
Proactive Caching of DNS Records:
Addressing a Performance Bottleneck

Edith Cohen
AT&T Labs–Research

FlorhamPark,NJ07932USA
edith@research.att.com

HaimKaplan
Tel-Aviv University

Tel Aviv, Israel
haimk@math.tau.ac.il

Abstract

Theresolutionof a hostnameto an IP-addressis a nec-
essarypredecessorto connectionestablishmentandHTTP
exchanges.Nonetheless,DNSresolutionsofteninvolvemul-
tiple remotename-serversandprolongWebresponsetimes.
To alleviate this problemnameservers and Web browsers
cache query results. Name-servers currently incorporate
passive cachemanagementwhere recordsare broughtinto
thecacheonly asa resultof clients’ requestsandare used
for the TTL duration (a TTL value is provided with each
record). Weproposeandevaluatedifferentenhancementsto
passivecaching that reducethe fraction of HTTP connec-
tion establishmentsthat are delayedby long DNS resolu-
tions. (A) Renewal policiesrefreshselectedexpiredcached
entriesby issuingunsolicitedqueries.Trace-basedsimula-
tionsusingWeb proxy logsdemonstratedthat a significant
fraction of cache missescan be eliminatedwith a moder-
ate overhead. (B) Simultaneous-validation(SV) transpar-
ently usesexpired records. A DNS query is issuedif the
respectivecachedentryis no longer fresh,but concurrently,
the expired entry is usedto connectto the Web serverand
fetch therequestedcontent.Thecontentis servedonly if the
expired records usedturn out to be in agreementwith the
queryresponse.

1 Introduction

Theresolutionof ahostnameto anIP-addressis aneces-
sarypredecessorto communicationbetweenInternethosts.
In particular, it is requiredfor connectionestablishmentand
HTTP exchangeswith a Webserver. DNS (DomainName
System)[21, 22] is in essencea distributed databasethat
answersqueriesonmappingbetweennamesandaddresses.
Name-serversbelongto ahierarchywheretypically servers
responsiblefor large domainsdelegateothername-servers
to be in charge of subdomains.DNS was designedprior

to theonsetof theWeb application,but fortunately, its de-
sign allowed it to scaleand accommodatethe explosive
growth of the Internet.Theperhapsunavoidabledownside
of this designis that resolvinga DNS queryoften involves
communicationwith at leastoneremotename-server, and
may require following a delegation/referralchain of sev-
eralremotename-servers.Furthermore,Sincename-servers
are different hosts than the HTTP servers that are con-
tactedsubsequently, DNS resolutionscreateadditionalpo-
tential point(s) of failure. Resolutionstypically useUDP
exchangesandusetimeoutandretransmission,which adds
adelayontheorderof seconds,in theeventof packetloss.1

The overall impact of DNS resolutionson user-perceived
latency stemsfrom bothadditionalRTTs to remoteservers
andsensitivity to long timeouts.

Cachingof queryresultsat localname-serversdecreases
bothoverheadanduser-perceivedlatency andis instrumen-
tal for performance.A cachingmechanismfor DNS was
specifiedin RFCs[21, 22], andis integratedin BIND [1],
the mostpopularname-server software. Name-serversre-
solve client queriesabout hostnamesinside and outside
their authoritative zones. Outside queriesare resolved
throughcommunicationwith other name-servers, follow-
ing referralchainsto an authoritative name-server. Name-
servers cachethe resultsof queriessent to other name-
servers. (They alsokeepandperiodicallyrefreshthezones
they areauthoritative for.) Eachsuchpieceof information
(e.g.,CNAME, IP-address,or anauthoritativename-server)
is provided with a TTL (Time To Live) value,andname-
serversmay useentriesthey arenot authoritative for only
until theTTL expires.

Cachingis effective for requestsconstitutingcachehits.
Although “cache misses” (resolutions necessitatingex-
changeswith remoteservers) precedeonly a fraction of
HTTPconnections,their durationstendto beunpredictable
andheavy-tailed. Studiesshow that whenlong Web waits

1In contrast,if packet lossoccursduring a TCPconnection,the time-
out valueis setadaptively accordingto previoushistoryof RTT duration,
which is typically considerablyshorterthanthedefault value.

do occur, DNS resolutionsarea significantcause[6, 14].
Suchoccasionalunexpectedlong delayssignificantly im-
pacttheconsistency of servicequality, which is oftenmea-
suredby extremes. High variancein “connecting” time
wasnot critical for applicationssuchasemail, telnet,and
FTP, that dominatedthe InternetwhenDNS specifications
emerged, but is detrimentalto Web browsing. Unfortu-
nately, it seemsthat the impactof DNS resolutionsis in-
herentin the currentarchitecture.As bandwidthincreases
andcontenttransmissiontimedecreases,Webservicespeed
would beincreasinglydominatedby RTTs,andtherelative
contributionof DNS resolutionswould only increase.

Cachingin BIND currentlyworks in a passive manner:
informationfor whichaname-server is notauthoritativefor
is obtainedonly asa consequenceof a client queryandis
cacheduntil eithertheTTL expires,or thename-serverpro-
cessdies. Herewe proposeandevaluateenhancementsto
basicpassive cachingaimedat reducinguser-perceivedla-
tency dueto DNSquerytime. Ourenhancementsfall within
the framework of the currentDNS architectureandcanbe
locally deployed.

To put in context our proposedenhancementto DNS
caching, we contrastit with the more well-studiedsub-
ject of Webcontentcaching.Contentcachingis integrated
in popularWeb browsers and widely deployed at proxy
servers [15, 16]. Issuessuchasreplacementpolicies,co-
herency andvalidationmechanisms,andunderstandingac-
cesspatternswereextensively studied (e.g.[23, 24, 5, 4]).
Contentis typically cachedbeyond its freshnesslifetime,
but expiredentriesarevalidatedwith the origin beforebe-
ing served. HTTP providesmechanismsfor client-driven
validationandfreshnesscontrol[13]. Proposedapproaches
to reduceuser-perceivedlatency incurredon validationre-
questsincluded validating objects prior to predictedre-
quests[18, 9] andserver-drivenvalidations[20, 19]. Other
studiesproposedtransferringstalecacheddatato a client
while the datavalidity is being verified [12] or while the
modifiedportion(the“delta”) is beingcomputed[2]. These
approachesareof interestto usheresincetheissuesof val-
idationlatency andDNS latency areconceptuallyrelated.

Although considerableresearchtargetedvalidation la-
tency for contentcaching,it seemsthat no analogouspro-
posedenhancementsweremadeso far for passive caching
of DNSrecords.DNScachingdiffersin somebasicaspects
from content-caching:entrieshave considerablysmaller
sizes,storagespaceis amplewith respectto the amount
of data,and responsesizesare small. Yet, thereare also
basicresemblances:Query time (costof a cachemiss) is
significantandhencecachehit-rateis crucial for reducing
perceived-latency; freshnesstypically expires well before
theobjectis modified;andrequestsequences(to hostnames
for DNS cachingandto URLs for contentcaching)exhibit
referencelocality andcharacteristicfrequencies.

Proactive DNS caching integrate automatically-
generated“preemptive” queries that update the cache.
Proactive cachingapproachesattemptto balancethe num-
berof eliminatedcachemissesandoverheadof additional
DNS queries issued to remote name-servers. Renewal
policies, proposedandstudiedhere,area naturalclassof
proactivecachingalgorithms.

Renewal Policies Renewal policiesrefreshcachedentries
upon their expiration time by issuing a new query. The
different policies vary by when an entry is renewed. We
considerseveralnaturalpolicies,basedon referencelocal-
ity (analogousto the cachereplacementalgorithm LRU),
access-frequency (analogousto LFU), andanadaptive per-
hostnamepolicy (analogousto policies studied in [8, 5,
17]). Theseanalogiesare madebasedon propertiesof
the requestsequencethat areexploited but the underlying
cost/benefitmeasuresaredifferent.Weexperimentallyeval-
uatedandcomparedperformanceof thedifferentpolicesus-
ing a heterogeneoussetof proxy logs,consistentlyobtain-
ing significant increasein hit-rate at reasonableoverhead
costs.

Renewal vs. Preresolving Preresolving (prefetching
DNS queries)is a techniquerelatedto renewal. Preresolv-
ing was proposedin [6] as a low-overheadalternative to
the prefetchingof documents. Preresolvingappliespre-
diction schemes(e.g.,by analyzinghyperlinksor tracking
accesspatterns)to decidewhich hostnames(Web servers)
to preresolve. The work [6] demonstrateda potential for
considerablereductionin user-perceivedlatency whenpre-
resolvinghostnamesreturnedon search-enginesresponses.
Thetradeoff of latency andoverheadalsomeasurestheper-
formanceof preresolvingalgorithms.Thebasicdifference
betweenrenewal policies and preresolvingis in their de-
ployment: Preresolvingutilizespredictionsmadebasedon
per-useraccesspatternsand currently-viewed hyperlinks.
This informationis availableat theuser’sbrowseror proxy
server, andtherefore,preresolvingquerieswould mostnat-
urally be initiated thereandbe viewed at the local name-
server as regular client queries. Renewal policies, on the
otherhand,aggregateper-recordpatternsfrom DNS query
sequences.Hence, they can be incorporatedwithin the
name-server cacheand be transparentto its clients. Pre-
resolvingand renewal also differ in their impact on traf-
fic: first, like documentprefetching,preresolvingis more
likely to generatebursts[11]. Secondly, prediction-based
preresolvesaremore likely to include loadedroot servers
whereasrenewals areoften directedonly to lightly loaded
serverslower in theDNS hierarchy.

Simultaneous Validation DNS TTL-based freshness
control posesan inherentconflict for a domain adminis-

2

trator assigningTTL values.SmallerTTL valuesincrease
user-perceivedlatency andname-serverload,andmakesthe
site more likely to be inaccessiblewhen the nameserver
is down. Large TTL values,on the other hand, consti-
tute long-termcommitments.If thename-to-addresstrans-
lation changes,many userswould look at the cachedno-
longer-valid IP address,andwould be unableto reachthe
host until the TTL expires and a new DNS query is is-
sued. In practice,TTL valuesareset conservatively: our
measurementsindicatedthat periodsbetweenchangesare
considerablylonger thanrespective TTL values. This ob-
servation was our underlying motivation for introducing
simultaneous-validation(SV). UnderSV, whena client is-
suesa requestto a host(Webserver) anda cachedexpired
resolutionis available,theproxy/browserissuestheHTTP
request(s)using the expired addresswhile simultaneously
issuinga DNS query to resolve the hostname.For trans-
parency andconsistency, fetchedcontentsareheldanddis-
playedonly if the staleaddressentry is validatedby the
DNS queryresults. SV reduceslatency sinceDNS query
and communicationwith the host are performedconcur-
rently ratherthansequentially. Our evaluationrevealsthat
the mappingof namesto IP-addressesis fairly static,and
consequently, estimatedSV successrateis over 98%. The
SV approachis fundamentallydifferentfrom preresolving
or renewal policies. SV doesnot imposeoverheadof ad-
ditionalDNS queries.Deploying SV, however, necessitates
cachingof expired DNS recordsand supportby both the
DNScacheandthebrowseror proxyserver.

Overview Section2 providesbackgroundmaterialon the
domainnamesystemandsomerelevantstatistics. Thebulk
of our contribution is containedin Sections3–5. In Sec-
tion 3 and4 we presentandevaluateseveral renewal poli-
cies. In Section5 we introduceandevaluatesimultaneous-
validation.We concludein Section6 andoutlinefuturere-
searchissues.

2 The Domain Name System

Thedomainnamesystem(DNS)isadistributeddatabase
for nameto addressmappingof Internet hostsand mail
servers(emailaddresses)[21, 22]. Prior to DNS,name-to-
addressmappingwasperformedcentrallyvia a singlefile
HOSTS.TXTmaintainedby theNetwork InformationCen-
ter(NIC). Thisfile wasperiodicallyftpedby thehostsin the
network.

In graph-theoreticterms,thedomainnamespaceis atree
structure,whereeachnodehasa label. Thedomainor do-
mainnameof anodeis thelist of thelabelsonthepathfrom
thenodeto therootof thetree,separatedwith dots.If anode� is adescendantof � wesaythat � is in thedomainof � or
is a subdomainof � . Eachnodehasinformationassociated

with it representedby resource records (RRs). This set
of RRscomprisesthe domaindatabase.It is a distributed
database.Thedatabaseis dividedup into zones, which are
distributedamongname-servers. The numberof name-
serverscontactedto resolve a particularnamedependson
the contentsof the cachein our local name-server and in
serverswe communicatewith throughthe resolutionpro-
cess.Themaximumpossiblesuchnumberequalsthenum-
ber of subdomaindelegationson the pathfrom the root to
thenoderepresentingourqueriednamein thedomain-name
tree,and,if name-serversarenot locatedin subzones,addi-
tionalqueriesto findaddressesof authoritativenameservers
for the delegatedsubdomains.Our measurementsindicate
that thenumberof delegationson thepathto a typical host
is oftennotvery large.As anupperboundwemeasuredthe
lengthof thepathfrom theroot of thedomainnametreeto
thenearestdelegatedancestorof thename.Histogramsfor
thelengthof this pathfor about35K serverssampledfrom
the NLANR logs and9K from the AT&T researchproxy
log (seeTable1) show thatthelengthof this pathfor about
80% of hostnamesin the AT&T log and90% of the host-
namesin the NLANR log is two. This statisticsimplies
thata typical resolutionwill querytheroot server which is
alsoauthoritative for the.com .org and.net domains.
Theroot serverwill returna referralto thename-serverau-
thoritative for the name. If the returnedname-server lies
outsidethe root-server’s zone,we would have to resolve it
separately. Finally we querythe authoritative name-server
itself. Thereasonfor longerpathnamesfor theAT&T log
hostsis thathostsin thenewer NLANR log containhigher
fraction of vanity names,whereasthe AT&T list contains
a higherfractionof foreigndomainnames(outsidetheUS)
andnamesinsideuniversities,whicharetypically delegated
furtherto individualdepartments.

Associatedwith eachRR is a time-to-live(TTL) param-
eterthat stateshow long it canbe cachedbeforeit should
bediscarded.About25%of thehostshaveTTL nogreater
thanan hour andabout90% of themhave TTL valuesno
greaterthanaday.

3 Renewal Policies

Name-servers receive and resolve DNS queries and
cacheand reuserecordsfor the time period specifiedin
their TTL value.2 A client query that can be answered
from the local cacheis labeledcache hit. Otherwise,re-
solving the client queryinvolvesissuingqueriesto remote
name server(s) and the client query constitutesa cache
miss. Underpassivecaching, currentlypracticedby BIND,
DNS queriesare issuedby the name-server only as a re-
sult of a cachemiss. In contrast,proactivecaching uses

2We limit thediscussionin this sectionto datanot associatedwith the
local zone.

3

“unsolicited” queries(automatic-queries) in order to in-
creasehit-rateonclientqueries.Onaverage,morethanone
automatic-queryis performedin order to avoid onecache
miss. Our premise,however, is that user-time is valuable
andthusa cachemiss is “costlier” thana respective auto-
maticquery.

3.1 Cost Model

We associatecosts with both automatic-queriesand
cachemisses.The costof an automatic-queryattemptsto
price the overheadimposedon name-serversand the net-
work. Cachemissescostcorrespondto theassociateduser-
perceivedlatency. Our basiccostmodelcountsthenumber
of automaticqueriesvs. the numberof cachemisses.Re-
finedcostmeasuresaccountfor varying query-complexity
(numberof differentname-serverscontacted)for measuring
automatic-querycostandfor elapsedquerytimes to mea-
suremiss cost. We use the basiccost model in Section
4.1 andaddressthe refinedcost measuresin Sections4.2
and4.3. For eachproposedpolicy we considerthe trade-
off thatcorrespondto differentratiosbetweenmisscostand
automatic-queriescost. Overheadandlatency costsarede-
pendent,assignificantincreasein traffic andnameservers
would result in increasedlatency. We chose,however, to
separatethe two sinceDNS traffic even if increasedby a
smallconstantfactorwould still constitutea small fraction
of theoverall traffic andshouldnot stronglyaffect userre-
sponsetime. We alsoexpect that even if this dependence
is factoredin the relative performanceof differentpolicies
wouldstaythesame.

This modelassumesthat storagespaceis plentiful and
recordsdo not have to be evicted beforethey expire. This
is consistentwith our datasinceonly about200K distinct
serverswereseenby the3 largeNLANR cachescombined
(seeTable1) overaperiodof two weeks.TheAT&T proxy
traceincludedonly 13K distinctservers.Thecombinedsize
of all associatedRRscaneasilyfit ona smallpartof a hard
disk (or evenin memoryof a dedicatedPC).This assump-
tion of abundantstorageis alsoimplicit in (theUNIX ver-
sionof) BIND, thatallowsits cacheto grow until maximum
process-sizeis exceededandtheapplicationis killed [1].

The passivepolicy correspondsto a singlepoint on the
performancecurve. It performsa single query for each
miss.Thefollowing propertyis establishedby a simplein-
ductionargumenton therequestsequence.

Lemma 1 Thepassivepolicy performsthe minimumpos-
siblenumberof DNSqueriesneededto serveall client re-
quests.

The optimal proactive cachingpolicy is the omniscient
OPT thatusesknowledgeof thefuture: An automatic-query
is issuedby the name-server just before it receives each

client-querythatwould otherwisebea miss.OPT incursno
overhead(issuesthe minimum numberof queriesneeded
to serve the sequenceof client-requests3) and suffers no
cachemisses.In the following, we restrictour attentionto
proactive cachingpoliciesthat areonly allowed to extend
freshnessof cacheditemsby renewing itemsasthey expire.
Thesepoliciesexcludepredictive renewal of long-expired
itemsor prefetchingof new ones. We label suchpolicies
Renewal policies.

3.2 Policies

All thepoliciesthatwe consideredarerenewal policies
which aredefinedasfollows. A Renewal of a cacheden-
try is performinga new resolutionuponits expiration,and
updatingthecachedcopy andextendingexpirationtimeac-
cordingly. A Renewal policy associateswith eachcached
item a renewal credit, which is an integer statingthe re-
mainingnumberof renewals. The credit may be updated
(increased)whenthe cacheditem is used. Whenthe item
expires(or aboutto expire) andhasa positive credit, it is
renewedandthecreditis decremented.

We describeour renewal policiesby specifyingfor each
how it assignsrenewal credits. Our policy-designprinci-
ples were to only useinformationavailable locally at the
name-server and to be at leastas simple to implementas
popularcache-replacementpolicies.Wenamedourrenewal
policiesafteranalogouscache-replacementpolicies,where
analogiesweremadebasedon the propertyof the request
sequenceexploited. Policiesare parameterizedand cost-
benefit tradeoffs are obtainedby sweepingthe parameter
value.

�
R-FIFO ����� : A fixed numberof renewals, � , is associ-
atedwith eachitem upona cachemiss. The renewal
credit is assignedat the point of entry into the cache
andis not increasedby subsequenthits. This is anal-
ogousto the cachereplacementpolicy FIFO (First-In-
First-Out)thatuponamissevictstheitemwith theear-
liestentry-timeinto thecache.

�
R-LRU ���	� : Eachitemis renewedfor � timespassedthe
time of the most-recentcache-hit involving the item.
Hence,whena cache-hitinvolvesanitem, its renewal
credit is setto � . This is analogousto LRU (LeastRe-
centlyUsed)thatevicts the item with the least-recent
cachehit.

�
R-LRU(
���) is similar to R-LRU ���	� , but the renewal
credit is resetto � only asa resultof hits that occur
after an
 -fraction of the “current” TTL interval had
passed.

3assumingthatunderpassive, requestsdonotoccurat theexactendof
aTTL interval.

4

Our motivation for consideringR-LRU(
���) is that
plain R-LRU always grantsat least 1 renewal when
the miss is followed by at leastone consecutive hit.
R-LRU(
���) avoids an extra renewal if there is no
“deeper”evidenceof needsuchaslaterhits stemming
from requestsinitiatedata differentsession.

�
R-LFU ���	� : The first requestto the item in each TTL
interval increasestherenewal creditby � . R-LFU ����� is
analogousto LFU (LeastFrequentlyUsed)that evicts
the cacheditem with smallestnumberof hits. Both
LFU and R-LFU give additionalvalue to an item for
everycachehit.

�
R-ADAPTIVE: is anenhancementof R-LRU wheredif-
ferentcredit ������� , is associatedwith eachhost � . To
find themapping������� , R-ADAPTIVE collectsper-host
statisticsfrom “learning data.” Eachhost � that had
sufficiently many missesunderR-LRU with ����� on
the“learningdata,” getsa value ����������� . A generic
value ��������������� is usedfor hostsfor which there
wasno sufficient data. The mappingof hoststo val-
ues ������� is performedusingsimilar techniquesasthe
onesusedin [8, 7] andanalyzedin [5]. Theimplemen-
tation of R-ADAPTIVE is considerablymore involved
thanR-LRU, R-FIFO, or R-LFU andrequiresgenerating
andmaintainingthemapping������� .

�
R-OPT: is the optimal renewal policy. The per-
formancecurve of R-OPT gives for any numberof
renewals, the minimum possible number of cache
misses. R-OPT relies on knowing the future. Given
therequestsequenceasan(offline) input, theoptimal
tradeoff-curve can be computedusing dynamicpro-
gramming4. For our experimentswe implemented
R-OPT ���	� , a simplergreedyapproximationof R-OPT.
The greedyapproximationperformsa singlepasson
the input andgrantsrenewalsonly if thegapbetween
theexpirationandthenext requestis lessthan � TTLs.
The greedyapproximationcan be viewed as analo-
gousto Belady’scachereplacementalgorithm[3]. The

4Considereachhostnameseparately. Let ���! #"""# $�&% be the sequence
of requeststo resolveonehostname.Let ')(+*$ -,�. bethe“bestway” to cover���) #"""# ��0/ with *213, misses,that is amongthecoveringsthatminimize
thenumberof queries,we considertheonethatextendsasmuchtime be-
yond �$/ aspossible. Note that ')(+*$ -,�. is not definedfor all values. The
maximum * for which ')(-*$ $4�. is definedcorrespondsto the passive pol-
icy. Therangeof values')(-*� 04�. (minimumnumberof queriesfor covering
the completesequencewith * misses)correspondsto a tradeoff curve of
queriesvs.misses.For theoptimalpolicy we actuallyfocuson additional
queriesvs.reductionin misseswith respectto passive. For eachhostname,
thequantities')(-*$ 5,�. canbecomputedusingdynamicprogrammingfrom')(+*56� 5,�65. suchthat (7,�6� �*56-.�89(7,: �*�. in lexicographicorder. To obtain a
globallyoptimalsolution,weuseathresholdvalue ; to selectthenumber
of renewals usedfor eachhostnamein an “equal way.” The “fractional
knapsack”strategy outlinedin [5] is applicable.

label requests hosts time-period
(thousands) (thousands)

LJ 4103 63 May 18–June5/99
UC 10837 91 May 18–June5/99
PA 6886 104 May 18–June5/99

AT&T 489 10.5 Nov 8–19/96

Table 1. Proxy Logs

approximationcollapsesto the optimal solutionif re-
newalscanbegrantedfor fractionalTTL values.

Note that R-OPT differs from the optimal proactive
cachingpolicy outlinedabovesinceit followsthemore
restrictive framework of renewal policies. As such,it
provides a more realistic tighter performanceupper-
bounds.

Varying renewal and miss costscan be naturally inte-
gratedinto our policiesdefinitions. Our initial evaluation
usesthebasicmodelandwe subsequentlyadjustby incor-
porateprojectedquerytimes.

4 Performance Evaluation of Policies

Our data included logs from 3 of the large NLANR
Web caches(downloadedfrom the NLANR site [16]) and
a proxy log from theAT&T Researchproxy. TheNLANR
cachesare high-volume, with large rate of requestsand
clientsthat includemany proxy caches,whereastheAT&T
proxy log reflectstheactivity of about460individual users
(IP-addresses).Propertiesof thedifferentlogsareprovided
in Table 1. We consideredonly requestsmadeto hosts
loggedby namethat we wereableto resolve successfully.
This was the vast majority for the NLANR logs, but in-
cludedonly 10.5K out of 13K serversfor the olderAT&T
proxy log. The NLANR logs weresplit into two partsin
order to obtain a learningand test datafor evaluatingthe
R-ADAPTIVE policy. Learningpartof eachlog includedthe
first 8 days,andthesecondparttheremaining11 days.

The proxy logs include information about(scrambled)
useridentity5, Webserver(host),requestedresource(URL),
andcacheperformance(whethertherequestwasa localhit,
obtainedfrom anotherNLANR cache,or obtainedfrom the
Web server). The logs,however, do not includeany infor-
mationonDNS queriesandresults.DNS datais crucialfor
our performanceevaluationandwasprojectedfrom inde-
pendentmeasurements.

Obtaining DNS Data We extractedthe list of distinct
hosts,andresolvedthemusingDIG [1]. Thus,we obtained
informationon associatedIP addresses,aliases(canonical
names),immediatename-servers, and DNS query times,

5For theNLANR cachesadifferentscramblingwasusedevery day.

5

along with respective TTL values. We issued several
queriesfor eachhostname,with varyingtime intervalsbe-
tweenthem,in orderto estimaterate-of-changeof name-to-
addressmappings,querytimes,andTTL values.We used
theseTTL valuesto emulatethe local name-server cache
andits performanceundervariouspolicies. The name-to-
addressrate-of-changewasusedfor evaluatingthe perfor-
manceof SV (seeSection5)

Methodology Whenprojectingon the activity of the lo-
cal name-server, we assumedin our evaluationthat it ex-
clusively handlesDNS queriesassociatedwith all requests
in the proxy log. The numberof resolutions,however, is
considerablysmallerthanthe numberof loggedHTTP re-
quests. With persistentHTTP connections(incorporated
in HTTP/1.1[13]), requestsfor embeddedcontentsandre-
questsissuedshortly-aftera previous requeststo the same
hostre-useanexisting TCPconnection,andimplicitly, re-
useDNS resolutionresults. Even thoughsomeRR have
very small TTL values(even 0), (persistent)TCP connec-
tions to a host are not aware of expiration of the address
RR, and are not terminatedwhen the latter expires. To
simulatename-serversco-locatedat a proxy, we assumed
thatnoresolutionsareperformedonrequestsoccurringless
than60 secondsafter a previous requestto the samehost.
Interestingly, mostWeb browsersimposelarger minimum
TTL valueswhen cachingname-to-addressentries,since
actualTTL valuesare disregardedaltogetherand an LRU

basedfixedsizecacheor a fixedtimeoutvalueareusedin-
stead.We performedsensitivity analysisby varying mini-
mum effective TTL between0 and15 minutes:The DNS
cachemiss-ratedecreaseby about20% (sincemany pro-
jectedmissesaredueto smallTTLs), but ourresultsdid not
qualitatively change(relative improvementsof thepolicies
remainthesame).

4.1 Performance in the basic cost model

For eachpolicy wemeasurethetradeoff betweentherel-
ative decreasein cachemissesandthe relative increasein
DNS queries(issuedby the name-server). As the natural
baselinewe usethe passive policy, whoseperformanceon
thevariouslogsis listedin Table2. Thetableprovides,for
eachlog, the total numberof DNS misses,the numberof
DNS missesdividedby thenumberof HTTP requestsand
thefractionof DNSmissesthatareassociatedwith thefirst
HTTPrequestto ahostname.Thenumberof queriesissued
by thepassivepolicy is equalto thenumberof DNSmisses.

Table 2 shows that the fraction of HTTP requeststhat
incur a DNS cachemissat the local nameserver is about
6.5%-8.7%. A betterbut lessexplicit metric is to look at
thefractionof “Webpages”affected,sincewith HTTP/1.1,
fetchingof a groupof objectswhile reusingopenconnec-

log DNSmisses FSmisses
(% HTTP requests) (% DNSmisses)

LJ 337964(8.2%) 18.7%
UC 941150(8.7%) 9.7%
PA 592278(8.6%) 17.6%

AT&T 31732(6.5%) 33.0%

Table 2. Performance of passive caching

tions(suchasobjectslocatedon thesamepageandserved
by thesamehostname)is relatively efficient (TCPconnec-
tion establishmentandserver queueingdelaysareincurred
only once).Onaverage“Webpages”contain10–20embed-
dedimages,andthus,we expect0.65-1.7DNS missesper
page.

We refer to DNS misses that are associatedwith
previously-seenhostsasPSmissesandto missesincurred
on the first appearanceof a hostnameasFS misses. The
numberof PSmissesconstitutesanupperboundontheper-
formanceof renewal policies,sinceonly suchmissescanbe
eliminated.It is meaningfulto alsoconsiderperformancein
termsof PSmisses,sinceit is robustto varyinglog duration.
Thefractionof PSmissesincreasesandconvergeswith log
duration(e.g.,150K distincthostseenon thefirst 8 daysof
the3 NLANR cacheswhereasthefollowing6daysincluded
only 50K additionalhosts).

Figure1 plotstheperformanceof thevariouspolicieson
theAT&T proxylog andthesecondpartof theUC log. The
relative performanceof the different policies was consis-
tentacrossall 4 logsandthetwo partsof eachlog. R-FIFO

consistentlyunder-performedother policies. The perfor-
manceof R-LRU, R-LFU, R-LRU(
<� 0.1)andR-ADAPTIVE

was comparable. R-LRU(
=� 0.1) and R-ADAPTIVE pro-
vided only minor performanceimprovementsover plain
R-LRU. The perhapssmaller-than-expectedadvantageof
R-ADAPTIVE is explainedby a largenumberof hostswith
a small numberof “misses” on the learningdata. Thus,
R-ADAPTIVE associatedthegenericrenewal creditamount
with thesehosts. Theseresultsalso imply that the added
complexity of implementingR-ADAPTIVE is not justified
by theperformancegain.

Figure2 plots the performanceof R-LFU on all 4 logs.
Thetradeoffsobtainedby R-LRU closelyfollow R-LFU. The
convexity of thecurvessuggestthatcachemissesweremore
likely to occuron popularandmorerecently-requestedob-
jects. Better tradeoffs were obtainedfor the larger logs.
This is dueto boththefractionof PSmissesthat increases
with log periodandto largernumberof clients. Whenthe
fractionof PSmissesis factoredout (by measuringreduc-
tion in PS missesinsteadof reductionin the total num-
ber of misses),the tradeoffs obtainedfor different logs
moveclosertogether. Acrossthe3 NLANR logsthetrade-
offs completelyconverged, but the AT&T log that hasa
considerably-smallerclient-basestill exhibits worsetrade-

6

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

re
la

tiv
e

de
cr

ea
se

 in
 m

is
se

s

relative increase in queries

R-LFU
R-LRU
R-FIFO

R-LRU(0.1)
R-Adaptive

R-OPT (approx)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7

re
la

tiv
e

de
cr

ea
se

 in
 m

is
se

s

relative increase in queries

R-LFU
R-LRU
R-FIFO

R-LRU(0.1)
R-Adaptive

R-OPT (approx)

AT&T log UC log (part2)

Figure 1. Performance of renewal policies

offs. On the NLANR logs, R-LRU and R-LFU eliminate
about60%of PS-misseswith queryoverheadof 2 andelim-
inate80%of PS-misseswith queryoverheadof 5. There-
spectivereductionsfor theAT&T log are36%and63%.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8

re
la

tiv
e

de
cr

ea
se

 in
 m

is
se

s

relative increase in queries

PA R-LFU
LJ R-LFU

UC R-LFU
AT&T R_LFU

Figure 2. Performance of R-LFU on the 4 logs

4.2 Renewal costs

Renewal costsis measuredby theoverheadinflicted on
name-serversthroughoutthedistributedDNS system.It is
hardto captureprecisely, but canbeestimatedby thenum-
berof differentsubqueriesissuedin therecursiveresolution
process,or by consideringthenumberof queriesissuedto
the loadedroot DNS servers (seeSection2). Root DNS
serverstypically imposeminimumTTL valuesfor top-level
domainsthey areauthoritative for, andgenerally, TTL val-
uestendtodecreasewhengoingdownthehierarchy. Hence,
althoughthe vastmajority of from-scratchresolutionsin-
volve at least2 subqueries,the first issuedto a root DNS

server (seeSection2), renewalsaremorelikely to involve
only asubqueryto alower-level server. WeconsideredTTL
valuesfor hostsandtheir immediatename-serversandno-
ticedthatTTL valuesfor bothimmediatename-serversand
their addressrecordsare larger or equal to the host TTL
for 89% of hostnamesin the AT&T log and for 87% of
hostnamesin the first week of the LJ log. This suggests
performingrenewals just before the expiration of the host
addressrecord, by directly contacting(the generallystill
available)immediatename-server. Suchpre-expiration re-
newalsareresolvedby a singlesubqueryandguaranteean
authoritative responsewith themaximumTTL value. This
subqueryoftenrenewsthename-serverrecorditself, allow-
ing for continuedpre-expirationbenefitsin subsequentre-
newals. Thusrenewals,andin particularpre-expirationre-
newals,aremorelikely to involve only lower-level lightly-
loadednameservers.

4.3 Integrating query times

Querytimesassociatedwith cachemissesmayvarysub-
stantially and dependon the hostnameand cachecontent
(seeSection2). Thus,whenevaluatingperformance,it is
importantto relatethe reductionin the numberof misses
with thereductionin thenumberof misseswith long query
times. Since respective DNS query times were not pro-
vided with the traces,we projectquery times usingsepa-
rate measurements.The cacheis primed by previous re-
queststo thesamehostnameandhostnamessharinghigher-
level domains,hencethe elapsedtime sincea previousre-
questshouldbe accountedfor whenprojectingresolutions
times. We issuedDNS queriesto hostnamesin the AT&T
log with varying time intervals betweenthem. We associ-
atedthemwith DNS missesin our simulationaccordingto
elapsedtime sincepreviouscache-missinvolving thesame

7

hostname.Figure3 shows thenumberof DNS misseswith
(projected)querytimesexceeding� �?>	@A@ ms. Theupper-
mostcurve correspondsto missesincurredby the passive
policy. Therewere31.7Kmissesin total (seeTable2), and
the figure shows that about1.6K misses(5%) had query
timesexceeding3 seconds.The lower-mostcurve aggre-
gatesacrossall FSmisses.This is thebaselinecurve,since
renewal policies (and SV) apply only to PS misses. The
curve for FS missesis halfway of thepassive-policy curve
throughoutquerytimes,showing thatFSmissesaccountfor
about1/2 of themisseswith long querytimes(over 500ms
or more).RecallthatFSmissesaccountfor about1/3of the
total numberof missesof the passive policy on the AT&T
log (seeTable2). ThisgaparisesbecauseFSmissesarein-
curredonhostnamesthatwerenot previouslyresolved,and
hence,aremorelikely to incur longerquerytimes.Thefig-
urealsoshows the latency-distribution for missesincurred
underR-LFU with differentvaluesof � andrespective re-
newal overhead. The numberof long query times does
not decreaseproportionallyto the total numberof misses.
This is expected,sincerenewal policies target missesoc-
curringsooneraftera previousresolution.Thefiguresalso
show, however, that the numberof long query times still
significantly decreasesas the total numberof missesde-
creases.R-LFU with �B�DC , for example,performs140%
morequeriesthanpassive andeliminates40% of the long
query times incurredon PS misses. R-LRU (not shown)
exhibits comparableperformance.Last, the figure shows
querytimesunderSV, which is discussedin Section5.

0

500

1000

1500

2000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

nu
m

be
r

of
 m

is
se

s

E

lookup time exceeding

passive (oh=1)
FS-misses

R-LFU (r=1, oh=1.6)
R-LFU (r=2, oh=2.4)
R-LFU (r=5, oh=4.4)
R-LFU (r=10, oh=7)

SV

Figure 3. Number of misses with long quer y
times

Implementation Most effectively, renewal policies can
be integratedin thename-server software. The implemen-
tationcanthenusethecachecontentandqueryhistoryand
benefitfrom performingpre-expiration renewals. Alterna-
tive implementationis as a processexternal to the name-

server that issuesqueriesto the name-server. Incorporat-
ing a renewal policy in the name-server softwarerequires
both (1) maintainingand updating“remaining numberof
renewals” and(2) schedulingrenewals. The policiescon-
sideredhereupdatethenumberof remainingrenewalsonly
when the item is fetched,is involved in a cachehit, or is
beingrenewed. Thus,updateshappenonly whena RR is
accessedandif theremainingnumberof renewalsis stored
togetherwith eachrecord,theupdateoverheadis minimal.
Theschedulingandissuingof automatic-queriescanbeper-
formedthroughperiodicscansof thecache.Periodicscans
for removing expired items are incorporatedin BIND 8.
Differentimplementationthatallows for frequentrenewals
is via apriority queue[10]. Schedulingrenewalsin aqueue
allows for promptandquick identificationof currently-due
itemswhile avoiding frequentcompletescansof the data.
WhenTTL lengthsallow for sufficientflexibility , it maybe
desirableto performrenewalsatoff-peaktimes.

5 Simultaneous Validation

Simultaneousvalidation (SV) reducestotal document-
fetchingtimeby concurrentlyperformingthehostnameres-
olutionsandsubsequentpartsof theprocess(TCPconnec-
tion establishmentandHTTP request-response).It is po-
tentially effective when a fresh entry for the hostnameis
not availableat the local cache,but the cachecontainsan
expired entry obtainedfrom a previous resolutionor from
elsewhere. SV needsto be supportedat the entity initiat-
ing TCPconnectionsto Webservers,typically, browsersor
proxyservers.With SV deployed,expiredDNS recordsare
not discarded,but kept cachedfor SV use. Whena client
issuesanHTTPrequest,SV proceedsasfollows:

1. If a freshaddressrecordis available,or if no (freshor
expired) addressrecordis available, the processpro-
ceedsasif SV is not deployed.

2. Otherwise, if an expired addressrecord is locally
available (from browser cacheor from a local SV-
supportingname-servercache),thenconcurrently:
(a) theexpiredaddressrecordis usedto attemptaTCP
connectionestablishment.If a connectionwasestab-
lished,HTTP request(s)are issuedandresponsesare
storedlocally.
(b) The resolver performsa DNS query of the host
name. The queryresponse(andsubqueryresponses)
updateandreplacesrespectivecachedrecords.

SV may continuein severalmanners,dependingon the
desiredapproach.A conservativeimplementationguaran-
teesthat the deployment of SV is completelytransparent
to the user’s view (other than reducedlatency). Contents
fetchedin the first stepare cachedand transferredto the

8

browser(if deploymentis at proxy)or displayedto theuser
(for Webbrowserdeployment)only if theIP-addressis val-
idatedby the resultsof the simultaneousDNS query. The
latency experiencedby theuserunderaconservativeimple-
mentationis the maximum(ratherthan the sum)of DNS
querytimeandtheremainingportionof theprocessserving
therequest.

Underanaggressiveimplementationof SV, fetchedcon-
tentsaredisplayedbeforeDNS queryresponseis received.
An aggressive implementationis beneficial when DNS
query times extend longer than the rest of the processor
whenrelevantname-serversaretemporarilyunavailable.In
thesecases,perceived-latency is reducedby DNS-query
time. The main disadvantageof an aggressive implemen-
tationis compromisingtransparency. Whenqueryresponse
doesnot validatetheexpiredaddress,it mayresultin serv-
ing theuserwith staleor unintendedcontents.If validation
failed,theaggressive implementationhasthefollowing op-
tions: 1) considerthedisplayedresultsasvalid; 2) validate
thefetchedcontent[13] by contactingthehostusingavalid
address;3) fetch the contentfrom a valid addressandre-
displayif thereis discrepancy.

Rate of Change of IP-addresses We estimatedthe rate-
of-changeof hostnameto IP-addressmappings. We ex-
tractedthe list of hostnamesfrom the logs and resolved
thesenamesrepeatedlywith time intervalsvaryingfrom 10
minutesto 10 days. To estimatechangeintervals,we took
the first IP-addressin eachresolutionof a host-nameand
checked whetherit is presentin the list of addressespro-
videdin eachof subsequentresolutions.Whentheaddress
was not includedin the resolutionresults,we considered
it asan addresschange.Our measurementsshowed a low
rate-of-changefor the groupsof hostsin the NLANR and
AT&T logs, whereonly 2%-3%of hostshadany address
changes.A smallsubsetof hosts,includingmany imageand
advertisingservers,exhibitedveryfrequentchanges.About
0.25-0.5%changeddaily and fewer than 0.1% changed
hourly.

Performance evaluation We evaluatedthe performance
of SV usingtrace-basedsimulationswith thedataandgen-
eral methodologyas outlined in Section3. Our simula-
tion assumedunderlyingpassivecachingat theDNScache.
That is, that cachedrecordsareobtainedonly asa conse-
quenceof servingclient queries. We usedthe estimated
rate-of-changemeasurementsto associateaddresschanges
with DNS misses.

Whenimplementedovera passive cache,SV is applica-
ble only to PSmisses(seeTable2 for the fractionof DNS
missesthatarePS-misses).Hence,we measuretheperfor-
manceof SV by consideringall PSmissesandmeasuring
thefractionof suchmissesthatwereSVhits, thatis SV was
successful(theaddressdid not changesincethetime of the
previous resolution). Performanceresultsfor SV on the 4

log SV successrate
(% PSmisses)

LJ 98.8%
PA 99.1%
UC 99.1%

AT&T 97.9%

Table 3. Performance of conser vative SV on
various logs: percenta ge of SV hits out of
PS-misses

logsareprovidedin Table3 showing successrateof 98%-
99%.Notethatour evaluationcorrespondto aconservative
implementationof SV, and an aggressive implementation
mayyield anevenhighersuccessrate. Figure3 shows the
correspondingprojectedquerytimesfor SV misses(includ-
ing FSmisses).As we cansee,SV is alsohighly effective
on PSmisseswith long querytimes. Thegapbetweenthe
SV curveandtheFS-missescurvein Figure3 representsthe
2%of PS-missesthatSV doesnot eliminate.

Implementation Simultaneous-validationrequiresatwo-
fold resolutionof hostnames:locally-availableexpiredad-
dressrecordsare returnedquickly anda resolutionis ini-
tiated in the standardmannerto obtaincurrentaddresses.
SV can be supportedby stand-aloneimplementationat
browsersor proxy-servers. Implementationat proxy-
servers benefits from aggregation acrossmultiple users,
with moreup-to-dateandextensivecaches.

Stand-aloneimplementationsat browsersor proxy ben-
efits from modifying only a single entity. Nevertheless,
browsersor proxiescanstill benefitfrom SV supportby the
local name-server. Name-serversare the naturalprovider
of two-fold resolutions:they alreadyhandleDNS requests
from multiple usersand cacheDNS records. To support
SV, they needto (i) cache,insteadof discard,expiredcon-
tents6 and(ii) provide protocolsupportfor two-fold reso-
lutions. Protocolsupportfor SV canbe facilitatedthrough
new typesof queriesthroughwhich aclient indicatedinter-
estin possiblyexpiredrecords.Theresolver will usesuch
aqueryto indicateto its name-serverthatit is willing to ac-
ceptstalecacheentries.Whena staleentry is returned,the
name-servershouldfollow up with a valid response.

Coherence Support for a Stale Database A future ap-
plication of SV, that extendsits applicability to cover FS
misses,is to provide coherenceto an extensive hostname
database(e.g., obtainedby extracting lists of hostnames
from multiple sources).Sincethe databaseentriesarenot
guaranteedto befresh,theextentandreliability of refreshes
can be limited. The effectivenessof sucha databasecan
be further increasedif otherattributesare tracked suchas
frequency of changeof IP-addressesandusageof Round-
Robin DNS. It can then focus on hostnameswith stable

6CurrentlyBIND 8 periodicallydiscardsexpiredrecords.

9

addresseswhich are more likely to be SV hits and also
supportround-robinrotation of mirrors. It is interesting
to contrastthis with the historic HOSTS.TXT approach
that predatedDNS (seeSection2). HOSTS.TXT made
thecompletename-to-addressdatabaselocally availability,
andthus,DNS lookuptimeswereminimal. This approach,
however, wasnot scalablebecauseof growing file sizeand
a coherencemechanismwhich did not allow for distributed
control. In retrospect,storageis lessof a concernbut co-
herenceremainscrucial. The combinationof SV and the
currentDNS infrastructureaddressescoherence.

6 Discussion

Latency incurredon DNS missesis inherentin thehier-
archical/distributednatureof DNS andis often dominated
by RTTs to multiple destinations.As such,query time is
not considerablyshortenedwhen bandwidthis increased.
Nonetheless,reducingperceived-latency dueto querytimes
is crucial for improving the experienceof web users. We
view enhancementto currentpassive cachingof DNS data
as a necessarystepin the ultimate goal of reducingWeb
latency. To this end,we proposedanddemonstratedtheef-
fectivenessof two orthogonalapproaches:renewal policies
andsimultaneous-validations. Renewal policiesareeffec-
tive for hostnameswherethe typical time interval between
requestsis within somesmall factorof the TTL. SV is ef-
fective when frequency of changeof hostnameto address
mappingis lower thanthefrequency of requests.They also
differ in their placeof implementation:Renewal policies
canbe implementedonly inside the name-server whereas
SV needsto alsobe supportedby the entity issuingHTTP
requests.Thesetwo differentsolutionssuggesta combined
approach.

Futurework couldbenefitfrom simultaneoustracingof
DNS data and HTTP requests. Such data (query times,
cachedrecordsandTTLs, subqueriesissued)canbe used
for evaluationof renewal policiesat thename-serveror RR
level. Anotherusecouldbe to evaluatethepotentialbene-
fitsof “cooperativeDNScaching”wherelocalname-servers
exchangenon-authoritativecachedinformation.

References

[1] P. Albitz andC. Liu. DNSandBIND. O’Reilly, Cambridge,
MA, 3 edition,1998.

[2] G. Banga,F. Douglis,andM. Rabinovich. Optimisticdeltas
for WWW latency reduction.In Proceedingsof theUSENIX
AnnualTechnical Conference. USENIX Association,1997.

[3] L. A. Belady. A studyof replacementalgorithmsfor virtual
storagecomputers.IBM systemsjournal, 5:78–101,1966.

[4] L. Breslau,P. Cao,L. Fan,G. Phillips, andS. Shenker. Web
cachingand zipf-like distributions: Evidenceand implica-
tions.In Proceedingsof theIEEEINFOCOM’99Conference,
1999.

[5] E. CohenandH. Kaplan.Exploiting regularitiesin Webtraf-
fic patternsfor cachereplacement.In Proc.31stAnnualACM
SymposiumonTheoryof Computing. ACM, 1999.

[6] E. CohenandH. Kaplan. Prefetchingthe meansfor docu-
menttransfer:A new approachfor reducingweblatency. In
Proceedingsof theIEEEINFOCOM’00Conference, 2000.

[7] E. Cohen,H. Kaplan,andJ.D. Oldham.Policiesfor manag-
ing TCPconnectionsunderpersistentHTTP. In Proceedings
of theWorld Wide Web-8Conference, 1999.

[8] E. Cohen,B. Krishnamurthy, and J. Rexford. Evaluating
server-assistedcachereplacementin the Web. In Proceed-
ings of the 6th EuropeanSymposiumon Algorithms, pages
307–319.Springer-Verlag,LectureNotesin ComputerSci-
enceVol. 1461,Aug. 1998.

[9] E. Cohen,B. Krishnamurthy, andJ.Rexford. Improving end-
to-end performanceof the Web using server volumesand
proxyfilters. In Proceedingsof theACMSIGCOMM’98Con-
ference, Sept.1998.

[10] T. Cormen,C. Leiserson,andR. Rivest. Introductionto al-
gorithms. McGraw-Hill BookCo.,New York, 1990.

[11] M. CrovellaandP. Barford.Thenetwork effectsof prefetch-
ing. In Proceedingsof the IEEE INFOCOM Conference,
1998.

[12] A. DingleandT. Partl. Webcachecoherence.In Proceedings
of theFifth InternationalWorld Wide WebConference, May
1996.

[13] R. Fielding, J. Gettys,J. Mogul, H. Frystyk, L. Masinter,
andT. Leach,P. Berners-Lee.Hypertext TransferProtocol
— HTTP/1.1.RFC2616,ISI, June1999.

[14] Internetqualityof serviceassesment.FAG5H�I G0J:K+LNM:OQP�R�S�I LNM:TVUHXWZY!U:[XWZR\G]J!T^SAUQ_)G$S�G#_�U:`:WZSaK-R\G0b G0M:P�S	bcI [AG$TdK
.

[15] Inktomi Traffic Server. http://www.inktomi.com.

[16] A Distributed Testbedfor National Information Provision-
ing. http://www.ircache.net.

[17] S. Keshav, C. Lund, S. Phillips, N. Reingold,andH. Saran.
An empiricalevaluationof virtual circuit holding time poli-
ciesin IP-over-ATM networks. J. on selectedareasin com-
munication, 13,1995.

[18] B. KrishnamurthyandC.E.Wills. Studyof piggybackcache
validationfor proxy cachesin theworld wide web. In Pro-
ceedingsof theUSENIXSymposiumonInternetTechnologies
andSystems, Monterey, California,December1997.

[19] D. Li andD. R.Cheriton.Scalablewebcachingof frequently
updatedobjectsusingreliablemulticast. In Proceedingsof
the USENIXSymposiumon Internet Technologies and Sys-
tems, 1999.

[20] C. Liu andP. Cao. Maintainingstrongcacheconsistency in
theworld-wideweb. In Proceedingsof the17th IEEE Inter-
nationalConferenceonDistributedComputingSystems, May
1997.

[21] P. Mockapetris. Domain names– conceptsand facilities.
RFC1034,ISI, Nov. 1987.

[22] P. Mockapetris.Domainnames– implementationandspeci-
fication. RFC1035,ISI, Nov. 1987.

[23] J. C. Mogul. Hintedcachingin theweb. In Proceedingsof
the1996SIGOPSEuropeanWorkshop, 1996.

[24] S.Williams, M. Abrams,C. R. Standbridge,G. Abdulla,and
E. A. Fox. Removal policies in network cachesfor world-
widewebdocuments.In Proceedingsof theACMSIGCOMM
Conference, pages293–305,August1996.

10

