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Abstract

Internet address lookup is a challenging problem because of in-
creasing routing table sizes, increased traffic, higher speed links,
and the migration to 128 bit IPv6 addresses. IP routing lookup
requires computing the best matching prefix, for which standard
solutions like hashing were believed to be inapplicable. The best
existing solution we know of, BSD radix tries, scales badly as IP
moves to 128 bit addresses. Our paper describes a new algorithm
for best matching prefix using binary search on hash tables orga-
nized by prefix lengths. Our scheme scales very well as address
and routing table sizes increase: independentof the table size, it re-
quires a worst case time of log2(address bits) hash lookups. Thus
only 5 hash lookups are needed for IPv4 and 7 for IPv6. We also
introduce Mutating Binary Search and other optimizations that, for
a typical IPv4 backbone router with over 33,000 entries, consider-
ably reduce the average number of hashes to less than 2, of which
one hash can be simplified to an indexed array access. We expect
similar average case behavior for IPv6.

1 Introduction

The Internet is becoming ubiquitous: everyone wants to join in.
Since the advent of the World Wide Web, the number of users,
hosts, domains, and networks connected to the Internet seems to be
exploding. Not surprisingly, network traffic is doubling every few
months. The proliferation of multimedia networking applications
and devices is expected to give traffic another major boost.

The increasing traffic demand requires three key factors to
keep pace if the Internet is to continue to provide good service:
link speeds, router data throughput, and packet forwarding rates.1

Readily available solutions exist for the first two factors: for ex-
ample, fiber-optic cables can provide faster links,2and switching
technology can be used to move packets from the input interface
of a router to the corresponding output interface at gigabit speeds.

1In our paper, we distinguish between routing (a process that computes a database
mapping destination networks to output links) and forwarding (a process by which
a routing database is consulted to decide which output link a single packet should
be forwarded on.) Route computation is less time critical than forwarding because
forwarding is done for each packet, while route computation needs to be done only
when the topology changes.

2For example, MCI is currently upgrading its lines from 45 Mbits/s to 155 Mbits/s;
they plan to switch to 622 Mbits/s within a year.

Our paper deals with the third factor, packet forwarding, for which
current techniques perform poorly as network speeds increase.

The major step in packet forwarding is to lookup the desti-
nation address (of an incoming packet) in the routing database.
While there are other chores, such as updating TTL fields, these
are computationally inexpensive compared to the major task of ad-
dress lookup. Data link Bridges have been doing address lookups
at 100 Mbps [Dig95] for many years. However, bridges only do
exact matching on the destination (MAC) address, while Internet
routers have to search their database for the longest prefix matching
a destination IP address. Thus standard techniques for exact match-
ing, such as perfect hashing, binary search, and standard Content
Adressable Memories (CAMs) cannot directly be used for Internet
address lookups.

Prefix matching was introduced in the early 1990s, when it was
foreseen that the number of endpoints and the amount of routing
information would grow enormously. The address classes A, B,
and C (allowing sites to have 24, 16, and 8 bits respectively for ad-
dressing) proved too inflexible and wasteful of the address space.
To make better use of this scarce resource, especially the class B ad-
dresses, bundles of class C networks were given out instead of class
B addresses. This resulted in massive growth of routing table en-
tries. So, in turn, Classless Inter-Domain Routing (CIDR) [F+93]
was deployed, to allow for arbitrary aggregation of networks to re-
duce routing table entries.

To reduce routing table space, aggregation is done aggressively.
Suppose all the subnets in a big network have identical routing in-
formation except for a single, small subnet that has different infor-
mation. Instead of having multiple routing entries for each subnet
in the large network, just two entries are needed: one for the big
network, and a more specific one for the small subnet (which has
preference, if both should match). This results in better usage of
the available IP address space and decreases the amount of routing
table entries. On the other hand, the processing power needed for
forwarding lookup is increased.

Thus today an IP router’s database consists of a number of ad-
dress prefixes. When an IP router receives a packet, it must com-
pute which of the prefixes in its database has the longest match
when compared to the destination address in the packet. The packet
is then forwarded to the output link associated with that prefix. For
example, a forwarding database may have the prefixesP1 = 0101,
P2 = 0101101 and P3 = 010110101011. An address whose first
12 bits are 010101101011 has longest matching prefix P1. On the
other hand, an address whose first 12 bits are 010110101101 has
longest matching prefix P3.

The use of best matching prefix in forwarding has allowed IP
routers to accomodate various levels of address hierarchies, and has
allowed different parts of the network to have different views of the



address hierarchy. Given that best matching prefix forwarding is
necessary for hierarchies, and hashing is a natural solution for ex-
act matching, a natural question is: “Why can’t we modify hashing
to do best matching prefix.” However, for several years now, it was
considered not to be “apparent how to accommodate hierarchies
while using hashing, other than rehashing for each level of hierar-
chy possible” [Skl93].

Our paper describes a novel algorithmic solution to longest pre-
fix match, using binary search over hash tables organized by the
length of the prefix. Our solution requires a worst case complexity3

of O(log2W ), with W being the length of the address in bits.
Thus, for the current Internet protocol suite (IPv4) with 32 bit ad-
dresses, we need at most 5 hash lookups. For the upcoming IP ver-
sion 6 (IPv6) with 128 bit addresses, we can do lookup in at most
7 steps, as opposed to 128 in current algorithms (see Section 2),
giving an order of magnitude performance improvement. Using
perfect hashing, we can lookup 128 bit IP addresses in at most
7 memory accesses. This is significant because on current RISC
processors, hash functions can be found whose computation is
cheaper than a memory access.

In addition, we use several optimizations to significantly reduce
the average number of hashes needed. For example, our analysis of
an IPv4 forwarding table from an Internet backbone router at the
Mae-East network access point (NAP) [Mer96] show an average
case performance of less than two hashes, where the first hash can
be replaced by a simple index table lookup.

The rest of the paper is organized as follows. Section 2
describes drawbacks with existing approaches to IP lookups.
Section 3 describes our basic scheme in a series of refinements that
culminate in the basic binary search scheme. Section 4 describes
a series of important optimizations to the basic scheme that im-
prove average performance. Section 5 describes our implementa-
tion, including algorithms to build the data structure and perform
insertions and deletions. Section 6 describes performance measure-
ments using our scheme for IPv4 addresses, and performance pro-
jections for IPv6 addresses. We conclude in Section 7 by assessing
the theoretical and practical contributions of this paper.

2 Existing Approaches to IP Lookup

We survey existing approaches to IP lookups and their problems.
We discuss approaches based on modifying exact matching sche-
mes, trie based schemes, hardware solutions based on parallelism,
proposals for protocol changes to simplify IP lookup, and caching
solutions. For the rest of this paper, we use BMP as a shorthand for
Best Matching Prefix.

Modifications of Exact Matching Schemes Classical fast
lookup techniques such hashing and binary search do not directly
apply to the best matching prefix (BMP) problem since they only do
exact matches. A modified binary search technique, originally due
to Butler Lampson, is described in [Per92]. However, this method
requires log2 2N steps, with N being the number of routing table
entries. With current routing table sizes, the worst case would be 17
data lookups, each requiring at least one costly memory access. As
with any binary search scheme, the average number of accesses is
log2(2N)�1. A second classical solution would be to reapply any
exact match scheme for each possible prefix length [Skl93]. This
is even more expensive, requiring W iterations of the exact match
scheme used (e.g. W = 128 for IPv6).

3This assumes assuming O(1) for hashing, which can be achieved using perfect
hashing, although limited collisions do not affect performance significantly.

Trie Based Schemes The most commonly available IP lookup
implementation is found in the BSD kernel, and is a radix trie im-
plementation [Skl93]. If W is the length of an address, the worst-
case time in the basic implementation can be shown to be O(W 2

).
Current implementations have made a number of improvements on
Sklower’s original implementation. The worst case was improved
to O(W ) by requiring that the prefix be contiguous (previously
non-contiguous masks were allowed, a feature which was never
used). Despite this, the implementation requires up to 32 or 128
costly memory accesses (for IPv4 or IPv6, respectively). Tries also
can have large storage requirements.

Hardware Solutions Hardware solutions can potentially use par-
allelism to gain lookup speed. For exact matches, this is done using
Content Addressable Memories (CAMs) in which every memory
location, in parallel, compares the input key value to the content of
that memory location.

Some CAMs allow a mask of bits that must be matched. Al-
though there are expensive so-called ternary CAMs available al-
lowing a mask to be specified per word, the mask must typically be
specified in advance. It has been shown that these CAMs can be
used to do BMP lookups [MF93, MTW95], but the solutions are
usually expensive.

Large CAMs are usually slower and much more expensive than
ordinary memory. Typical CAMs are small, both in the number of
bits per entry and the number of entries. Thus the CAM memory
for large address/mask pairs (256 bits needed for IPv6) and a huge
amount of prefixes appears (currently) to be very expensive. An-
other possibility is to use a number of CAMs doing parallel look-
ups for each prefix length. Again, this seems expensive. Probably
the most fundamental problem with CAMs is that CAM designs
have not historically kept pace with improvements in RAM mem-
ory. Thus a CAM based solution (or indeed any hardware solution)
runs the risk of being made obselete, in a few years, by software
technology running on faster processors and memory.

Protocol Based Solutions One way to get around the problems
of IP lookup is to have extra information sent along with the packet
to simplify or even totally get rid of IP lookups at routers. Two
major proposals along these lines are IP Switching [NMH97] and
Tag Switching [CV95, CV96, R+96]. Both schemes require large,
contiguous parts of the network to adopt their protocol changes be-
fore they will show a major improvement. The speedup is achieved
by adding information on the destination to every IP packet.

In IP Switching, this is done by associating a flow of packets
with an ATM Virtual Circuit; in Tag Switching, this is done by
adding a “tag” to each packet, where a “tag” is a small integer that
allows direct lookup in the router’s forwarding table. Tag switching
is based on a concept originally described by Chandranmenon and
Varghese ([CV95, CV96]) using the name “threaded indices”. The
current tag switching proposal[R+96] goes further than threaded
indices by adding a stack of indices to deal with hierarchies.

Neither scheme can completely avoid ordinary IP lookups.
Both schemes require the ingress router (to the portions of the net-
work implementing their protoocol) to perform a full routing de-
cision. In their basic form, both systems potentially require the
boundary routers between autonomous systems (e.g., between a
company and its ISP or between ISPs) to perform the full forward-
ing decision again, because of trust issues, scarce resources, or dif-
ferent views of the network. Scarce resources can be ATM VCs or
tags, of which only a small amount exists. Thus towards the back-
bone, they need to be aggregated; away from the backbone, they
need to be separated again.



Different views of the network can arise because systems of-
ten know more details about their own and adjacent networks, than
about networks further away. Although Tag Switching addresses
that problem by allowing hierarchical stacking of tags, this af-
fects routing scalability. Tag Switching assigns and distributes tags
based on routing information; thus every originating network now
has to know tags in the destination networks. Thus while both tag
switching and IP switching can provide good performance within a
level of hierarchy, neither solution currently does well at hierarchy
boundaries without scaling problems.

Caching For years, designers of fast routers have resorted to
caching to claim high speed IP lookups. This is problematic for
several reasons. First, information is typically cached on the en-
tire address, potentially diluting the cache with hundreds of ad-
dresses that map to the same prefix. Second, a typical backbone
router of the future may have hundreds of thousands of prefixes and
be expected to forward packets at Gigabit rates. Although studies
have shown that caching in the backbone can result in hit ratios up
to and exceeding 90 percent [Par96, NMH97], the simulations of
cache behavior were done on large, fully associative caches which
commonly are implemented using CAMs. CAMs, as already men-
tioned, are usually expensive. It is not clear how set associative
caches will perform and whether caching will be able keep up with
the growth of the Internet. So caching does help, but does not avoid
the need for fast BMP lookups, especially in view of current net-
work speedups.

Summary In summary, all existing schemes have problems of ei-
ther performance, scalability, generality, or cost. Lookup schemes
based on tries and binary search are (currently) too slow and do
not scale well; CAM solutions are expensive and carry the risk
of being quickly outdated; tag and IP switching solutions require
widespread agreement on protocol changes, and still require BMP
lookups in portions of the network; finally, locality patterns at back-
bone routers make it infeasible to depend entirely on caching.

We now describe a scheme that has good performance, excel-
lent scalability, and does not require protocol changes. Our scheme
also allows a cheap, fast software implementation, and also a more
expensive (but faster) hardware implementation.

3 Basic Binary Search Scheme

Our basic algorithm is based on three significant ideas, of which
only the first has been reported before. First, we use hashing to
check whether an address D matches any prefix of a particular
length; second, we use binary search to reduce number of searches
from linear to logarithmic; third, we use precomputation to prevent
backtracking in case of failures in the binary search of a range.
Rather than present the final solution directly, we will gradually
refine these ideas in Section 3.1, Section 3.2, and Section 3.5 to ar-
rive at a working basic scheme. We describe further optimizations
to the basic scheme in the next section.

3.1 Linear Search of Hash Tables

Our point of departure is a simple scheme that does linear search
of hash tables organized by prefix lengths. We will improve this
scheme shortly to do binary search on the hash tables.

The idea is to look for all prefixes of a certain length L using
hashing and use multiple hashes to find the best matching prefix,
starting with the largest value of L and working backwards. Thus
we start by dividing the database of prefixes according to lengths.

Length Hash

5

7

12

01010

0101011
0110110

011011010101

Hash tables

Figure 1: Hash Tables for each possible prefix length

Assuming a particularly tiny routing table with four prefixes of
length 5, 7, 7, and 12, respectively, each of them would be stored
in the hash table for its length (Figure 1). So each set of prefixes of
distinct length is organized as a hash table. If we have a sorted ar-
ray L corresponding to the distinct lengths, we only have 3 entries
in the array, with a pointer to the longest length hash table in the
last entry of the array.

To search for addressD, we simply start with the longest length
hash table l (i.e. 12 in the example), and extract the first l bits of D
and do a search in the hash table for length l entries. If we succeed,
we have found a BMP4; if not, we look at the first length smaller
than l, say l0 (this is easy to find if we have the array L by simply
indexing one position less than the position of l), and continuing
the search.

More concretely, let L be an array of records. L[i]:length is
the length of prefixes found at position i, andL[i]:hash is a pointer
to a hash table containing all prefixes of length L[i]:length. The
resulting code is shown in Figure 2.

Function LinearSearch(D) (* search for addressD *)
Initialize BMP to the empty string;
i := Highest index in array L;
While (BMP = nil) and (i � 0) do

Extract the first L[i]:length bits of D into D0;
BMP := Search(D0, L[i]:hash); (* search hash for D0 *)
i := i� 1;

Endwhile

Figure 2: Linear Search

3.2 Binary Search of Hash Tables

The previous scheme essentially does (in the worst case) linear
search among all distinct string lengths. Linear search requires
O(W ) expected time (more precisely, O(Wdist), where Wdist �

W is the number of distinct lengths in the database.)
A better search strategy is to use binary search on the array L

to cut down the number of hashes to O(log2Wdist). However, for
binary search to work, we need markers in tables corresponding
to shorter lengths to point to prefixes of greater lengths. Markers
are needed to direct binary search to look for matching prefixes of
greater length. Here is an example to illustrate the need for markers.

Suppose we have the prefixes P1 = 0, P2 = 00, P3 = 111

(Figure 3 (b)). Assume that the zeroth entry of L points to P1’s
hash table, the first to P2’s hash table, and the second points to
P3’s hash table. Suppose we search for 111. Binary search (a)
would start at the middle hash table and search for 11 in the hash
table containingP2 (the triangles denote a pointer to the hash table

4Recall that BMP stands for Best Matching Prefix. We use this abbreviation
through the rest of the paper



P1=0

P3=111

P2=00

Hash
Tables

Binary
Search

In
cr

ea
si

ng
P

re
fix

 L
en

gt
h

0

111

0011

Hash Tables
with Marker

(a) (b) (c)

1

2

3

L

Figure 3: Binary Search on Hash Tables

to search). It would fail and have no indication that it should search
among the longer prefix tables for a better matching prefix. To fix
this problem, we simply add a marker entry 11 to the middle table.
Now when binary search is done for 111, we will lookup 11 in the
middle hash table and find the marker node. This can be used to
direct binary search to the lower half of the table.
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Figure 4: Binary Search on Trie Levels

Each hash table (markers plus real prefixes) can be thought of as
a horizontal layer of a trie corresponding to some length L (except
that the hash table contains the complete path to that layer of each
entry in that layer). Our basic schemes is essentially doing binary
search on the levels of a trie (Figure 4). We start by doing a hash
on prefixes corresponding to the median length of the trie. If we
match, we search the upper half of the trie; if we fail we search the
lower half of the trie.

Figure 4 and other figures describing search order contain sev-
eral elements: (1) Horizontal stripes grouping all the elements of
a specified prefix length, (2) a trie containing the prefixes, shown
on the right of the figure and rooted on the top of the figure, and
(3) a binary tree, shown on the left of the figure and rooted at the
left, which depicts all possible paths that binary search can fol-
low. We will use upper half to mean the half of the trie with prefix
lengths strictly less than the median length. We also use lower half
for the portion of the trie with prefix lengths strictly greater than
the median length. It is important to understand the conventions in
Figure 4 to understand the later figures and text.

3.3 Reducing Marker Storage

The following definitions are useful before proceeding. For a pre-
fix P in the table, define Level(P ) to be the integer i for which
L[i]:length = length(P ) (i.e., the index of the entry in L that

Total entries 33199 100%
Entries needing no markers 4743 14%
Entries needing 1 marker 22505 68%
Entries needing 2 markers 3562 11%
Entries needing 3 markers 2389 7%
Total markers requested 36796 111%
(before sharing)
Total markers 8699 26%
Pure markers 8336 25%

Table 1: Marker Overhead for Backbone Forwarding Table

points to P ’s hash table). Also, “up” to refers to shorter, “down” to
longer prefixes.

How many markers do we need? A naive view would indi-
cate placing a marker for prefix P at all levels in L higher than
the level of P . However, it suffices to place markers at all levels
in L that could be visited by binary search when looking for an
entry whose BMP is P . This reduces the number of markers to
at most log2W per real prefix, which keeps the storage expan-
sion modest. More precisely, if the Level(P ) is written down
in binary as a1; a2; : : : ; an, then we need a marker at each level
a1a2; : : : ; ak; 0; 0; : : : ; 0 such that ak = 1. (We assume that L
is padded so that its size is a power of 2). In fact, the number
of marker nodes is limited by the number of 1 bits in Level(P ).
Clearly this results in a logarithmic number of markers.

In the typical case, many prefixes will share markers (Table 1),
reducing the marker storage further. In our sample routing database
[Mer96], the storage required will increase by 25%. However, it is
easy to give a worst case example where the storage needs require
O(log2W ) markers per prefix. (Consider N prefixes whose first
log2N bits are all distinct and whose remaining bits are all 1’s).

3.4 Problems with Backtracking

Function NaiveBinarySearch(D) (* search for address D *)
Initialize search range R to cover the whole array L;
While R is not a single entry do

Let i correspond to the middle level in rangeR;
Extract the first L[i]:length bits of D into D0;
Search(D0, L[i]:hash); (* search hash table for D0 *)
If found then set R := lower half of R (*longer prefixes*)

Else set R := upper half of R; (*shorter prefixes*)
Endif

Endwhile

Figure 5: Naive Binary Search

Binary search of hash tables can be expressed as shown in
Figure 5. Unfortunately, this algorithm is not correct as it stands
and does not take logarithmic time if implemented naively. The
problem is that while markers are good things (they lead to poten-
tially better prefixes lower in the table), they can also cause the
search to follow false leads which may fail. In case of failure, we
would have to modify the binary search (for correctness) to back-
track and search the upper half of R again. Such a naive modifica-
tion can lead us back to linear time search. An example will clarify
this.



First consider the prefixes P1 = 1, P2 = 00, P3 = 111.
As discussed above, we add a marker to the middle table so that
the middle hash table contains 00 (a real prefix) and 11 (a marker
pointing down to P3). Now consider a search for 110. We start at
the middle hash table and get a hit; thus we search the third hash
table for 110 and fail. But the correct best matching prefix is at the
first level hash table — i.e., P1. The marker indicating that there
will be longer prefixes, indispensible to find P3, was misleading in
this case; so apparently, we have to go back and search the upper
half of the range.

The fact that each entry contributes at most log2W markers
may cause some readers to suspect that the worst case with back-
tracking is limited to O(log

2W ). This is incorrect. The worst case
is O(W ). The worst-case example for say W bits is as follows:
we have a prefix Pi of length i, for 1 � i < W that contains all
0s. In addition we have the prefix Q whose first W � 1 bits are
all zeroes, but whose last bit is a 1. If we search for the W bit
address containing all zeroes then we can show that binary search
with backtracking will takeO(W ) time and visit every level in the
table. (The problem is that every level contains a false marker that
indicates the presence of something better below.)

3.5 Precomputation to Avoid Backtracking

We use precomputation to avoid backtracking when we shrink the
current range R to the lower half of R (which happens when we
find a marker at the mid point of R). Suppose every marker node
M is a record that contains a variable M:bmp, which is the value
of the best matching prefix of the marker M . M:bmp can be pre-
computed when the marker M is inserted into its hash table. Now,
when we find M at the mid point of R, we indeed search the lower
half, but we also remember the value of M:bmp as the current best
matching prefix. Now if the lower half of R fails to produce any-
thing interesting, we need not backtrack, because the results of the
backtracking are already summarized in the value of M:bmp. The
new code is shown in Figure 6.

Function BinarySearch(D) (* search for address D *)
Initialize search range R to cover the whole array L;
Initialize BMP found so far to null string;
While R is not empty do

Let i correspond to the middle level in range R;
Extract the first L[i]:length bits of D into D0;
M := Search(D0, L[i]:hash); (* search hash for D0 *)
If M is nil Then set R := upper half of R; (* not found *)
Elseif M is a prefix and not a marker
ThenBMP :=M:bmp; break; (* exit loop *)
Else (* M is a pure marker, or marker and prefix *)
BMP :=M:bmp; (* update best matching prefix so far *)
R := lower half of R;

Endif
Endwhile

Figure 6: Binary Search

The standard invariant for binary search when searching for key
K is: “K is in rangeR”. We then shrinkRwhile preserving this in-
variant. The invariant for this algorithm, when searching for keyK
is: “EITHER (The Best Matching Prefix of K is BMP) OR (There
is a longer matching prefix in R)”.

It is easy to see that initialization preserves this invariant, and
each of the search cases preserves this invariant (this can be es-
tablished using an inductive proof.) Finally, the invariant implies

the correct result when the range shrinks to 1. Thus the algo-
rithm works correctly; also since it has no backtracking, it takes
O(log2Wdist) time.

4 Refinements to Basic Scheme

The basic scheme described in Section 3 takes just 7 hash computa-
tions, in the worst case, for 128 bit IPv6 addresses. However, each
hash computation takes at least one access to memory; at gigabit
speeds each memory access is significant. Thus, in this section,
we explore a series of optimizations that exploit the deeper struc-
ture inherent in the problem to reduce the average number of hash
computations.

4.1 Asymmetric Binary Search
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Figure 7: Histogram of the Prefix Length Distribution

We first describe a series of simple-minded optimizations. Our
main optimization, mutating binary search, is described in the next
section. A reader can safely skip to Section 4.2 on a first reading.

The current algorithm is a fast, yet very general, BMP search
engine. Usually, the performance of general algorithms can be im-
proved by tailoring them to the particular datasets they will be ap-
plied to. As can be seen in Figure 7, the distribution of a typical
backbone router’s forwarding table as obtained from [Mer96], the
entries are not equally distributed over the different prefix lengths.
All the concepts we described below apply to any set of addresses;
however, we will quantify the potential improvements using the ex-
isting table.

As the first improvement, which has already been mentioned
and used in the basic scheme, the search can be limited to those
prefix lengths which do contain at least one entry, reducing the
worst case number of hashes from log2W (5 with W = 32) to
log2Wdist (4.5 with Wdist = 23, the number of non-empty buck-
ets in the histogram), as shown in Figure 8. (While this is an im-
provement for the worst case, in this case, it harms the average
performance, as we will see later.)
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A more promising approach is to change the tree structure to
search in the most promising prefix length layers first, introducing
asymmetry into the binary tree. While this will improve average
case performance, introducing asymmetries will not improve the
maximum tree height; on the contrary, some searches will make
a few more steps, which has a negative impact on the worst case.
Given that routers can temporarily buffer packets, worst case time
is not as important as the average time. The search for a BMP can
only be terminated early if we have a “stop search here” (“termi-
nal”) condition stored in the node. This condition is signalled by a
node being a prefix but no marker (Figure 6).

But how can we select these “most promising” layers men-
tioned earlier? Optimally, they would correspond to layers whose
addresses are requested most — i.e. where most of the network
traffic is destined. As long as only a few entries with even fewer dis-
tinct prefix lengths dominate the traffic characteristics, the solution
can be found easily. However, with a large number of frequently
accessedentries, building an optimal tree is a complex optimization
problem, especially, because restructuring the tree also removes the
terminal condition on many markers and adds it to others.

To build a useful asymmetrical tree, we can recursively split
both the upper and lower part of the binary search tree’s current
node’s search space, at a point selected by a heuristic weighting
function. Two different weighting functions with different goals
(one strictly picking the level covering most addresses, the other
maximizing the entries while keeping the worst case bound) are
shown in Figure 9, with coverage and average/worst case analysis
for both weighting functions in Table 2. As can be seen, balancing
gives faster increases after the second step, resulting in generally
better performance than “narrow-minded” algorithms.

Now we can see why our first attempt, while improving the
worst case, makes the average case worse: the prefixes with length
8, 16, and 24 are very common and also cover a big part of the ad-
dress space, so they should be reached in early stages of the binary
tree. In the original binary search, they were reached in step 2, 1,
and 2, respectively. In the new, “optimized” approach, they were
moved to step 4, 3, and 5, respectively (Figure 8, to the bottom of
the tree. Besides slowing down the search, this increased the num-
ber of pure markers required to exceed the real prefixes, resulting
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Figure 9: Asymmetric Trees produced by two Weighting Functions

Steps Usage Balance
A E A% E%

1 43% 14% 43% 14%
2 83% 16% 46% 77%
3 88% 19% 88% 80%
4 93% 83% 95% 87%
5 97% 86% 100% 100%

Average 2.1 3.9 2.3 2.4
Worst case 9 9 5 5

Table 2: Address (A) and Entry (E) Coverage for Asymmetric
Trees

in a large growth in memory requirements and insertion time.

4.2 Mutating Binary Search

In this subsection, we further refine the basic binary search tree to
change or mutate to more specialized binary trees each time we
encounter a partial match in some hash table. We believe this a
far more effective optimization than the use of asymmetrical trees
though the two ideas can be combined.

In the last section, we looked at prefix distributions sorted by
prefix lengths. This resulting histogram led us to propose asym-
metrical binary search, which can improve average speed. Further
information about prefix distributions can be extracted by dissect-
ing the histogram: For each possible n bit prefix, we could draw
2
n individual histograms with possibly fewer non-empty buckets,

thus reducing the depth of the search tree.
When partitioning according to 16 bit prefixes5, and counting

the number of distinct prefix lengths in the partitions, we discover a

5There is nothing magic about the 16 bit level, other than it being a good root for a
binary search of 32 bit IPv4 addresses.



Distinct Lengths Frequency
1 4977
2 608
3 365
4 249
5 165
6 118
7 78
8 46
9 35

10 15
11 9
12 3

Table 3: Number of Distinct Prefix Lengths in the 16 bit Partitions
(Histogram)

nice property of the routing data (Table 3). Though the whole his-
togram (Table 7) shows 23 distinct prefix lengths with many buck-
ets containing a significant number of entries, none of the “sliced”
histograms contain more than 12 distinct prefixes; in fact, the vast
majority only contain one prefix, which often happens to be in the
16 bit prefix length hash table itself. This suggests that if we start
with 16 bits in the binary search and get a match, we need only do
binary search on a set of lengths that is much smaller than the 16
possible lengths we would have to search in naive binary search.

In general, every match in the binary search with some marker
X , means that we need only search among the set of prefixes for
which X is a prefix. This is illustrated in Figure 10. On a match
we need only search in the subtrie rooted at X (rather than search
the entire lower half of the trie, which is what naive binary search
would do.) Thus the whole idea in mutating binary search is as
follows: whenever we get a match and move to a new subtrie, we
only need to do binary search on the levels of new subtrie. In other
words, the binary search mutates or changes the levels on which it
searches dynamically (in a way that always reduces the levels to be
searched), as it gets more and more match information.

X

Root

New Trie on Failure

m = Median Length
among all prefix
lengths in trie

New Trie on Match
(first m bits of
Prefix = X)

Figure 10: Showing how mutating binary search for prefix P dy-
namically changes the trie on which it will do binary search of hash
tables.

Thus each entry E in the search table could contain a descrip-
tion of a search tree specialized for all prefixes that start with E.
This simple optimization cuts the average search time to below two

Steps Usage Balance
A E A% E%

1 43.9% 14.2% 43.9% 14.2%
2 98.4% 65.5% 97.4% 73.5%
3 99.5% 84.9% 99.1% 93.5%
4 99.8% 93.6% 99.9% 99.5%
5 99.9% 97.8% 100.0% 100.0%

Average 1.6 2.4 1.6 2.2
Worst case 6 6 5 5

Table 4: Address (A) and Entry (E) Coverage for Mutating Binary
Search

steps (Table 4), assuming probability proportional to the covered
address space. Also with other probability distributions, (i.e., ac-
cording to actual measurements), we expect the average number of
lookups to be around two.

As an example, consider binary search to be operating on a tree
of levels starting with a root level, say 16. If we get a match which
is a marker, we go “down” to the level pointed to by the down child
of the current node; if we get a match which is a prefix and not a
marker, we are done; finally, if we get no match, we go “up”. In the
basic scheme without mutation, we start with root level 16; if we
get a marker match we go down to level 24, and go up to Level 8 if
we get no match.
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Figure 11: Mutating Binary Search Example

Doing basic binary search for an IPv4 address whose BMP has
length 21 requires checking the prefix lengths 16 (hit), 24 (miss),
20 (hit), 22 (miss), and finally 21. On each hit, we go down, and on
misses up.

Using Mutating Binary Search, looking for an address (see
Figure 11) is different. First, we explain some new conventions
for reading Figure 11. As in Figure 4, we continue to draw a trie
on the right. However, in this figure, we now have multiple binary
trees drawn on the left of the figure, labeled as Tree 1, Tree 2, etc.
This is because the search process will move from tree to tree. Each
binary tree has the root level (i.e., the first length to be searched)
at the left; the upper child of each binary tree node is the length to
be searched on failure, and whenever there is a match, the search
switches to the more specific tree.

Finally, Figure 11 has a number of prefixes and markers that are
labeled as E; F;G;H;J for convenience. Every such entry in our



example has E as a prefix. Thus rather than describe all the bits
in E, we denote the bits E as : : :; the bits in say F are denoted as
: : : 111, which denotes the concatenation of the bits in E with the
suffix 111. Finally, each hash table entry consists of the name of
the node, followed by the bits representing the entry, followed by
the label of the binary tree to follow if we get a match on this entry.
The bmp values are not shown for brevity.

Consider now a search for an address whose BMP is G in the
database of Figure 11. The search starts with a generic tree, Tree
1, so length 16 is checked, finding E. Among the prefixes starting
with E, there are known to be only five distinct lengths (say 17,
18, 19, 20, 21, and 22). So E contains a description of the new
tree, Tree 2, limiting the search appropriately. Using Tree 2, we
find F , giving a new tree with only a single length, leading to G.
The binary tree has mutated from the original tree of 32 lengths, to
a secondary tree of 5 lengths, to a tertiary “tree” containing just a
single length.

Looking for J is similar. Using Tree 1, we findE. Switching to
Tree 2, we find H , but after switching to Tree 4, we miss at length
21. Since a miss (no entry found) can’t update a tree, we follow our
current tree upwards to length 20, where we find J .

In general, whenever we go down in the current tree, we can
potentially move to a specialized binary tree because each match in
the binary search is longer than any previous matches, and hence
may contain more specialized information. Mutating binary trees
arise naturally in our application (unlike classical binary search)
because each level in the binary search has multiple entries stored
in a hash table. as opposed to a single entry in classical binary
search. Each of the multiple entries can point to a more specialized
binary tree.

In other words, the search is no longer walking through a single
binary search tree, but through a whole network of interconnected
trees. Branching decisions are not only based on the current prefix
length and whether or not a match is found, but also on what the
best match so far is (which in turn is based on the address we’re
looking for.) Thus at each branching point, you not only select
which way to branch, but also change to the most optimal tree. This
additional information about optimal tree branches is derived by
precomputation based on the distribution of prefixes in the current
dataset. This gives us a faster search pattern than just searching on
either prefix length or address alone.

Two possible disadvantages of mutating binary search imme-
diately present themselves. First, precomputing optimal trees can
increase the time to insert a new prefix. Second, the storage re-
quired to store an optimal binary tree for each prefix appears to be
enormous. We deal with insertion speed in Section 5. For now, we
only observe that while routes to prefixes may frequently change
in cost, the addition of a new prefix (which is the expensive case)
should be much rarer. We proceed to deal with the space issue by
compactly encoding the network of trees.

Rope A key observation is that we only need to store the sequence
of levels which binary search on a given subtrie will follow on re-
peated failures to find a match. This is because when we get a suc-
cessful match (see Figure 10) we move to a completely new subtrie
and can get the new binary search path from the new subtrie. The
sequence of levels which binary search would follow on repeated
failures is what we call the Rope of a subtrie, and can be encoded
efficiently. We call it Rope, because the Rope allows us to swing
from tree to tree in our network of interconnected binary trees.

If we consider a trie, we define the Rope for the root of the trie
node to be the sequence of trie levels we will consider when doing
binary search on the trie levels while failing at every point. This
is illustrated in Figure 12. In doing binary search we start at Level

m which is the median length of the trie. If we fail, we try at the
quartile length (say n), and if we fail at n we try at the one-eight
level (say o). The sequencem;n; o; : : : is the Rope for the trie.

m

n

o Eight Level

Quarter Level

Median Level

m

n

o

•

• • •

Figure 12: In terms of a trie, a rope for the trie node is the sequence
of lengths starting from the median length, the quartile length, and
so on, which is the same as the series of left children (see dotted
oval in binary tree on right) of a perfectly balanced binary tree on
the trie levels.

Figure 13 shows the Ropes containing the same information as
the trees in Figure 11. Note that a Rope can be stored using only
log2W (7 for IPv6) pointers. Since each pointer needs to only dis-
criminate among at most W possible levels, each pointer requires
only log2W bits. For IPv6, 64 bits of Rope is more than sufficient,
though it seems possible to get away with 32 bits of Rope in most
practical cases. Thus a Rope is usually not longer than the storage
required to store a pointer. To minimize storage in the forwarding
database, a single bit can be used to decide whether the rope or only
a pointer to a rope is stored in a node.
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Figure 13: Sample Ropes

Using the Rope as the data structure has a second advantage:
it simplifies the algorithm. A Rope can easily be followed, by just
picking pointer after pointer in the Rope, until the next hit. Each
strand in the Rope is followed in turn, until there is a hit (which
starts a new Rope), or the end of the Rope is reached.

Pseudocode for the Rope variation of Mutating Binary Search
is shown below. An element that is a prefix but not a marker (i.e.,
the “terminal” condition) specifies an empty Rope, which leads
to search termination. The algorithm is initialized with a starting



Rope. The starting Rope corresponds to the default binary search
tree. For example, using 32 bit IPv4 addresses, the starting Rope
contains the starting level 16, followed by Levels 8, 4, 2, 1. The
Levels 8, 4, 2, and 1 correspond to the “up” pointers to follow when
no matches are found in the default tree. The resulting pseudocode
(Figure 14) is elegant and simple to implement. It appears to be
simpler than the basic algorithm.

Function RopeSearch(D) (* search for addressD *)
Initialize RopeR containing the default search sequence;
Initialize BMP so far to null string;
While R is not empty do

Pull the first strand (pointer) off R and store it in i;
Extract the first L[i]:length bits of D into D0;
M := Search(D0, L[i]:hash); (* search hash table for D0 *)
If M is not nil then
BMP :=M:bmp; (* update best matching prefix so far *)
R :=M:rope; (* get the new Rope, possibly empty *)

Endif
Endwhile

Figure 14: Rope Search

4.3 Using Arrays

In cases where program complexity and memory use can be traded
for speed, it might be desirable to change the first hash table lookup
to a simple indexed array lookup, with the index being formed from
the first w0 bits of the address, with w0 being the prefix length at
which the search would be started. For example, if w0 = 16, we
would have an array for all possible 216 values of the first 16 bits of
a destination address. Each array entry for index i will contain the
bmp of i as well as a Rope which will guide binary search among
all prefixes that begin with i. An initial array lookup is not only
faster than a hash lookup, but also results in reducing the average
number of lookups (to around 0.5 using the current data sets we
have examined.)

4.4 Hardware Implementations

As we have seen in both Figure 6 and Figure 14, the search func-
tions are very simple, so ideally suited for implementation in hard-
ware. The inner component, most likely done as a hash table
in software implementations, can be implemented using (perfect)
hashing hardware such as described in [Dig95]. Alternatively, a
fast CAM could be used.

The outer loop in the Rope scheme can be implemented as a
shift register. Using multiple shift registers, it is possible to pipeline
the searches, resulting in one completed routing lookup per hash
lookup time.

5 Implementation

Besides hashing and binary search, a predominant idea in this paper
is precomputation. Every hash table entry has an associated bmp
field and (possibly) a Rope field, both of which are precomputed.
Precomputation allows fast search but requires more complex In-
sertion routines. However, as mentioned earlier, while routes to
prefixes may change frequently, the addition of a new prefix (the
expensive case) is much rarer. Thus it is worth paying a penalty for
Insertion in return for improved search speed.

5.1 Basic Scheme Built from Scratch

Setting up the data structure for the Basic Scheme is straightfor-
ward, as shown in the BuildBasic function (Figure 15, with a com-
plexity of O(N log

2
W )). For simplicity of implementation, the

list of prefixes is assumed to be sorted by increasing prefix length
in advance (O(N) using bucket sort). For optimal search perfor-
mance, the final hash tables should ensure minimal collisions.

Function BuildBasic;
For all entries in the sorted list do

Read next pair (Prefix, Length) from the list;
Let Index be the index for the Length’s hash table;
Use Basic Algorithm on what has been built by now

to find the BMP of Prefix and store it in BMP ;
Add a new prefix node for Prefix in the hash table for Index;
(* Now insert all necessary markers “above” *)
For ever do

(* Go back one level in the binary search tree *)
Clear the least significant one bit in Index;
If Index = 0 then break; (* end reached *)
Set Length to the appropriate length for Index;
Shorten Prefix to Length bits;
If there is already an entry for Prefix at Index then

Make it a marker if it isn’t already;
break; (* higher levels already do have markers *)

Else
Create a new marker Prefix at Index’ hash table;
Set it’s bmp field to BMP ;

Endif
Endfor

Endfor

Figure 15: Building for the Basic Scheme

5.2 Rope Search from Scratch

Building a Rope Search data structure balanced for optimal search
speed is more complex, since every possible binary search path
needs to be optimized. To find the bmp values associated with
markers, it helps to have an auxiliary trie. Thus we have two passes:

Pass 1 builds a conventional trie. Each trie node contains a list
of all prefix lengths used by its “child” nodes (subtree length set,
SLS). If a weighting function is being used to optimize accesses
based on known or assumed access patterns, further statistics and
forecasts should be summarized. All this additional information is
kept up-to-date while inserting, in O(NW ) time.

In the second pass, all prefixes are inserted into the hash tables,
starting with the shortest prefix: for each prefix, it’s Rope and the
BMP for it’s markers are calculated and then the markers and the
prefix are inserted. This takes O(N log

2W ), as we will see later.
Inserting from shortest to longest prefix has the nice property

that all BMPs for the newly inserted markers are identical and thus
only need to be calculated once. This can easily be seen by re-
calling that each marker is (1) a prefix of all the entries it guides
the search to, (2) that the marker’s BMP is also a prefix of the
marker, and (3) inserting entries longer than the marker’s length
cannot change it’s BMP.

There are at mostO(logW ) markers to insert for each real pre-
fix, and each prefix and marker needs a rope, which can be cal-
culated from the SLS in O(logW ).6 The overall work thus is

6using find first bit instructions; precomputedarrays would beO(1)



Algorithm Build Search Memory
Binary Search O(N logN) O(log(2N)) O(N)

Trie O(N W ) O(W ) O(N W )

Radix Trie7 O(N W ) O(W ) O(N)

Basic Scheme O(N logW ) O(logW ) O(N logW )

Asymmetric BS O(N logW ) O(logW ) O(N logW )

Rope Search O(N W ) O(logW ) O(N logW )

Ternary CAMs O(N) O(1)
8 O(N)

Table 5: Speed and Memory Usage Complexity

O(N max(W; log2(W ))). We are working on a faster and more
elegant algorithm for building the Rope Search data structure in
time O(N log

2
(W )) (that also does not require building a trie).

We will describe this and other optimizations in a future paper.
One problem for the insertion is that the number of markers for

each length is not known in advance, which makes it difficult to al-
locate memory for the hash table in advance. This problem can be
avoided by putting all entries in a single hash table and including
the prefix length in the hash calculation. Since there is an upper
limit of logW markers per real prefix. we can size the single hash
table. For typical IPv4 forwarding tables, about half of this maxi-
mum number is being used.

5.3 Insertions and Deletions

Adding and removing single entries from the tree can also be done,
but since no rebalancing occurs, the performance of the lookups
might slowly degrade over time. However, addition and deletion
are not trivial. Adding or deleting a single prefix can change the
bmp values of a large number of markers, and thus insertion is po-
tentially expensive in the worst case. Similarly, adding or deleting
a new prefix that causes a new prefix length to be added or deleted
can cause the Ropes of a number of entries to change. The simplest
solution is to batch a number of changes and do a complete build
of the search structure. Such solutions will have adequate through-
put (because whenever the build process falls behind, we will batch
more efficiently), but have poor latency. We are working on fast
incremental insertion and deletion algorithms, but we do not de-
scribe them here for want of space. Our incremental insertion and
deletion algorithms still require the tree to be rebuilt after a large
number of different inserts and deletes.

6 Performance Evaluation

Recollecting some of the data mentioned earlier, we show mea-
sured and expected performance for our scheme.

6.1 Complexity Comparison

Table 5 collects the (worst case) complexity necessary for the dif-
ferent schemes mentioned here. Be aware that these complexity
numbers do not say anything about the absolute speed or memory
usage. See Section 2 for a comparison between the schemes. For
Radix Tries, Basic Scheme, Asymmetric Binary Search, and Rope
Search, W is the number of distinct lengths. Memory complexity
is given in W bit words.

Basic Rope Array Radix
Memory usage [MB] 1.4 1.4 1.2 1.2
“Primary” Memory [MB] 0.6 0.6 0.3
First step(s) (cached) [ns] 40 40 15
Later steps (not cached) [ns] 100 110 110
Average lookup [ns] 180 100 80 1400
Worst case lookup9 [ns] 850 600 450 2000

Table 6: Performance Comparison

6.2 Measurements for IPv4

So far we have described how long our algorithm takes (in the av-
erage or worst case) in terms of the number of hash computations
required. It remains to quantify the time taken for a computation on
an arbitrary prefix length using software. To do so, we ran the fol-
lowing experiments on a 200 MHz Pentium Pro from C code using
the compiler’s maximum optimization (Table 6). The forwarding
table was the same 33,000 entry forwarding table [Mer96] used be-
fore.

Basic Scheme Memory usage is close to 1.2 MByte, for the pri-
mary data structures (the most commonly accessed hash tables for
length 8, 16, and 24) fit mostly into second level cache, so the first
two steps (which is the average number needed) are very likely to
be found in the cache. Later steps, seldom needed, will be remark-
ably slower.

Rope Search Although the average number of search levels and
thus the number of marker entries needed decreases, the memory
needed per node increases.

Rope Search starting with Array Lookup This array fully fits
into the cache, leaving ample space for the hash tables. The array
lookup is much quicker, and there will be less total lookups needed
than for the Rope scheme.

Radix Tries The Radix Trie functions were extracted from opti-
mized NetBSD kernel code and put into user space for measure-
ment.

6.3 Projections for IP Version 6

IPv6 address assignment principles have not been finally decided
upon. However, three methods are currently being discussed in the
IPng working group of the Internet Engineering Task Force (IETF).
All of them use hierarchical schemes to provide as much rout-
ing aggregation as possible: provider-based addressing [R+97],
geographical addressing, and “GSE” (Global, Site, End-system)
[O’D97].

All these schemes help to reduce routing information. In the op-
timal case of a strictly hierarchical environment, it can go down to a
handful of entries. But with massive growth of the Internet together
with the increasing forces for connectivity to multiple ISPs (“mul-
tihoming”) and meshing between the ISPs, we expect the routing
tables to grow. Another new feature of IPv6, Anycast addresses
[HD96, DH96], may (depending on how popular they will become)
add a very large number of host routes and other routes with very
long prefixes.



So most sites will still have to cope with a large number of rout-
ing entries at different prefix lengths. There is likely to be more dis-
tinct prefix lengths, so the improvements achieved by binary search
will be similar or better than those achieved on IPv4.

For the array access improvement shown in Section 4.3, the im-
provement may not be as dramatic as for IPv4. Although it will im-
prove performance for IPv6, it is less attractive, because addresses
will be longer. Good starting points may require rather large pre-
fixes (i.e. 24 bits or longer). With 2

24 necessary entries, it is no
longer feasible to have a whole array stored in memory, requiring
us to select a less optimal starting point to still gain improvement
from the array access. Depending on the actual data, this may still
be a win. All other optimizations are expected to yield similar im-
provements.

7 Conclusions and Future Work

We have designed a new algorithm for best matching search. The
best matching prefix problem has been around for twenty years in
theoretical computer science; to the best of our knowledge, the best
theoretical algorithms are based on tries. While inefficient algo-
rithms based on hashing [Skl93] were known, we have discovered
an extremely efficient algorithm that scales with the logarithm of
the address size and so is very close to the theoretical limit of
O(log logN).

Our algorithm contains both intellectual and practical contri-
butions. On the intellectual side, after the basic notion of binary
searching on hash tables, we found that we had to add markers and
use precomputation, to ensure logarithmic time in the worst-case.
Algorithms that only use binary search of hash tables are unlikely
to provide logarithmic time in the worst case. Among our opti-
mizations, we single out mutating binary trees as an aesthetically
pleasing idea that leverages off the extra structure inherent in our
particular form of binary search.

On the practical side, we have a fast, scalable solution for IP
lookups that can be implemented in either software or hardware.
Our software projections for IPv4 are 80 ns and we expect 150–
200 ns for IPv6. Our average case speed projections are based
on the structure of existing routing databases that we examined.
We expect most of the characteristics of this address structure to
strengthen in the future, especially with the transition to IPv6.
Even if our predictions, based on the little evidence available to-
day, should prove to be wrong, the overall performance can easily
be restricted to that of the basic algorithm which already performs
well.

With algorithms such as ours, we believe that there is no more
reason for router throughputs to be limited by the speed of their
lookup engine. We also do not believe that hardware lookup en-
gines are required because our algorithm can be implemented in
software and still perform well. For similar reasons, we do not be-
lieve that there is a compelling need for protocol changes to avoid
lookups as proposed in Tag and IP Switching. Even if these proto-
col changes were accepted, fast lookup algorithms such as ours are
likely to be needed at several places in the network.

Future work on our algorithm includes theoretical work on a
choice of balancing function, hopefully yielding an improvement
over our ad-hoc heuristic functions. Other avenues of research in-
clude the choice of a heuristic function based on actual network
traffic, and work on faster insertion algorithms. We are also trying
to optimize the building and modification processes. Our algorithm
belongs to a class of algorithms that speed up search at the expense
of insertion; we are looking for other applications and generaliza-
tions of our algorithm.

In spite of potential improvements, we believe our algorithm
is ready for practical use. To prove this, it will be incorporated
into the Crossbow project [D+97], a joint project between ETH
and Washington University. The goal of Crossbow is to build a
extensible framework for IPv6 as well as a high-speed IPv6 cell-
switched router with QoS guarantees.
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