new protocol reduces
the number of interproxy protocol messages by a f a c t o r o f 25 to

60, reduces the bandwidth consumption by over 50%, while in-
curring almost no degradation in the cache hit ratios. Simulation
and analysis further demonstrate the scalability of the protocol.

We have built a prototype implementation in Squid 1.1.14.
Synthetic and trace-replay experiments show that, in addition to
the network traffic reduction, the new protocol reduces the CPU
overhead between 3 0 % to 9 5 % and improves the client latency.
The prototype implementation is publicly available [17].

Much future work remains. We plan to investigate the im-
pact of the protocol on parent-child proxy cooperations, and

the optimal hierarchy configuration for a given workload. We
also plan to study the application of summary cache to var-
ious Web cache consistency protocols. Last, summary cache can
be used in individual proxy implementation to speed up cache
lookup, and we will quantify the effect through modifying a
proxy implementation.

REFERENCES

[1] J. Almeida and P. Cao. (1997) Wisconsin proxy benchmark 1.0. [On-
line]. Available: http://www.cs.wisc.edu/~cao/wpbl.0.html

[2] T.E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli,
and R. Y. Wang, "Serverless network file systems," in Proc. 15th ACM
Syrup. Operating Syst. Principles, Dec. 1995.

[3] M. Arlitt, R. Friedrich, and T. Jin, "Performance evaluation of Web
proxy cache replacement policies," in Proc. Performance Tools'98, Lec-
ture Notes in Computer Science, 1998, vol. 1469, pp. 193-206.

[4] M. Arlitt and C. Williamson, "Web server workload characterization," in
Proc. 1996 ACM SIGMETRICS Int. Conf. Measurement and Modeling
of Computer Systems, May 1996.

[5] A. Baggio and G. Pierre. Oleron: Supporting information sharing in
large-scale mobile environments, presented at ERSADS Workshop, Mar.
1997. [Online]. Available: http://www-sor.inria.fr/projects/relais/

[6] K. Beck. Tennessee cache box project, presented at 2nd Web Caching
Workshop, Boulder, CO, June 1997. [Online]. Available: http://ir-
cache.nlanr.net/Cache/Workshop97/

[7] B. Bloom, "Space/time trade-offs in hash coding with allowable errors,"
Commun. ACM, vol. 13, no. 7, pp. 422-426, July 1970.

[8] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, "Web caching
and zipf-like distributions: Evidence and implications," in Proc. IEEE
INFOCOM, 1999.

[9] A. Z. Broder, "Some applications of Rabin's fingerprinting method,"
in Sequences 11: Methods in Communications, Security, and Computer
Science, R. Capocelli, A. De Santis, and U. Vaccaro, Eds. New York,
NY: Springer-Verlag, 1993, pp. 143-152.

[10] P. Can and S. Irani, "Cost-aware WWW proxy caching algorithms," in
Proc. 1997 USEN1X Symp. lnternet Technology and Systems, Dec. 1997,
http://www.cs.wisc.edu/~cao/papers/gd-size.html, pp. 193-206.

[11] M. Crovella and A. Bestavros, "Self-similiarity in world wide web
traffic: Evidence and possible causes," in Proc. 1996 Sigmetrics Conf.
Measurement and Modeling of Computer Systems, Philadelphia, PA,
May 1996.

[12] C. R. Cunha, A. Bestavros, and M. E. Crovella, "Characteristics of
WWW client-based traces," Boston University, Boston, MA, Tech.
Rep. BU-CS-96-010, Oct. 1995.

[13] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson, "Co-
operative caching: Using remote client memory to improve file system
performance," in Proc. 1st USENIX Symp. Operating Systems Design
and Implementation, Nov. 1994, pp. 267-280.

[14] P. B. Danzig, R. S. Hall, and M. E Schwartz, "A case for caching file
objects inside internetworks," in Proc. S1GCOMM, 1993, pp. 239-248.

[15] E Douglis, A. Feldmann, B. Krishnamurthy, and J. Mogul, "Rate of
change and other metrics: A live study of the world wide web," in Proc.
USENIX Symp. lnternet Technology and Systems, Dec. 1997.

[16] B.M. Duska, D. Marwood, and M. J. Feeley, "The measured access char-
acteristics of world-wide-web client proxy caches," in Proc. USENIX
Symp. lnternet Technology and Systems, Dec. 1997.

[17] L. Fan, P. Cao, and J. Almeida. (1998, Feb.) A prototype implementation
of summary-cache enhanced icp in Squid 1.1.14. [Online]. Available:
http://www.cs.wisc.edu/~cao/sc-icp.html

[18] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, "Summary cache: A scal-
able wide-area web cache sharing protocol," in Proc. ACM SIGCOMM,
1998.

[19] - - , (1998, Feb.) Summary cache: A scalable wide-area web
cache sharing protocol. Tech. Rep. 1361, Computer Science De-
partment, University of Wisconsin-Madison. [Online]. Available:
http://www.cs.wisc.edu/-cao/papers/summarycache.html

[20] M.J. Feeley, W. E. Morgan, E H. Pighin, A. R. Karlin, H. M. Levy, and
C. A. Thekkath, "Implementing global memory management in a work-
station cluster," in Proc. 15th ACM Symp. Operating Systems Principles,
Dec. 1995.

[21] ICP working group. (1998). National Lab for Applied Network Re-
search. [Online]. Available: http://ircache.nlanr.netICache/ICP/

[22] A. Fox, S. D. Gribhle, Y. Chawathe, E. A. Brewer, and P. Gauthier,
"Cluster-based scalable network service," in Proc. SOSP'16, Oct. 1997.

FAN et al.: SCALABLE WIDE-AREA WEB CACHE SHARING PROTOCOL 293

[23] S. Gadde, M. Rabinovich, and J. Chase. Reduce, reuse, recycle: An ap-
proach to building large internet caches, presented at 6th Workshop Hot
Topics in Operating Systems (HotOS VI), May 1997. [Online]. Avail-
able: http://www.research.att.com/-misha/

[24] G. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Struc-
tures. Reading, MA: Addison-Wesley, 1991.

[25] S. Gribble and E. Brewer, "System design issues for intemet middleware
service: Deduction from a large client trace," in Proc. USENIX Symp.
Internet Technology and Systems, Dec. 1997.

[26] - - , (1997, June) UCB home IP HTTP traces. [Online]. Available:
http://www.cs.berkeley.edu/~gribble/traces/index.html

[27] C. Grimm. The dfn cache service in B-WiN. presented at 2nd Web
Caching Workshop, Boulder, CO, June 1997. [Online]. Available:
http://www-cache.dfn.de/CacheEN/

[28] The Harvest Group. (1994) Harvest Information Discovery and Access
System. [Online]. Available: http://excalibur.usc.edu/

[29] The Relais Group. (1998) Relais: Cooperative caches for the world-wide
web. [Online]. Available: http://www-sor.inria.fr/projects/relais/

[30] J. Gwertzman and M. Seltzer, "World-wide web cache consistency," in
Proc. 1996 USENIX Tech. Conf., San Diego, CA, Jan. 1996.

[31] IRCACHE. (1999, Mar.) Benchmarking Proxy Caches with Web Poly-
graph. [Online]. Available: http://www.polygraph.ircache.net/slides/

[32] V. Jacobson. How to kill the internet, presented at SIGCOMM'95
Middleware Workshop, Aug. 1995. [Online]. Available:
ftp://ftp.ee.lhl .gov/talks/vj -webflame.ps.Z

[33] J. Jung. Nation-wide caching project in korea, presented at 2nd Web
Caching Workshop, Boulder, CO, June 1997. [Online]. Available:
http://ircache.nlanr.net/Cache/Workshop97/

[34] B. Krishnamurthy and C. E. Ellis, "Study of piggyback cache validation
for proxy caches in the world wide web," in Proc. USENIX Symp. ln-
ternet Technology and Systems, Dec. 1997.

[35] T. M. Kroeger, J. Mogul, and C. Maltzahn. (1996, Aug.)
Digital's web proxy traces. [Online]. Available: ftp://ftp.dig-
ital.com/pub/DEC/traces/proxy/webtraces.html

[36] T.M. Kroeger, D. D. E. Long, and J. C. Mogul, "Exploring the bounds of
web latency reduction from caching and prefetching," in Proc. USEN1X
Syrup. lnternet Technology and Systems, Dec. 1997.

[37] C. Liu and P. Cao, "Maintaining strong cache consistency for the
world-wide web," presented at the 17th Int. Conf. Distributed Com-
puting Systems, May 1997.

[38] P. Lorenzetti, L. Rizzo, and L. Vicisano. (1996, Oct.) Replacement poli-
cies for a proxy cache. Universita di Pisa, Italy. [Online]. Available:
http://www.iet.unipi.it/~luigi/caching.ps.gz

[39] C. Maltzahn, K. Richardson, and D. Grunwald, "Performance issues of
enterprise level web proxies," in Proc. 1997 ACM SIGMETRICS Int.
Conf. Measurement and MOdeling of Computer Systems, June 1997, pp.
13-23.

[40] J. Marais and K. Bharat. Supporting cooperative and personal
surfing with a desktop assistant, presented at ACM UIST'97.
[Online]. Available: ftp://ftp.digital.com/pub/DEC/SRC/publica-
tions/marais/uist97paper.pdf.

[41] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography: CRC Press, 1997.

[42] J. C. Mogul, E Douglis, A. Feldmann, and B. Krishnamurthy. Po-
tential benefits of delta encoding and data compression for http.
presented at ACM SIGCOMM'97. [Online]. Available: http://www.re-
search.att.com/~douglis/

[43] National Lab of Applied Network Research. (1997, July) Sanitized Ac-
cess Log. [Online]. Available: ftp://ircache.nlanr.netlTraces/

[44] J. Pietsch. Caching in the Washington State k-20 network, presented at
2nd Web Caching Workshop, Boulder, CO, June 1997. [Online]. Avail-
able: http:/lircache.nlanr.net/CachelWorkshop97/

[45] M. O. Rabin, "Fingerprinting by random polynomials," Center for Re-
search in Computing Technology, Harvard Univ., Tech. Rep. TR-15-81,
1981.

[46] A. Rousskov. (1998, Apr.) Cache digest. [Online]. Available:
http://squid.nlanr.net/Squid/CacheDigest/

[47] P. Sarkar and J. Hartman, "Efficient cooperative caching using hints,"
in Proc. USENIX Conf. Operating System Design and Implementations,
Oct. 1996.

[48] V. Valloppillil and K. W. Ross. (1997) Cache array routing protocol
vl.0. [Online]. Available: http:l/ircache.nlanr.net/CachelICP/draft-
vinod-carp-v 1-02.txt

[49] D. Wessels and K. Claffy. (1998) Internet cache protocol (ICP) v.2. [On-
line]. Available: http://ds.internic.net/rfc/rfc2186.txt

[50] S. Williams, M. Abrams, C. R. Stanbridge, G. Abdulla, and E.
A. Fox. Removal policies in network caches for world-wide web
documents, presented at ACM SIGCOMM'96. [Online]. Available:
http://ei.cs.vt.edu/~succeed/96sigcomm/

[51] L. Zhang, S. Floyd, and V. Jacobson. Adaptive web caching, presented at
2nd Web Caching Workshop, Boulder, CO, June 1997. [Online]. Avail-
able: http://ircache.nlanr.net/Cache/Workshop97/Papers/Floyd/floyd.ps

Li Fan (M'00) received the M.S. degree in computer
science from University of Wisconsin-Madison in
1998.

She is currently a software engineer at Cisco
Systems Inc., San Jose, CA, with the Advanced
Internet Architecture group. She does research and
software development on network QoS issues and
performance analysis.

Ms. Fan is a member of the Association for Com-
puting Machinery.

puter Society Task Force

Pei Cao received the Ph.D. degree from Princeton
University, Princeton, NJ, in 1995.

She joined the Department of Computer Science,
University of Wisconsin-Madison, as Assistant Pro-
fessor in 1995. Recently she has taken a leave of ab-
sence and is now working at Cisco Systems, Inc., San
Jose, CA. Her research interests are in operating sys-
tems, caching and content distribution on the Internet,
and computer architecture. She served as the program
chair for the Fourth and Fifth Web Caching Work-
shops, and is currently a member of the IEEE Com-

on Internetworking.

Jussara Almeida received the B.S. and M.Sc.
degrees from Universidade Federal de Minas Gerais,
Brazil, in 1994 and 1997, respectively. As a graduate
student with a scholarship from CNPq/Brazil, she
joined the Computer Sciences Department, Univer-
sity of Wisconsin-Madison, where she received the
M.Sc. degree in computer science in 1999, and is
currently pursuing the Ph.D. degree.

She is a Research Assistant and Member of
the Sword project at the University of Wis-
consin-Madison. Her research interests include

operating systems, networking protocols, performance of the world-wide web
and video-on-demand.

Andrei Broder graduated from Technion, the Israeli
Institute of Technology, Israel. He received the M.Sc.
and Ph.D. degrees in computer science from Stanford
University, Stanford, CA.

He is Vice President of Research at the AltaVista
Company, San Mateo, CA. Previously he was CTO
of the Search division at AltaVista, and a Senior
Member of the research staff at Compaq's Systems
Research Center, Palo Alto, CA. His main research
interests are the design, analysis, and implemen-
tation of advanced algorithms and supporting data

structures in the context of web-scale applications.
Dr. Broder is currently a Member-at-Large of the Computer Society Technical

Committee on Mathematical Foundations of Computing.

