
Beej’s Guide to Network Programming

Using Internet Sockets

Brian "Beej" Hall
beej@piratehaven.org

Copyright © 1995-2001 by Brian "Beej" Hall

Revision History
Revision Version 1.0.0 August, 1995 Revised by: beej
Initial version.
Revision Version 1.5.5 January 13, 1999 Revised by: beej
Latest HTML version.
Revision Version 2.0.0 March 6, 2001 Revised by: beej
Converted to DocBook XML, corrections, additions.
Revision Version 2.1.0 May 3, 2001 Revised by: beej
Fixed buffer overruns in client.c and listener.c, made server.c robustly reap zombies, added email policy.

Table of Contents
1. Intro ..3

1.1. Audience...3
1.2. Platform and Compiler...3
1.3. Official Homepage...3
1.4. Note for Solaris/SunOS Programmers...3
1.5. Note for Windows Programmers..3
1.6. Email Policy...4
1.7. Mirroring..4
1.8. Note for Translators..5
1.9. Copyright and Distribution...5

2. What is a socket?...5

2.1. Two Types of Internet Sockets...6
2.2. Low level Nonsense and Network Theory...7

3. struct s and Data Handling..8

3.1. Convert the Natives!...9
3.2. IP Addresses and How to Deal With Them..10

4. System Calls or Bust...12

4.1.socket() –Get the File Descriptor!...12

4.2.bind() –What port am I on?..12
4.3.connect() –Hey, you!...14
4.4. listen() –Will somebody please call me?...16
4.5.accept() –"Thank you for calling port 3490."...16
4.6.send() andrecv() –Talk to me, baby!..18
4.7.sendto() andrecvfrom() –Talk to me, DGRAM-style..19
4.8.close() andshutdown() –Get outta my face!..19
4.9.getpeername() –Who are you?...20
4.10.gethostname() –Who am I?..20
4.11. DNS–You say "whitehouse.gov", I say "198.137.240.92"...21

5. Client-Server Background...23

5.1. A Simple Stream Server...23
5.2. A Simple Stream Client..26
5.3. Datagram Sockets...27

6. Slightly Advanced Techniques...30

6.1. Blocking...30
6.2.select() –Synchronous I/O Multiplexing..31
6.3. Handling Partialsend() s..37
6.4. Son of Data Encapsulation...38

7. More References..40

7.1.man Pages..40
7.2. Books..41
7.3. Web References..41
7.4. RFCs...41

8. Common Questions...42

9. Disclaimer and Call for Help ...44

1. Intro
Hey! Socket programming got you down? Is this stuff just a little too difficult to figure out from theman pages? You
want to do cool Internet programming, but you don’t have time to wade through a gob ofstruct s trying to figure
out if you have to callbind() before youconnect() , etc., etc.

Well, guess what! I’ve already done this nasty business, and I’m dying to share the information with everyone!
You’ve come to the right place. This document should give the average competent C programmer the edge s/he needs
to get a grip on this networking noise.

1.1. Audience
This document has been written as a tutorial, not a reference. It is probably at its best when read by individuals who
are just starting out with socket programming and are looking for a foothold. It is certainly not thecompleteguide to
sockets programming, by any means.

Hopefully, though, it’ll be just enough for those man pages to start making sense...:-)

1.2. Platform and Compiler
The code contained within this document was compiled on a Linux PC using Gnu’sgcccompiler. It should, however,
build on just about any platform that usesgcc. Naturally, this doesn’t apply if you’re programming for Windows–see
thesection on Windows programming, below.

1.3. Official Homepage
This official location of this document is at California State University, Chico, at
http://www.ecst.csuchico.edu/~beej/guide/net/ 1.

1.4. Note for Solaris/SunOS Programmers
When compiling for Solaris or SunOS, you need to specify some extra command-line switches for linking in the
proper libraries. In order to do this, simply add "-lnsl -lsocket -lresolv " to the end of the compile command,
like so:

$ cc -o server server.c -lnsl -lsocket -lresolv

If you still get errors, you could try further adding a "-lxnet " to the end of that command line. I don’t know what
that does, exactly, but some people seem to need it.

As I don’t have a Sun box, I haven’t tested any of the above information–it’s just what people have told me through
email.

3

Beej’s Guide to Network Programming

1.5. Note for Windows Programmers
I have a particular dislike for Windows, and encourage you to try Linux, BSD, or Unix instead. That being said, you
can still use this stuff under Windows.

First, ignore pretty much all of the system header files I mention in here. All you need to include is:

#include <winsock.h>

Wait! You also have to make a call toWSAStartup() before doing anything else with the sockets library. The code
to do that looks something like this:

#include <winsock.h>

{
WSAData wsaData;

if (WSAStartup(MAKEWORD(1, 1), &wsaData) != 0) {
fprintf(stderr, "WSAStartup failed.\n");
exit(1);

}

Once you do that, the rest of the examples in this tutorial should generally apply, with a few exceptions. For one
thing, you can’t useclose() to close a socket–you need to useclosesocket() , instead. Also,select() only
works with socket descriptors, not file descriptors (like0 for stdin).

To get more information about Winsock, read the Winsock FAQ2 and go from there.

1.6. Email Policy
I’m generally available to help out with email questions so feel free to write in, but I can’t guarantee a response. I lead
a pretty busy life and there are times when I just can’t answer a question you have. When that’s the case, I usually
just delete the message. It’s nothing personal; I just won’t ever have the time to give the detailed answer you require.

As a rule, the more complex the question, the less likely I am to respond. If you can narrow down your question
before mailing it and be sure to include any pertinent information (like platform, compiler, error messages you’re
getting, and anything else you think might help me troubleshoot), you’re much more likely to get a response.

If not, hack on it some more, try to find the answer, and if it’s still elusive, then write me again with the information
you’ve found and hopefully it will be enough for me to help out.

Now that I’ve badgered you about how to write and not write me, I’d just like to let you know that Ifully appreciate
all the praise the guide has received over the years. It’s a real morale boost, and it gladdens me to hear that it is being
used for good!:) Thank you!

4

Beej’s Guide to Network Programming

1.7. Mirroring
You are more than welcome to mirror this site, whether publically or privately. If you publically mirror the site and
want me to link to it from the main page, drop me a line at <beej@piratehaven.org >.

1.8. Note for Translators
If you want to translate the guide into another language, write me at <beej@piratehaven.org > and I’ll link to
your translation from the main page.

Feel free to add your name and email address to the translation.

1.9. Copyright and Distribution
Beej’s Guide to Network Programming is Copyright © 1995-2001 Brian "Beej" Hall.

This guide may be freely reprinted in any medium provided that its content is not altered, it is presented in its
entirety, and this copyright notice remains intact.

Educators are especially encouraged to recommend or supply copies of this guide to their students.

This guide may be freely translated into any language, provided the translation is accurate, and the guide is reprinted
in its entirety. The translation may also include the name and contact information for the translator.

The C source code presented in this document is hereby granted to the public domain.

Contact <beej@piratehaven.org > for more information.

2. What is a socket?
You hear talk of "sockets" all the time, and perhaps you are wondering just what they are exactly. Well, they’re this: a
way to speak to other programs using standard Unix file descriptors.

What?

Ok–you may have heard some Unix hacker state, "Jeez,everythingin Unix is a file!" What that person may have
been talking about is the fact that when Unix programs do any sort of I/O, they do it by reading or writing to a file
descriptor. A file descriptor is simply an integer associated with an open file. But (and here’s the catch), that file can
be a network connection, a FIFO, a pipe, a terminal, a real on-the-disk file, or just about anything else. Everything in
Unix is a file! So when you want to communicate with another program over the Internet you’re gonna do it through
a file descriptor, you’d better believe it.

"Where do I get this file descriptor for network communication, Mr. Smarty-Pants?" is probably the last question on
your mind right now, but I’m going to answer it anyway: You make a call to thesocket() system routine. It returns

5

Beej’s Guide to Network Programming

the socket descriptor, and you communicate through it using the specializedsend() andrecv() (man send3, man
recv4) socket calls.

"But, hey!" you might be exclaiming right about now. "If it’s a file descriptor, why in the name of Neptune can’t I
just use the normalread() andwrite() calls to communicate through the socket?" The short answer is, "You can!"
The longer answer is, "You can, butsend() andrecv() offer much greater control over your data transmission."

What next? How about this: there are all kinds of sockets. There are DARPA Internet addresses (Internet Sockets),
path names on a local node (Unix Sockets), CCITT X.25 addresses (X.25 Sockets that you can safely ignore), and
probably many others depending on which Unix flavor you run. This document deals only with the first: Internet
Sockets.

2.1. Two Types of Internet Sockets
What’s this? There are two types of Internet sockets? Yes. Well, no. I’m lying. There are more, but I didn’t want to
scare you. I’m only going to talk about two types here. Except for this sentence, where I’m going to tell you that
"Raw Sockets" are also very powerful and you should look them up.

All right, already. What are the two types? One is "Stream Sockets"; the other is "Datagram Sockets", which may
hereafter be referred to as "SOCK_STREAM" and "SOCK_DGRAM", respectively. Datagram sockets are sometimes called
"connectionless sockets". (Though they can beconnect() ’d if you really want. Seeconnect() , below.)

Stream sockets are reliable two-way connected communication streams. If you output two items into the socket in
the order "1, 2", they will arrive in the order "1, 2" at the opposite end. They will also be error free. Any errors you
do encounter are figments of your own deranged mind, and are not to be discussed here.

What uses stream sockets? Well, you may have heard of thetelnet application, yes? It uses stream sockets. All the
characters you type need to arrive in the same order you type them, right? Also, web browsers use the HTTP protocol
which uses stream sockets to get pages. Indeed, if you telnet to a web site on port 80, and type "GET /", it’ll dump
the HTML back at you!

How do stream sockets achieve this high level of data transmission quality? They use a protocol called "The
Transmission Control Protocol", otherwise known as "TCP" (see RFC-7935 for extremely detailed info on TCP.)
TCP makes sure your data arrives sequentially and error-free. You may have heard "TCP" before as the better half of
"TCP/IP" where "IP" stands for "Internet Protocol" (see RFC-7916.) IP deals primarily with Internet routing and is
not generally responsible for data integrity.

Cool. What about Datagram sockets? Why are they called connectionless? What is the deal, here, anyway? Why are
they unreliable? Well, here are some facts: if you send a datagram, it may arrive. It may arrive out of order. If it
arrives, the data within the packet will be error-free.

Datagram sockets also use IP for routing, but they don’t use TCP; they use the "User Datagram Protocol", or "UDP"
(see RFC-7687.)

Why are they connectionless? Well, basically, it’s because you don’t have to maintain an open connection as you do
with stream sockets. You just build a packet, slap an IP header on it with destination information, and send it out. No
connection needed. They are generally used for packet-by-packet transfers of information. Sample applications:tftp ,
bootp, etc.

6

Beej’s Guide to Network Programming

Figure 1. Data Encapsulation.

Ethernet IP UDP TFTP Data

"Enough!" you may scream. "How do these programs even work if datagrams might get lost?!" Well, my human
friend, each has it’s own protocol on top of UDP. For example, the tftp protocol says that for each packet that gets
sent, the recipient has to send back a packet that says, "I got it!" (an "ACK" packet.) If the sender of the original
packet gets no reply in, say, five seconds, he’ll re-transmit the packet until he finally gets an ACK. This
acknowledgment procedure is very important when implementingSOCK_DGRAMapplications.

2.2. Low level Nonsense and Network Theory
Since I just mentioned layering of protocols, it’s time to talk about how networks really work, and to show some
examples of howSOCK_DGRAMpackets are built. Practically, you can probably skip this section. It’s good
background, however.

Hey, kids, it’s time to learn aboutData Encapsulation! This is very very important. It’s so important that you might
just learn about it if you take the networks course here at Chico State;-) . Basically, it says this: a packet is born, the
packet is wrapped ("encapsulated") in a header (and rarely a footer) by the first protocol (say, the TFTP protocol),
then the whole thing (TFTP header included) is encapsulated again by the next protocol (say, UDP), then again by
the next (IP), then again by the final protocol on the hardware (physical) layer (say, Ethernet).

When another computer receives the packet, the hardware strips the Ethernet header, the kernel strips the IP and
UDP headers, the TFTP program strips the TFTP header, and it finally has the data.

Now I can finally talk about the infamousLayered Network Model. This Network Model describes a system of
network functionality that has many advantages over other models. For instance, you can write sockets programs that
are exactly the same without caring how the data is physically transmitted (serial, thin Ethernet, AUI, whatever)
because programs on lower levels deal with it for you. The actual network hardware and topology is transparent to
the socket programmer.

Without any further ado, I’ll present the layers of the full-blown model. Remember this for network class exams:

• Application

• Presentation

• Session

• Transport

• Network

• Data Link

7

Beej’s Guide to Network Programming

• Physical

The Physical Layer is the hardware (serial, Ethernet, etc.). The Application Layer is just about as far from the
physical layer as you can imagine–it’s the place where users interact with the network.

Now, this model is so general you could probably use it as an automobile repair guide if you really wanted to. A
layered model more consistent with Unix might be:

• Application Layer (telnet, ftp, etc.)

• Host-to-Host Transport Layer (TCP, UDP)

• Internet Layer (IP and routing)

• Network Access Layer (Ethernet, ATM, or whatever)

At this point in time, you can probably see how these layers correspond to the encapsulation of the original data.

See how much work there is in building a simple packet? Jeez! And you have to type in the packet headers yourself
using "cat"! Just kidding. All you have to do for stream sockets issend() the data out. All you have to do for
datagram sockets is encapsulate the packet in the method of your choosing andsendto() it out. The kernel builds
the Transport Layer and Internet Layer on for you and the hardware does the Network Access Layer. Ah, modern
technology.

So ends our brief foray into network theory. Oh yes, I forgot to tell you everything I wanted to say about routing:
nothing! That’s right, I’m not going to talk about it at all. The router strips the packet to the IP header, consults its
routing table, blah blah blah. Check out the IP RFC8 if you really really care. If you never learn about it, well, you’ll
live.

3. struct s and Data Handling
Well, we’re finally here. It’s time to talk about programming. In this section, I’ll cover various data types used by the
sockets interface, since some of them are a real bear to figure out.

First the easy one: a socket descriptor. A socket descriptor is the following type:

int

Just a regularint .

Things get weird from here, so just read through and bear with me. Know this: there are two byte orderings: most
significant byte (sometimes called an "octet") first, or least significant byte first. The former is called "Network Byte
Order". Some machines store their numbers internally in Network Byte Order, some don’t. When I say something

8

Beej’s Guide to Network Programming

has to be in Network Byte Order, you have to call a function (such ashtons()) to change it from "Host Byte Order".
If I don’t say "Network Byte Order", then you must leave the value in Host Byte Order.

(For the curious, "Network Byte Order" is also know as "Big-Endian Byte Order".)

My First StructTM–struct sockaddr . This structure holds socket address information for many types of sockets:

struct sockaddr {
unsigned short sa_family; // address family, AF_xxx
char sa_data[14]; // 14 bytes of protocol address

};

sa_family can be a variety of things, but it’ll beAF_INET for everything we do in this document.sa_data
contains a destination address and port number for the socket. This is rather unwieldy since you don’t want to
tediously pack the address in thesa_data by hand.

To deal withstruct sockaddr , programmers created a parallel structure:struct sockaddr_in ("in" for
"Internet".)

struct sockaddr_in {
short int sin_family; // Address family
unsigned short int sin_port; // Port number
struct in_addr sin_addr; // Internet address
unsigned char sin_zero[8]; // Same size as struct sockaddr

};

This structure makes it easy to reference elements of the socket address. Note thatsin_zero (which is included to
pad the structure to the length of astruct sockaddr) should be set to all zeros with the functionmemset() . Also,
and this is theimportantbit, a pointer to astruct sockaddr_in can be cast to a pointer to astruct sockaddr

and vice-versa. So even thoughsocket() wants astruct sockaddr* , you can still use astruct sockaddr_in

and cast it at the last minute! Also, notice thatsin_family corresponds tosa_family in a struct sockaddr

and should be set to "AF_INET". Finally, thesin_port andsin_addr must be inNetwork Byte Order!

"But," you object, "how can the entire structure,struct in_addr sin_addr , be in Network Byte Order?" This
question requires careful examination of the structurestruct in_addr , one of the worst unions alive:

// Internet address (a structure for historical reasons)
struct in_addr {

unsigned long s_addr;
};

Well, it usedto be a union, but now those days seem to be gone. Good riddance. So if you have declaredina to be of
typestruct sockaddr_in , thenina.sin_addr.s_addr references the 4-byte IP address (in Network Byte
Order). Note that even if your system still uses the God-awful union forstruct in_addr , you can still reference
the 4-byte IP address in exactly the same way as I did above (this due to#define s.)

9

Beej’s Guide to Network Programming

3.1. Convert the Natives!
We’ve now been lead right into the next section. There’s been too much talk about this Network to Host Byte Order
conversion–now is the time for action!

All righty. There are two types that you can convert:short (two bytes) andlong (four bytes). These functions work
for theunsigned variations as well. Say you want to convert ashort from Host Byte Order to Network Byte Order.
Start with "h" for "host", follow it with "to", then "n" for "network", and "s" for "short": h-to-n-s, orhtons() (read:
"Host to Network Short").

It’s almost too easy...

You can use every combination if "n", "h", "s", and "l" you want, not counting the really stupid ones. For example,
there is NOT astolh() ("Short to Long Host") function–not at this party, anyway. But there are:

• htons() – "Host to Network Short"

• htonl() – "Host to Network Long"

• ntohs() – "Network to Host Short"

• ntohl() – "Network to Host Long"

Now, you may think you’re wising up to this. You might think, "What do I do if I have to change byte order on a
char ?" Then you might think, "Uh, never mind." You might also think that since your 68000 machine already uses
network byte order, you don’t have to callhtonl() on your IP addresses. You would be right,BUT if you try to port
to a machine that has reverse network byte order, your program will fail. Be portable! This is a Unix world! (As
much as Bill Gates would like to think otherwise.) Remember: put your bytes in Network Byte Order before you put
them on the network.

A final point: why dosin_addr andsin_port need to be in Network Byte Order in astruct sockaddr_in ,
butsin_family does not? The answer:sin_addr andsin_port get encapsulated in the packet at the IP and
UDP layers, respectively. Thus, they must be in Network Byte Order. However, thesin_family field is only used
by the kernel to determine what type of address the structure contains, so it must be in Host Byte Order. Also, since
sin_family doesnot get sent out on the network, it can be in Host Byte Order.

3.2. IP Addresses and How to Deal With Them
Fortunately for you, there are a bunch of functions that allow you to manipulate IP addresses. No need to figure them
out by hand and stuff them in along with the« operator.

First, let’s say you have astruct sockaddr_in ina , and you have an IP address "10.12.110.57 " that you want
to store into it. The function you want to use,inet_addr() , converts an IP address in numbers-and-dots notation
into an unsigned long. The assignment can be made as follows:

ina.sin_addr.s_addr = inet_addr("10.12.110.57");

10

Beej’s Guide to Network Programming

Notice thatinet_addr() returns the address in Network Byte Order already–you don’t have to callhtonl() .
Swell!

Now, the above code snippet isn’t very robust because there is no error checking. See,inet_addr() returns-1 on
error. Remember binary numbers?(unsigned)-1 just happens to correspond to the IP address
255.255.255.255 ! That’s the broadcast address! Wrongo. Remember to do your error checking properly.

Actually, there’s a cleaner interface you can use instead ofinet_addr() : it’s called inet_aton() ("aton" means
"ascii to network"):

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int inet_aton(const char *cp, struct in_addr *inp);

And here’s a sample usage, while packing astruct sockaddr_in (this example will make more sense to you
when you get to the sections onbind() andconnect() .)

struct sockaddr_in my_addr;

my_addr.sin_family = AF_INET; // host byte order
my_addr.sin_port = htons(MYPORT); // short, network byte order
inet_aton("10.12.110.57", &(my_addr.sin_addr));
memset(&(my_addr.sin_zero), ’\0’, 8); // zero the rest of the struct

inet_aton() , unlike practically every other socket-related function, returns non-zero on success, and zero on
failure. (If someone knows why, please tell me.) And the address is passed back ininp .

Unfortunately, not all platforms implementinet_aton() so, although its use is preferred, the older more common
inet_addr() is used in this guide.

All right, now you can convert string IP addresses to their binary representations. What about the other way around?
What if you have astruct in_addr and you want to print it in numbers-and-dots notation? In this case, you’ll
want to use the functioninet_ntoa() ("ntoa" means "network to ascii") like this:

printf("%s", inet_ntoa(ina.sin_addr));

That will print the IP address. Note thatinet_ntoa() takes astruct in_addr as an argument, not along . Also
notice that it returns a pointer to a char. This points to a statically stored char array withininet_ntoa() so that each
time you callinet_ntoa() it will overwrite the last IP address you asked for. For example:

char *a1, *a2;
.
.
a1 = inet_ntoa(ina1.sin_addr); // this is 192.168.4.14
a2 = inet_ntoa(ina2.sin_addr); // this is 10.12.110.57
printf("address 1: %s\n",a1);
printf("address 2: %s\n",a2);

11

Beej’s Guide to Network Programming

will print:

address 1: 10.12.110.57
address 2: 10.12.110.57

If you need to save the address,strcpy() it to your own character array.

That’s all on this topic for now. Later, you’ll learn to convert a string like "whitehouse.gov" into its corresponding IP
address (seeDNS, below.)

4. System Calls or Bust
This is the section where we get into the system calls that allow you to access the network functionality of a Unix
box. When you call one of these functions, the kernel takes over and does all the work for you automagically.

The place most people get stuck around here is what order to call these things in. In that, theman pages are no use,
as you’ve probably discovered. Well, to help with that dreadful situation, I’ve tried to lay out the system calls in the
following sections inexactly(approximately) the same order that you’ll need to call them in your programs.

That, coupled with a few pieces of sample code here and there, some milk and cookies (which I fear you will have to
supply yourself), and some raw guts and courage, and you’ll be beaming data around the Internet like the Son of Jon
Postel!

4.1. socket() –Get the File Descriptor!
I guess I can put it off no longer–I have to talk about thesocket() system call. Here’s the breakdown:

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

But what are these arguments? First,domain should be set to "AF_INET", just like in thestruct sockaddr_in

(above.) Next, thetype argument tells the kernel what kind of socket this is:SOCK_STREAMor SOCK_DGRAM.
Finally, just setprotocol to "0" to havesocket() choose the correct protocol based on thetype . (Notes: there
are many moredomain s than I’ve listed. There are many moretype s than I’ve listed. See thesocket() man
page. Also, there’s a "better" way to get theprotocol . See thegetprotobyname() man page.)

socket() simply returns to you a socket descriptor that you can use in later system calls, or-1 on error. The global
variableerrno is set to the error’s value (see theperror() man page.)

Fine, but what good is it? The answer is that it’s really no good by itself, and you need to read on and make more
system calls for it to make any sense.

12

Beej’s Guide to Network Programming

4.2. bind() –What port am I on?
Once you have a socket, you might have to associate that socket with a port on your local machine. (This is
commonly done if you’re going tolisten() for incoming connections on a specific port–MUDs do this when they
tell you to "telnet to x.y.z port 6969".) The port number is used by the kernel to match an incoming packet to a
certain process’s socket descriptor. If you’re going to only be doing aconnect() , this may be unnecessary. Read it
anyway, just for kicks.

Here is the synopsis for thebind() system call:

#include <sys/types.h>
#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

sockfd is the socket file descriptor returned bysocket() . my_addr is a pointer to astruct sockaddr that
contains information about your address, namely, port and IP address.addrlen can be set tosizeof(struct

sockaddr) .

Whew. That’s a bit to absorb in one chunk. Let’s have an example:

#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define MYPORT 3490

main()
{

int sockfd;
struct sockaddr_in my_addr;

sockfd = socket(AF_INET, SOCK_STREAM, 0); // do some error checking!

my_addr.sin_family = AF_INET; // host byte order
my_addr.sin_port = htons(MYPORT); // short, network byte order
my_addr.sin_addr.s_addr = inet_addr("10.12.110.57");
memset(&(my_addr.sin_zero), ’\0’, 8); // zero the rest of the struct

// don’t forget your error checking for bind():
bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));
.
.
.

13

Beej’s Guide to Network Programming

There are a few things to notice here:my_addr.sin_port is in Network Byte Order. So is
my_addr.sin_addr.s_addr . Another thing to watch out for is that the header files might differ from system to
system. To be sure, you should check your localman pages.

Lastly, on the topic ofbind() , I should mention that some of the process of getting your own IP address and/or port
can can be automated:

my_addr.sin_port = 0; // choose an unused port at random
my_addr.sin_addr.s_addr = INADDR_ANY; // use my IP address

See, by settingmy_addr.sin_port to zero, you are tellingbind() to choose the port for you. Likewise, by
settingmy_addr.sin_addr.s_addr to INADDR_ANY, you are telling it to automatically fill in the IP address of
the machine the process is running on.

If you are into noticing little things, you might have seen that I didn’t putINADDR_ANYinto Network Byte Order!
Naughty me. However, I have inside info:INADDR_ANYis really zero! Zero still has zero on bits even if you
rearrange the bytes. However, purists will point out that there could be a parallel dimension whereINADDR_ANYis,
say, 12 and that my code won’t work there. That’s ok with me:

my_addr.sin_port = htons(0); // choose an unused port at random
my_addr.sin_addr.s_addr = htonl(INADDR_ANY); // use my IP address

Now we’re so portable you probably wouldn’t believe it. I just wanted to point that out, since most of the code you
come across won’t bother runningINADDR_ANYthroughhtonl() .

bind() also returns-1 on error and setserrno to the error’s value.

Another thing to watch out for when callingbind() : don’t go underboard with your port numbers. All ports below
1024 are RESERVED (unless you’re the superuser)! You can have any port number above that, right up to 65535
(provided they aren’t already being used by another program.)

Sometimes, you might notice, you try to rerun a server andbind() fails, claiming "Address already in use." What
does that mean? Well, a bit a of socket that was connected is still hanging around in the kernel, and it’s hogging the
port. You can either wait for it to clear (a minute or so), or add code to your program allowing it to reuse the port,
like this:

int yes=1;

// lose the pesky "Address already in use" error message
if (setsockopt(listener,SOL_SOCKET,SO_REUSEADDR,&yes,sizeof(int)) == -1) {

perror("setsockopt");
exit(1);

}

One small extra final note aboutbind() : there are times when you won’t absolutely have to call it. If you are
connect() ing to a remote machine and you don’t care what your local port is (as is the case withtelnet where you
only care about the remote port), you can simply callconnect() , it’ll check to see if the socket is unbound, and will
bind() it to an unused local port if necessary.

14

Beej’s Guide to Network Programming

4.3. connect() –Hey, you!
Let’s just pretend for a few minutes that you’re a telnet application. Your user commands you (just like in the movie
TRON) to get a socket file descriptor. You comply and callsocket() . Next, the user tells you to connect to
"10.12.110.57 " on port "23" (the standard telnet port.) Yow! What do you do now?

Lucky for you, program, you’re now perusing the section onconnect() –how to connect to a remote host. So read
furiously onward! No time to lose!

Theconnect() call is as follows:

#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

sockfd is our friendly neighborhood socket file descriptor, as returned by thesocket() call, serv_addr is a
struct sockaddr containing the destination port and IP address, andaddrlen can be set tosizeof(struct

sockaddr) .

Isn’t this starting to make more sense? Let’s have an example:

#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define DEST_IP "10.12.110.57"
#define DEST_PORT 23

main()
{

int sockfd;
struct sockaddr_in dest_addr; // will hold the destination addr

sockfd = socket(AF_INET, SOCK_STREAM, 0); // do some error checking!

dest_addr.sin_family = AF_INET; // host byte order
dest_addr.sin_port = htons(DEST_PORT); // short, network byte order
dest_addr.sin_addr.s_addr = inet_addr(DEST_IP);
memset(&(dest_addr.sin_zero), ’\0’, 8); // zero the rest of the struct

// don’t forget to error check the connect()!
connect(sockfd, (struct sockaddr *)&dest_addr, sizeof(struct sockaddr));
.
.
.

Again, be sure to check the return value fromconnect() –it’ll return -1 on error and set the variableerrno .

15

Beej’s Guide to Network Programming

Also, notice that we didn’t callbind() . Basically, we don’t care about our local port number; we only care where
we’re going (the remote port). The kernel will choose a local port for us, and the site we connect to will
automatically get this information from us. No worries.

4.4. listen() –Will somebody please call me?
Ok, time for a change of pace. What if you don’t want to connect to a remote host. Say, just for kicks, that you want
to wait for incoming connections and handle them in some way. The process is two step: first youlisten() , then
you accept() (see below.)

The listen call is fairly simple, but requires a bit of explanation:

int listen(int sockfd, int backlog);

sockfd is the usual socket file descriptor from thesocket() system call.backlog is the number of connections
allowed on the incoming queue. What does that mean? Well, incoming connections are going to wait in this queue
until you accept() them (see below) and this is the limit on how many can queue up. Most systems silently limit
this number to about 20; you can probably get away with setting it to5 or 10.

Again, as per usual,listen() returns-1 and setserrno on error.

Well, as you can probably imagine, we need to callbind() before we calllisten() or the kernel will have us
listening on a random port. Bleah! So if you’re going to be listening for incoming connections, the sequence of
system calls you’ll make is:

socket();
bind();
listen();
/* accept() goes here */

I’ll just leave that in the place of sample code, since it’s fairly self-explanatory. (The code in theaccept() section,
below, is more complete.) The really tricky part of this whole sha-bang is the call toaccept() .

4.5. accept() –"Thank you for calling port 3490."
Get ready–theaccept() call is kinda weird! What’s going to happen is this: someone far far away will try to
connect() to your machine on a port that you arelisten() ing on. Their connection will be queued up waiting to
beaccept() ed. You callaccept() and you tell it to get the pending connection. It’ll return to you abrand new
socket file descriptorto use for this single connection! That’s right, suddenly you havetwo socket file descriptorsfor
the price of one! The original one is still listening on your port and the newly created one is finally ready tosend()

andrecv() . We’re there!

The call is as follows:

#include <sys/socket.h>

16

Beej’s Guide to Network Programming

int accept(int sockfd, void *addr, int *addrlen);

sockfd is thelisten() ing socket descriptor. Easy enough.addr will usually be a pointer to a localstruct

sockaddr_in . This is where the information about the incoming connection will go (and with it you can determine
which host is calling you from which port).addrlen is a local integer variable that should be set to
sizeof(struct sockaddr_in) before its address is passed toaccept() . Accept will not put more than that
many bytes intoaddr . If it puts fewer in, it’ll change the value ofaddrlen to reflect that.

Guess what?accept() returns-1 and setserrno if an error occurs. Betcha didn’t figure that.

Like before, this is a bunch to absorb in one chunk, so here’s a sample code fragment for your perusal:

#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define MYPORT 3490 // the port users will be connecting to

#define BACKLOG 10 // how many pending connections queue will hold

main()
{

int sockfd, new_fd; // listen on sock_fd, new connection on new_fd
struct sockaddr_in my_addr; // my address information
struct sockaddr_in their_addr; // connector’s address information
int sin_size;

sockfd = socket(AF_INET, SOCK_STREAM, 0); // do some error checking!

my_addr.sin_family = AF_INET; // host byte order
my_addr.sin_port = htons(MYPORT); // short, network byte order
my_addr.sin_addr.s_addr = INADDR_ANY; // auto-fill with my IP
memset(&(my_addr.sin_zero), ’\0’, 8); // zero the rest of the struct

// don’t forget your error checking for these calls:
bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));

listen(sockfd, BACKLOG);

sin_size = sizeof(struct sockaddr_in);
new_fd = accept(sockfd, &their_addr, &sin_size);
.
.
.

17

Beej’s Guide to Network Programming

Again, note that we will use the socket descriptornew_fd for all send() andrecv() calls. If you’re only getting
one single connection ever, you canclose() the listeningsockfd in order to prevent more incoming connections
on the same port, if you so desire.

4.6. send() and recv() –Talk to me, baby!
These two functions are for communicating over stream sockets or connected datagram sockets. If you want to use
regular unconnected datagram sockets, you’ll need to see the section onsendto() andrecvfrom() , below.

Thesend() call:

int send(int sockfd, const void *msg, int len, int flags);

sockfd is the socket descriptor you want to send data to (whether it’s the one returned bysocket() or the one you
got with accept() .) msg is a pointer to the data you want to send, andlen is the length of that data in bytes. Just
setflags to 0. (See thesend() man page for more information concerning flags.)

Some sample code might be:

char *msg = "Beej was here!";
int len, bytes_sent;
.
.
len = strlen(msg);
bytes_sent = send(sockfd, msg, len, 0);
.
.
.

send() returns the number of bytes actually sent out–this might be less than the number you told it to send!See,
sometimes you tell it to send a whole gob of data and it just can’t handle it. It’ll fire off as much of the data as it can,
and trust you to send the rest later. Remember, if the value returned bysend() doesn’t match the value inlen , it’s
up to you to send the rest of the string. The good news is this: if the packet is small (less than 1K or so) it will
probablymanage to send the whole thing all in one go. Again,-1 is returned on error, anderrno is set to the error
number.

Therecv() call is similar in many respects:

int recv(int sockfd, void *buf, int len, unsigned int flags);

sockfd is the socket descriptor to read from,buf is the buffer to read the information into,len is the maximum
length of the buffer, andflags can again be set to0. (See therecv() man page for flag information.)

recv() returns the number of bytes actually read into the buffer, or-1 on error (witherrno set, accordingly.)

Wait! recv() can return0. This can mean only one thing: the remote side has closed the connection on you! A
return value of0 is recv() ’s way of letting you know this has occurred.

18

Beej’s Guide to Network Programming

There, that was easy, wasn’t it? You can now pass data back and forth on stream sockets! Whee! You’re a Unix
Network Programmer!

4.7. sendto() and recvfrom() –Talk to me, DGRAM-style
"This is all fine and dandy," I hear you saying, "but where does this leave me with unconnected datagram sockets?"
No problemo, amigo. We have just the thing.

Since datagram sockets aren’t connected to a remote host, guess which piece of information we need to give before
we send a packet? That’s right! The destination address! Here’s the scoop:

int sendto(int sockfd, const void *msg, int len, unsigned int flags,
const struct sockaddr *to, int tolen);

As you can see, this call is basically the same as the call tosend() with the addition of two other pieces of
information.to is a pointer to astruct sockaddr (which you’ll probably have as astruct sockaddr_in and
cast it at the last minute) which contains the destination IP address and port.tolen can simply be set to
sizeof(struct sockaddr) .

Just like withsend() , sendto() returns the number of bytes actually sent (which, again, might be less than the
number of bytes you told it to send!), or-1 on error.

Equally similar arerecv() andrecvfrom() . The synopsis ofrecvfrom() is:

int recvfrom(int sockfd, void *buf, int len, unsigned int flags,
struct sockaddr *from, int *fromlen);

Again, this is just likerecv() with the addition of a couple fields.from is a pointer to a localstruct sockaddr

that will be filled with the IP address and port of the originating machine.fromlen is a pointer to a localint that
should be initialized tosizeof(struct sockaddr) . When the function returns,fromlen will contain the length
of the address actually stored infrom .

recvfrom() returns the number of bytes received, or-1 on error (witherrno set accordingly.)

Remember, if youconnect() a datagram socket, you can then simply usesend() andrecv() for all your
transactions. The socket itself is still a datagram socket and the packets still use UDP, but the socket interface will
automatically add the destination and source information for you.

4.8. close() and shutdown() –Get outta my face!
Whew! You’ve beensend() ing andrecv() ing data all day long, and you’ve had it. You’re ready to close the
connection on your socket descriptor. This is easy. You can just use the regular Unix file descriptorclose()

function:

close(sockfd);

19

Beej’s Guide to Network Programming

This will prevent any more reads and writes to the socket. Anyone attempting to read or write the socket on the
remote end will receive an error.

Just in case you want a little more control over how the socket closes, you can use theshutdown() function. It
allows you to cut off communication in a certain direction, or both ways (just likeclose() does.) Synopsis:

int shutdown(int sockfd, int how);

sockfd is the socket file descriptor you want to shutdown, andhow is one of the following:

• 0 – Further receives are disallowed

• 1 – Further sends are disallowed

• 2 – Further sends and receives are disallowed (likeclose())

shutdown() returns0 on success, and-1 on error (witherrno set accordingly.)

If you deign to useshutdown() on unconnected datagram sockets, it will simply make the socket unavailable for
furthersend() andrecv() calls (remember that you can use these if youconnect() your datagram socket.)

It’s important to note thatshutdown() doesn’t actually close the file descriptor–it just changes its usability. To free
a socket descriptor, you need to useclose() .

Nothing to it.

4.9. getpeername() –Who are you?
This function is so easy.

It’s so easy, I almost didn’t give it it’s own section. But here it is anyway.

The functiongetpeername() will tell you who is at the other end of a connected stream socket. The synopsis:

#include <sys/socket.h>

int getpeername(int sockfd, struct sockaddr *addr, int *addrlen);

sockfd is the descriptor of the connected stream socket,addr is a pointer to astruct sockaddr (or astruct

sockaddr_in) that will hold the information about the other side of the connection, andaddrlen is a pointer to an
int , that should be initialized tosizeof(struct sockaddr) .

The function returns-1 on error and setserrno accordingly.

Once you have their address, you can useinet_ntoa() or gethostbyaddr() to print or get more information.
No, you can’t get their login name. (Ok, ok. If the other computer is running an ident daemon, this is possible. This,
however, is beyond the scope of this document. Check out RFC-14139 for more info.)

20

Beej’s Guide to Network Programming

4.10. gethostname() –Who am I?
Even easier thangetpeername() is the functiongethostname() . It returns the name of the computer that your
program is running on. The name can then be used bygethostbyname() , below, to determine the IP address of
your local machine.

What could be more fun? I could think of a few things, but they don’t pertain to socket programming. Anyway,
here’s the breakdown:

#include <unistd.h>

int gethostname(char *hostname, size_t size);

The arguments are simple:hostname is a pointer to an array of chars that will contain the hostname upon the
function’s return, andsize is the length in bytes of thehostname array.

The function returns0 on successful completion, and-1 on error, settingerrno as usual.

4.11. DNS–You say "whitehouse.gov", I say "198.137.240.92"
In case you don’t know what DNS is, it stands for "Domain Name Service". In a nutshell, you tell it what the
human-readable address is for a site, and it’ll give you the IP address (so you can use it withbind() , connect() ,
sendto() , or whatever you need it for.) This way, when someone enters:

$ telnet whitehouse.gov

telnet can find out that it needs toconnect() to "198.137.240.92".

But how does it work? You’ll be using the functiongethostbyname() :

#include <netdb.h>

struct hostent *gethostbyname(const char *name);

As you see, it returns a pointer to astruct hostent , the layout of which is as follows:

struct hostent {
char *h_name;
char **h_aliases;
int h_addrtype;
int h_length;
char **h_addr_list;

};
#define h_addr h_addr_list[0]

And here are the descriptions of the fields in thestruct hostent :

• h_name – Official name of the host.

21

Beej’s Guide to Network Programming

• h_aliases – A NULL-terminated array of alternate names for the host.

• h_addrtype – The type of address being returned; usuallyAF_INET .

• h_length – The length of the address in bytes.

• h_addr_list – A zero-terminated array of network addresses for the host. Host addresses are in Network Byte
Order.

• h_addr – The first address inh_addr_list .

gethostbyname() returns a pointer to the filledstruct hostent , or NULL on error. (Buterrno is not
set–h_errno is set instead. Seeherror() , below.)

But how is it used? Sometimes (as we find from reading computer manuals), just spewing the information at the
reader is not enough. This function is certainly easier to use than it looks.

Here’s an example program10:

/*
** getip.c - a hostname lookup demo
*/

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int main(int argc, char *argv[])
{

struct hostent *h;

if (argc != 2) { // error check the command line
fprintf(stderr,"usage: getip address\n");
exit(1);

}

if ((h=gethostbyname(argv[1])) == NULL) { // get the host info
herror("gethostbyname");
exit(1);

}

printf("Host name : %s\n", h->h_name);
printf("IP Address : %s\n", inet_ntoa(*((struct in_addr *)h->h_addr)));

return 0;
}

22

Beej’s Guide to Network Programming

Figure 2. Client-Server Interaction.

Client Server

request

response

With gethostbyname() , you can’t useperror() to print error message (sinceerrno is not used). Instead, call
herror() .

It’s pretty straightforward. You simply pass the string that contains the machine name ("whitehouse.gov") to
gethostbyname() , and then grab the information out of the returnedstruct hostent .

The only possible weirdness might be in the printing of the IP address, above.h->h_addr is achar* , but
inet_ntoa() wants astruct in_addr passed to it. So I casth->h_addr to astruct in_addr* , then
dereference it to get at the data.

5. Client-Server Background
It’s a client-server world, baby. Just about everything on the network deals with client processes talking to server
processes and vice-versa. Taketelnet, for instance. When you connect to a remote host on port 23 with telnet (the
client), a program on that host (calledtelnetd, the server) springs to life. It handles the incoming telnet connection,
sets you up with a login prompt, etc.

The exchange of information between client and server is summarized inFigure 2.

Note that the client-server pair can speakSOCK_STREAM, SOCK_DGRAM, or anything else (as long as they’re speaking
the same thing.) Some good examples of client-server pairs aretelnet/telnetd, ftp /ftpd , or bootp/bootpd. Every
time you useftp , there’s a remote program,ftpd , that serves you.

Often, there will only be one server on a machine, and that server will handle multiple clients usingfork() . The
basic routine is: server will wait for a connection,accept() it, andfork() a child process to handle it. This is what
our sample server does in the next section.

5.1. A Simple Stream Server
All this server does is send the string "Hello, World!\n " out over a stream connection. All you need to do to test
this server is run it in one window, and telnet to it from another with:

$ telnet remotehostname 3490

whereremotehostname is the name of the machine you’re running it on.

23

Beej’s Guide to Network Programming

The server code11: (Note: a trailing backslash on a line means that the line is continued on the next.)

/*
** server.c - a stream socket server demo
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/wait.h>
#include <signal.h>

#define MYPORT 3490 // the port users will be connecting to

#define BACKLOG 10 // how many pending connections queue will hold

void sigchld_handler(int s)
{

while(wait(NULL) > 0);
}

int main(void)
{

int sockfd, new_fd; // listen on sock_fd, new connection on new_fd
struct sockaddr_in my_addr; // my address information
struct sockaddr_in their_addr; // connector’s address information
int sin_size;
struct sigaction sa;
int yes=1;

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror("socket");
exit(1);

}

if (setsockopt(sockfd,SOL_SOCKET,SO_REUSEADDR,&yes,sizeof(int)) == -1) {
perror("setsockopt");
exit(1);

}

my_addr.sin_family = AF_INET; // host byte order
my_addr.sin_port = htons(MYPORT); // short, network byte order

24

Beej’s Guide to Network Programming

my_addr.sin_addr.s_addr = INADDR_ANY; // automatically fill with my IP
bzero(&(my_addr.sin_zero), 8); // zero the rest of the struct

if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr))
== -1) {

perror("bind");
exit(1);

}

if (listen(sockfd, BACKLOG) == -1) {
perror("listen");
exit(1);

}

sa.sa_handler = sigchld_handler; // reap all dead processes
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
if (sigaction(SIGCHLD, &sa, NULL) == -1) {

perror("sigaction");
exit(1);

}

while(1) { // main accept() loop
sin_size = sizeof(struct sockaddr_in);
if ((new_fd = accept(sockfd, (struct sockaddr *)&their_addr,

&sin_size)) == -1) {
perror("accept");
continue;

}
printf("server: got connection from %s\n",

inet_ntoa(their_addr.sin_addr));
if (!fork()) { // this is the child process

close(sockfd); // child doesn’t need the listener
if (send(new_fd, "Hello, world!\n", 14, 0) == -1)

perror("send");
close(new_fd);
exit(0);

}
close(new_fd); // parent doesn’t need this

}

return 0;
}

In case you’re curious, I have the code in one bigmain() function for (I feel) syntactic clarity. Feel free to split it
into smaller functions if it makes you feel better.

25

Beej’s Guide to Network Programming

(Also, this wholesigaction() thing might be new to you–that’s ok. The code that’s there is responsible for reaping
zombie processes that appear as thefork() ed child processes exit. If you make lots of zombies and don’t reap them,
your system administrator will become agitated.)

You can get the data from this server by using the client listed in the next section.

5.2. A Simple Stream Client
This guy’s even easier than the server. All this client does is connect to the host you specify on the command line,
port 3490. It gets the string that the server sends.

The client source12:

/*
** client.c - a stream socket client demo
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <netdb.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define PORT 3490 // the port client will be connecting to

#define MAXDATASIZE 100 // max number of bytes we can get at once

int main(int argc, char *argv[])
{

int sockfd, numbytes;
char buf[MAXDATASIZE];
struct hostent *he;
struct sockaddr_in their_addr; // connector’s address information

if (argc != 2) {
fprintf(stderr,"usage: client hostname\n");
exit(1);

}

if ((he=gethostbyname(argv[1])) == NULL) { // get the host info
perror("gethostbyname");
exit(1);

}

26

Beej’s Guide to Network Programming

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror("socket");
exit(1);

}

their_addr.sin_family = AF_INET; // host byte order
their_addr.sin_port = htons(PORT); // short, network byte order
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
bzero(&(their_addr.sin_zero), 8); // zero the rest of the struct

if (connect(sockfd, (struct sockaddr *)&their_addr,
sizeof(struct sockaddr)) == -1) {

perror("connect");
exit(1);

}

if ((numbytes=recv(sockfd, buf, MAXDATASIZE-1, 0)) == -1) {
perror("recv");
exit(1);

}

buf[numbytes] = ’\0’;

printf("Received: %s",buf);

close(sockfd);

return 0;
}

Notice that if you don’t run the server before you run the client,connect() returns "Connection refused". Very
useful.

5.3. Datagram Sockets
I really don’t have that much to talk about here, so I’ll just present a couple of sample programs:talker.c and
listener.c .

listener sits on a machine waiting for an incoming packet on port 4950.talker sends a packet to that port, on the
specified machine, that contains whatever the user enters on the command line.

Here is the source forlistener.c 13:

/*
** listener.c - a datagram sockets "server" demo
*/

27

Beej’s Guide to Network Programming

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#define MYPORT 4950 // the port users will be connecting to

#define MAXBUFLEN 100

int main(void)
{

int sockfd;
struct sockaddr_in my_addr; // my address information
struct sockaddr_in their_addr; // connector’s address information
int addr_len, numbytes;
char buf[MAXBUFLEN];

if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
perror("socket");
exit(1);

}

my_addr.sin_family = AF_INET; // host byte order
my_addr.sin_port = htons(MYPORT); // short, network byte order
my_addr.sin_addr.s_addr = INADDR_ANY; // automatically fill with my IP
bzero(&(my_addr.sin_zero), 8); // zero the rest of the struct

if (bind(sockfd, (struct sockaddr *)&my_addr,
sizeof(struct sockaddr)) == -1) {

perror("bind");
exit(1);

}

addr_len = sizeof(struct sockaddr);
if ((numbytes=recvfrom(sockfd,buf, MAXBUFLEN-1, 0,

(struct sockaddr *)&their_addr, &addr_len)) == -1) {
perror("recvfrom");
exit(1);

}

printf("got packet from %s\n",inet_ntoa(their_addr.sin_addr));
printf("packet is %d bytes long\n",numbytes);

28

Beej’s Guide to Network Programming

buf[numbytes] = ’\0’;
printf("packet contains \"%s\"\n",buf);

close(sockfd);

return 0;
}

Notice that in our call tosocket() we’re finally usingSOCK_DGRAM. Also, note that there’s no need tolisten()

or accept() . This is one of the perks of using unconnected datagram sockets!

Next comes the source fortalker.c 14:

/*
** talker.c - a datagram "client" demo
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define MYPORT 4950 // the port users will be connecting to

int main(int argc, char *argv[])
{

int sockfd;
struct sockaddr_in their_addr; // connector’s address information
struct hostent *he;
int numbytes;

if (argc != 3) {
fprintf(stderr,"usage: talker hostname message\n");
exit(1);

}

if ((he=gethostbyname(argv[1])) == NULL) { // get the host info
perror("gethostbyname");
exit(1);

}

if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {

29

Beej’s Guide to Network Programming

perror("socket");
exit(1);

}

their_addr.sin_family = AF_INET; // host byte order
their_addr.sin_port = htons(MYPORT); // short, network byte order
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
bzero(&(their_addr.sin_zero), 8); // zero the rest of the struct

if ((numbytes=sendto(sockfd, argv[2], strlen(argv[2]), 0,
(struct sockaddr *)&their_addr, sizeof(struct sockaddr))) == -1) {

perror("recvfrom");
exit(1);

}

printf("sent %d bytes to %s\n", numbytes,
inet_ntoa(their_addr.sin_addr));

close(sockfd);

return 0;
}

And that’s all there is to it! Runlistener on some machine, then runtalker on another. Watch them communicate!
Fun G-rated excitement for the entire nuclear family!

Except for one more tiny detail that I’ve mentioned many times in the past: connected datagram sockets. I need to
talk about this here, since we’re in the datagram section of the document. Let’s say thattalker callsconnect() and
specifies thelistener’s address. From that point on,talker may only sent to and receive from the address specified by
connect() . For this reason, you don’t have to usesendto() andrecvfrom() ; you can simply usesend() and
recv() .

6. Slightly Advanced Techniques
These aren’treally advanced, but they’re getting out of the more basic levels we’ve already covered. In fact, if you’ve
gotten this far, you should consider yourself fairly accomplished in the basics of Unix network programming!
Congratulations!

So here we go into the brave new world of some of the more esoteric things you might want to learn about sockets.
Have at it!

30

Beej’s Guide to Network Programming

6.1. Blocking
Blocking. You’ve heard about it–now what the heck is it? In a nutshell, "block" is techie jargon for "sleep". You
probably noticed that when you runlistener, above, it just sits there until a packet arrives. What happened is that it
calledrecvfrom() , there was no data, and sorecvfrom() is said to "block" (that is, sleep there) until some data
arrives.

Lots of functions block.accept() blocks. All therecv() functions block. The reason they can do this is because
they’re allowed to. When you first create the socket descriptor withsocket() , the kernel sets it to blocking. If you
don’t want a socket to be blocking, you have to make a call tofcntl() :

#include <unistd.h>
#include <fcntl.h>
.
.
sockfd = socket(AF_INET, SOCK_STREAM, 0);
fcntl(sockfd, F_SETFL, O_NONBLOCK);
.
.

By setting a socket to non-blocking, you can effectively "poll" the socket for information. If you try to read from a
non-blocking socket and there’s no data there, it’s not allowed to block–it will return-1 anderrno will be set to
EWOULDBLOCK.

Generally speaking, however, this type of polling is a bad idea. If you put your program in a busy-wait looking for
data on the socket, you’ll suck up CPU time like it was going out of style. A more elegant solution for checking to
see if there’s data waiting to be read comes in the following section onselect() .

6.2. select() –Synchronous I/O Multiplexing
This function is somewhat strange, but it’s very useful. Take the following situation: you are a server and you want to
listen for incoming connections as well as keep reading from the connections you already have.

No problem, you say, just anaccept() and a couple ofrecv() s. Not so fast, buster! What if you’re blocking on an
accept() call? How are you going torecv() data at the same time? "Use non-blocking sockets!" No way! You
don’t want to be a CPU hog. What, then?

select() gives you the power to monitor several sockets at the same time. It’ll tell you which ones are ready for
reading, which are ready for writing, and which sockets have raised exceptions, if you really want to know that.

Without any further ado, I’ll offer the synopsis ofselect() :

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select(int numfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

31

Beej’s Guide to Network Programming

The function monitors "sets" of file descriptors; in particularreadfds , writefds , andexceptfds . If you want
to see if you can read from standard input and some socket descriptor,sockfd , just add the file descriptors0 and
sockfd to the setreadfds . The parameternumfds should be set to the values of the highest file descriptor plus
one. In this example, it should be set tosockfd+1 , since it is assuredly higher than standard input (0).

Whenselect() returns,readfds will be modified to reflect which of the file descriptors you selected which is
ready for reading. You can test them with the macroFD_ISSET() , below.

Before progressing much further, I’ll talk about how to manipulate these sets. Each set is of the typefd_set . The
following macros operate on this type:

• FD_ZERO(fd_set *set) – clears a file descriptor set

• FD_SET(int fd, fd_set *set) – addsfd to the set

• FD_CLR(int fd, fd_set *set) – removesfd from the set

• FD_ISSET(int fd, fd_set *set) – tests to see iffd is in the set

Finally, what is this weirded outstruct timeval ? Well, sometimes you don’t want to wait forever for someone to
send you some data. Maybe every 96 seconds you want to print "Still Going..." to the terminal even though nothing
has happened. This time structure allows you to specify a timeout period. If the time is exceeded andselect() still
hasn’t found any ready file descriptors, it’ll return so you can continue processing.

Thestruct timeval has the follow fields:

struct timeval {
int tv_sec; // seconds
int tv_usec; // microseconds

};

Just settv_sec to the number of seconds to wait, and settv_usec to the number of microseconds to wait. Yes,
that’smicroseconds, not milliseconds. There are 1,000 microseconds in a millisecond, and 1,000 milliseconds in a
second. Thus, there are 1,000,000 microseconds in a second. Why is it "usec"? The "u" is supposed to look like the
Greek letterµ (Mu) that we use for "micro". Also, when the function returns,timeout mightbe updated to show
the time still remaining. This depends on what flavor of Unix you’re running.

Yay! We have a microsecond resolution timer! Well, don’t count on it. Standard Unix timeslice is around 100
milliseconds, so you might have to wait that long no matter how small you set yourstruct timeval .

Other things of interest: If you set the fields in yourstruct timeval to 0, select() will timeout immediately,
effectively polling all the file descriptors in your sets. If you set the parametertimeout to NULL, it will never
timeout, and will wait until the first file descriptor is ready. Finally, if you don’t care about waiting for a certain set,
you can just set it to NULL in the call toselect() .

The following code snippet15 waits 2.5 seconds for something to appear on standard input:

/*
** select.c - a select() demo
*/

32

Beej’s Guide to Network Programming

#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

#define STDIN 0 // file descriptor for standard input

int main(void)
{

struct timeval tv;
fd_set readfds;

tv.tv_sec = 2;
tv.tv_usec = 500000;

FD_ZERO(&readfds);
FD_SET(STDIN, &readfds);

// don’t care about writefds and exceptfds:
select(STDIN+1, &readfds, NULL, NULL, &tv);

if (FD_ISSET(STDIN, &readfds))
printf("A key was pressed!\n");

else
printf("Timed out.\n");

return 0;
}

If you’re on a line buffered terminal, the key you hit should be RETURN or it will time out anyway.

Now, some of you might think this is a great way to wait for data on a datagram socket–and you are right: itmight
be. Some Unices can use select in this manner, and some can’t. You should see what your local man page says on the
matter if you want to attempt it.

Some Unices update the time in yourstruct timeval to reflect the amount of time still remaining before a
timeout. But others do not. Don’t rely on that occurring if you want to be portable. (Usegettimeofday() if you
need to track time elapsed. It’s a bummer, I know, but that’s the way it is.)

What happens if a socket in the read set closes the connection? Well, in that case,select() returns with that socket
descriptor set as "ready to read". When you actually dorecv() from it, recv() will return 0. That’s how you know
the client has closed the connection.

One more note of interest aboutselect() : if you have a socket that islisten() ing, you can check to see if there
is a new connection by putting that socket’s file descriptor in thereadfds set.

And that, my friends, is a quick overview of the almightyselect() function.

But, by popular demand, here is an in-depth example. Unfortunately, the difference between the dirt-simple example,
above, and this one here is significant. But have a look, then read the description that follows it.

33

Beej’s Guide to Network Programming

This program16 acts like a simple multi-user chat server. Start it running in one window, thentelnet to it ("telnet
hostname 9034") from multiple other windows. When you type something in onetelnet session, it should appear in
all the others.

/*
** selectserver.c - a cheezy multiperson chat server
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#define PORT 9034 // port we’re listening on

int main(void)
{

fd_set master; // master file descriptor list
fd_set read_fds; // temp file descriptor list for select()
struct sockaddr_in myaddr; // server address
struct sockaddr_in remoteaddr; // client address
int fdmax; // maximum file descriptor number
int listener; // listening socket descriptor
int newfd; // newly accept()ed socket descriptor
char buf[256]; // buffer for client data
int nbytes;
int yes=1; // for setsockopt() SO_REUSEADDR, below
int addrlen;
int i, j;

FD_ZERO(&master); // clear the master and temp sets
FD_ZERO(&read_fds);

// get the listener
if ((listener = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

perror("socket");
exit(1);

}

// lose the pesky "address already in use" error message
if (setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &yes,

sizeof(int)) == -1) {
perror("setsockopt");
exit(1);

}

34

Beej’s Guide to Network Programming

// bind
myaddr.sin_family = AF_INET;
myaddr.sin_addr.s_addr = INADDR_ANY;
myaddr.sin_port = htons(PORT);
memset(&(myaddr.sin_zero), ’\0’, 8);
if (bind(listener, (struct sockaddr *)&myaddr, sizeof(myaddr)) == -1) {

perror("bind");
exit(1);

}

// listen
if (listen(listener, 10) == -1) {

perror("listen");
exit(1);

}

// add the listener to the master set
FD_SET(listener, &master);

// keep track of the biggest file descriptor
fdmax = listener; // so far, it’s this one

// main loop
for(;;) {

read_fds = master; // copy it
if (select(fdmax+1, &read_fds, NULL, NULL, NULL) == -1) {

perror("select");
exit(1);

}

// run through the existing connections looking for data to read
for(i = 0; i <= fdmax; i++) {

if (FD_ISSET(i, &read_fds)) { // we got one!!
if (i == listener) {

// handle new connections
addrlen = sizeof(remoteaddr);
if ((newfd = accept(listener, &remoteaddr, &addrlen)) == -1) {

perror("accept");
} else {

FD_SET(newfd, &master); // add to master set
if (newfd > fdmax) { // keep track of the maximum

fdmax = newfd;
}
printf("selectserver: new connection from %s on "

"socket %d\n", inet_ntoa(remoteaddr.sin_addr), newfd);
}

} else {

35

Beej’s Guide to Network Programming

// handle data from a client
if ((nbytes = recv(i, buf, sizeof(buf), 0)) <= 0) {

// got error or connection closed by client
if (nbytes == 0) {

// connection closed
printf("selectserver: socket %d hung up\n", i);

} else {
perror("recv");

}
close(i); // bye!
FD_CLR(i, &master); // remove from master set

} else {
// we got some data from a client
for(j = 0; j <= fdmax; j++) {

// send to everyone!
if (FD_ISSET(j, &master)) {

// except the listener and ourselves
if (j != listener && j != i) {

if (send(j, buf, nbytes, 0) == -1) {
perror("send");

}
}

}
}

}
} // it’s SO UGLY!

}
}

}

return 0;
}

Notice I have two file descriptor sets in the code:master andread_fds . The first,master , holds all the socket
descriptors that are currently connected, as well as the socket descriptor that is listening for new connections.

The reason I have themaster set is thatselect() actuallychangesthe set you pass into it to reflect which sockets
are ready to read. Since I have to keep track of the connections from one call ofselect() to the next, I must store
these safely away somewhere. At the last minute, I copy themaster into theread_fds , and then callselect() .

But doesn’t this mean that every time I get a new connection, I have to add it to themaster set? Yup! And every
time a connection closes, I have to remove it from themaster set? Yes, it does.

Notice I check to see when thelistener socket is ready to read. When it is, it means I have a new connection
pending, and Iaccept() it and add it to themaster set. Similarly, when a client connection is ready to read, and
recv() returns0, I know the client has closed the connection, and I must remove it from themaster set.

If the clientrecv() returns non-zero, though, I know some data has been received. So I get it, and then go through
themaster list and send that data to all the rest of the connected clients.

36

Beej’s Guide to Network Programming

And that, my friends, is a less-than-simple overview of the almightyselect() function.

6.3. Handling Partial send() s
Remember back in thesection aboutsend() , above, when I said thatsend() might not send all the bytes you asked
it to? That is, you want it to send 512 bytes, but it returns 412. What happened to the remaining 100 bytes?

Well, they’re still in your little buffer waiting to be sent out. Due to circumstances beyond your control, the kernel
decided not to send all the data out in one chunk, and now, my friend, it’s up to you to get the data out there.

You could write a function like this to do it, too:

#include <sys/types.h>
#include <sys/socket.h>

int sendall(int s, char *buf, int *len)
{

int total = 0; // how many bytes we’ve sent
int bytesleft = *len; // how many we have left to send
int n;

while(total < *len) {
n = send(s, buf+total, bytesleft, 0);
if (n == -1) { break; }
total += n;
bytesleft -= n;

}

*len = total; // return number actually sent here

return n==-1?-1:0; // return -1 on failure, 0 on success
}

In this example,s is the socket you want to send the data to,buf is the buffer containing the data, andlen is a
pointer to anint containing the number of bytes in the buffer.

The function returns-1 on error (anderrno is still set from the call tosend() .) Also, the number of bytes actually
sent is returned inlen . This will be the same number of bytes you asked it to send, unless there was an error.
sendall() will do it’s best, huffing and puffing, to send the data out, but if there’s an error, it gets back to you right
away.

For completeness, here’s a sample call to the function:

char buf[10] = "Beej!";
int len;

len = strlen(buf);
if (sendall(s, buf, &len) == -1) {

37

Beej’s Guide to Network Programming

perror("sendall");
printf("We only sent %d bytes because of the error!\n", len);

}

What happens on the receiver’s end when part of a packet arrives? If the packets are variable length, how does the
receiver know when one packet ends and another begins? Yes, real-world scenarios are a royal pain in the donkeys.
You probably have toencapsulate(remember that from thedata encapsulation sectionway back there at the
beginning?) Read on for details!

6.4. Son of Data Encapsulation
What does it really mean to encapsulate data, anyway? In the simplest case, it means you’ll stick a header on there
with either some identifying information or a packet length, or both.

What should your header look like? Well, it’s just some binary data that represents whatever you feel is necessary to
complete your project.

Wow. That’s vague.

Okay. For instance, let’s say you have a multi-user chat program that usesSOCK_STREAMs. When a user types
("says") something, two pieces of information need to be transmitted to the server: what was said and who said it.

So far so good? "What’s the problem?" you’re asking.

The problem is that the messages can be of varying lengths. One person named "tom" might say, "Hi", and another
person named "Benjamin" might say, "Hey guys what is up?"

So yousend() all this stuff to the clients as it comes in. Your outgoing data stream looks like this:

t o m H i B e n j a m i n H e y g u y s w h a t i s u p ?

And so on. How does the client know when one message starts and another stops? You could, if you wanted, make
all messages the same length and just call thesendall() we implemented,above. But that wastes bandwidth! We
don’t want tosend() 1024 bytes just so "tom" can say "Hi".

So weencapsulatethe data in a tiny header and packet structure. Both the client and server know how to pack and
unpack (sometimes referred to as "marshal" and "unmarshal") this data. Don’t look now, but we’re starting to define
aprotocolthat describes how a client and server communicate!

In this case, let’s assume the user name is a fixed length of 8 characters, padded with’\0’ . And then let’s assume the
data is variable length, up to a maximum of 128 characters. Let’s have a look a sample packet structure that we might
use in this situation:

1. len (1 byte, unsigned) – The total length of the packet, counting the 8-byte user name and chat data.

2. name (8 bytes) – The user’s name, NUL-padded if necessary.

3. chatdata (n-bytes) – The data itself, no more than 128 bytes. The length of the packet should be calculated as
the length of this data plus 8 (the length of the name field, above).

38

Beej’s Guide to Network Programming

Why did I choose the 8-byte and 128-byte limits for the fields? I pulled them out of the air, assuming they’d be long
enough. Maybe, though, 8 bytes is too restrictive for your needs, and you can have a 30-byte name field, or whatever.
The choice is up to you.

Using the above packet definition, the first packet would consist of the following information (in hex and ASCII):

0A 74 6F 6D 00 00 00 00 00 48 69
(length) T o m (padding) H i

And the second is similar:

14 42 65 6E 6A 61 6D 69 6E 48 65 79 20 67 75 79 73 20 77 ...
(length) B e n j a m i n H e y g u y s w ...

(The length is stored in Network Byte Order, of course. In this case, it’s only one byte so it doesn’t matter, but
generally speaking you’ll want all your binary integers to be stored in Network Byte Order in your packets.)

When you’re sending this data, you should be safe and use a command similar tosendall() , above, so you know
all the data is sent, even if it takes multiple calls tosend() to get it all out.

Likewise, when you’re receiving this data, you need to do a bit of extra work. To be safe, you should assume that you
might receive a partial packet (like maybe we receive "00 14 42 65 6E " from Benjamin, above, but that’s all we
get in this call torecv()). We need to callrecv() over and over again until the packet is completely received.

But how? Well, we know the number of bytes we need to receive in total for the packet to be complete, since that
number is tacked on the front of the packet. We also know the maximum packet size is 1+8+128, or 137 bytes
(because that’s how we defined the packet.)

What you can do is declare an array big enough for two packets. This is your work array where you will reconstruct
packets as they arrive.

Every time yourecv() data, you’ll feed it into the work buffer and check to see if the packet is complete. That is,
the number of bytes in the buffer is greater than or equal to the length specified in the header (+1, because the length
in the header doesn’t include the byte for the length itself.) If the number of bytes in the buffer is less than 1, the
packet is not complete, obviously. You have to make a special case for this, though, since the first byte is garbage and
you can’t rely on it for the correct packet length.

Once the packet is complete, you can do with it what you will. Use it, and remove it from your work buffer.

Whew! Are you juggling that in your head yet? Well, here’s the second of the one-two punch: you might have read
past the end of one packet and onto the next in a singlerecv() call. That is, you have a work buffer with one
complete packet, and an incomplete part of the next packet! Bloody heck. (But this is why you made your work
buffer large enough to holdtwopackets–in case this happened!)

Since you know the length of the first packet from the header, and you’ve been keeping track of the number of bytes
in the work buffer, you can subtract and calculate how many of the bytes in the work buffer belong to the second
(incomplete) packet. When you’ve handled the first one, you can clear it out of the work buffer and move the partial
second packed down the to front of the buffer so it’s all ready to go for the nextrecv() .

(Some of you readers will note that actually moving the partial second packet to the beginning of the work buffer
takes time, and the program can be coded to not require this by using a circular buffer. Unfortunately for the rest of

39

Beej’s Guide to Network Programming

you, a discussion on circular buffers is beyond the scope of this article. If you’re still curious, grab a data structures
book and go from there.)

I never said it was easy. Ok, I did say it was easy. And it is; you just need practice and pretty soon it’ll come to you
naturally. By Excalibur I swear it!

7. More References
You’ve come this far, and now you’re screaming for more! Where else can you go to learn more about all this stuff?

7.1. man Pages
Try the following man pages, for starters:

• htonl() 17

• htons() 18

• ntohl() 19

• ntohs() 20

• inet_aton() 21

• inet_addr() 22

• inet_ntoa() 23

• socket() 24

• socket options 25

• bind() 26

• connect() 27

• listen() 28

• accept() 29

• send() 30

• recv() 31

• sendto() 32

• recvfrom() 33

• close() 34

• shutdown() 35

40

Beej’s Guide to Network Programming

• getpeername() 36

• getsockname() 37

• gethostbyname() 38

• gethostbyaddr() 39

• getprotobyname() 40

• fcntl() 41

• select() 42

• perror() 43

• gettimeofday() 44

7.2. Books
Also, look up the following books45:

Internetworking with TCP/IP, volumes I-IIIby Douglas E. Comer and David L. Stevens. Published by Prentice Hall.
Second edition ISBNs: 0-13-468505-9, 0-13-472242-6, 0-13-474222-2. There is a third edition of this set which
covers IPv6 and IP over ATM.

Using C on the UNIX Systemby David A. Curry. Published by O’Reilly & Associates, Inc. ISBN 0-937175-23-4.

TCP/IP Network Administrationby Craig Hunt. Published by O’Reilly & Associates, Inc. ISBN 0-937175-82-X.

TCP/IP Illustrated, volumes 1-3by W. Richard Stevens and Gary R. Wright. Published by Addison Wesley. ISBNs:
0-201-63346-9, 0-201-63354-X, 0-201-63495-3.

Unix Network Programmingby W. Richard Stevens. Published by Prentice Hall. ISBN 0-13-949876-1.

7.3. Web References
On the web:

BSD Sockets: A Quick And Dirty Primer46 (has other great Unix system programming info, too!)

The Unix Socket FAQ47

Client-Server Computing48

Intro to TCP/IP49 (gopher)

Internet Protocol Frequently Asked Questions50

The Winsock FAQ51

41

Beej’s Guide to Network Programming

7.4. RFCs
RFCs52–the real dirt:

RFC-76853–The User Datagram Protocol (UDP)

RFC-79154–The Internet Protocol (IP)

RFC-79355–The Transmission Control Protocol (TCP)

RFC-85456–The Telnet Protocol

RFC-95157–The Bootstrap Protocol (BOOTP)

RFC-135058–The Trivial File Transfer Protocol (TFTP)

8. Common Questions

Q: Where can I get those header files?

A: If you don’t have them on your system already, you probably don’t need them. Check the manual for your
particular platform. If you’re building for Windows, you only need to#include <winsock.h> .

Q: What do I do whenbind() reports "Address already in use"?

A: You have to usesetsockopt() with theSO_REUSEADDRoption on the listening socket. Check out thesection
on bind() and thesection onselect() for an example.

Q: How do I get a list of open sockets on the system?

A: Use thenetstat. Check theman page for full details, but you should get some good output just typing:

$ netstat

The only trick is determining which socket is associated with which program.:-)

Q: How can I tell if the remote side has closed connection?

A: You can tell becauserecv() will return 0.

Q: How do I build for Windows?

A: First, delete Windows and install Linux or BSD.};-) . No, actually, just see thesection on building for Windows
in the introduction.

42

Beej’s Guide to Network Programming

Q: How do I build for Solaris/SunOS? I keep getting linker errors when I try to compile!

A: The linker errors happen because Sun boxes don’t automatically compile in the socket libraries. See thesection
on building for Solaris/SunOSin the introduction for an example of how to do this.

Q: Why doesselect() keep falling out on a signal?

A: Signals tend to cause blocked system calls to return-1 with errno set toEINTR. When you set up a signal
handler withsigaction() , you can set the flagSA_RESTART, which is supposed to restart the system call after it
was interrupted.

Naturally, this doesn’t always work.

My favorite solution to this involves agoto statement. You know this irritates your professors to no end, so go for it!

select_restart:
if ((err = select(fdmax+1, &readfds, NULL, NULL, NULL)) == -1) {

if (errno == EINTR) {
// some signal just interrupted us, so restart
goto select_restart;

}
// handle the real error here:
perror("select");

}

Sure, you don’tneedto usegoto in this case; you can use other structures to control it. But I think thegoto

statement is actually cleaner.

Q: How can I implement a timeout on a call torecv() ?

A: Useselect() ! It allows you to specify a timeout parameter for socket descriptors that you’re looking to read
from. Or, you could wrap the entire functionality in a single function, like this:

#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>

int recvtimeout(int s, char *buf, int len, int timeout)
{

fd_set fds;
int n;
struct timeval tv;

// set up the file descriptor set
FD_ZERO(&fds);
FD_SET(s, &fds);

43

Beej’s Guide to Network Programming

// set up the struct timeval for the timeout
tv.tv_sec = timeout;
tv.tv_usec = 0;

// wait until timeout or data received
n = select(s+1, &fds, NULL, NULL, &tv);
if (n == 0) return -2; // timeout!
if (n == -1) return -1; // error

// data must be here, so do a normal recv()
return recv(s, buf, len, 0);

}

// Sample call to recvtimeout():
.
.
n = recvtimeout(s, buf, sizeof(buf), 10); // 10 second timeout

if (n == -1) {
// error occurred
perror("recvtimeout");

}
else if (n == -2) {

// timeout occurred
} else {

// got some data in buf
}
.
.

Notice thatrecvtimeout() returns-2 in case of a timeout. Why not return0? Well, if you recall, a return value of
0 on a call torecv() means that the remote side closed the connection. So that return value is already spoken for,
and-1 means "error", so I chose-2 as my timeout indicator.

9. Disclaimer and Call for Help
Well, that’s the lot of it. Hopefully at least some of the information contained within this document has been
remotely accurate and I sincerely hope there aren’t any glaring errors. Well, sure, there always are.

So, let this be a warning to you! I’m sorry if any inaccuracies contained herein have caused you any grief, but you
just can’t hold me accountable. See, I don’t stand behind a single word of this document, legally speaking. The
whole thing could be completely and utterly wrong!

44

Beej’s Guide to Network Programming

But it’s probably not. After all, I’ve spent many many hours messing with this stuff, and implemented several TCP/IP
network utilities at work, have written multiplayer game engines, and so on. But I’m not the sockets god; I’m just
some guy.

By the way, if anyone has any constructive (or destructive) criticism about this document, please send mail to
<beej@piratehaven.org > and I’ll try to make an effort to set the record straight.

In case you’re wondering why I did this, well, I did it for the money. Ha! No, really, I did it because a lot of people
have asked me socket-related questions and when I tell them I’ve been thinking about putting together a socket page,
they say, "Cool!" Besides, I feel that all this hard-earned knowledge is going to waste if I can’t share it with others.
The web just happens to be the perfect vehicle. I encourage others to provide similar information whenever possible.

Enough of this–back to coding!;-)

Notes
1. http://www.ecst.csuchico.edu/~beej/guide/net/

2. http://www.cyberport.com/~tangent/programming/winsock/

3. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/send.2.inc

4. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/recv.2.inc

5. http://www.rfc-editor.org/rfc/rfc793.txt

6. http://www.rfc-editor.org/rfc/rfc791.txt

7. http://www.rfc-editor.org/rfc/rfc768.txt

8. http://www.rfc-editor.org/rfc/rfc791.txt

9. http://www.rfc-editor.org/rfc/rfc1413.txt

10. http://www.ecst.csuchico.edu/~beej/guide/net/examples/getip.c

11. http://www.ecst.csuchico.edu/~beej/guide/net/examples/server.c

12. http://www.ecst.csuchico.edu/~beej/guide/net/examples/client.c

13. http://www.ecst.csuchico.edu/~beej/guide/net/examples/listener.c

14. http://www.ecst.csuchico.edu/~beej/guide/net/examples/talker.c

15. http://www.ecst.csuchico.edu/~beej/guide/net/examples/select.c

16. http://www.ecst.csuchico.edu/~beej/guide/net/examples/selectserver.c

17. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/htonl.3.inc

18. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/htons.3.inc

19. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/ntohl.3.inc

20. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/ntohs.3.inc

45

Beej’s Guide to Network Programming

21. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/inet_aton.3.inc

22. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/inet_addr.3.inc

23. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/inet_ntoa.3.inc

24. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/socket.2.inc

25. http://linux.com.hk/man/showman.cgi?manpath=/man/man7/socket.7.inc

26. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/bind.2.inc

27. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/connect.2.inc

28. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/listen.2.inc

29. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/accept.2.inc

30. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/send.2.inc

31. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/recv.2.inc

32. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/sendto.2.inc

33. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/recvfrom.2.inc

34. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/close.2.inc

35. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/shutdown.2.inc

36. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/getpeername.2.inc

37. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/getsockname.2.inc

38. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/gethostbyname.3.inc

39. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/gethostbyaddr.3.inc

40. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/getprotobyname.3.inc

41. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/fcntl.2.inc

42. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/select.2.inc

43. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/perror.3.inc

44. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/gettimeofday.2.inc

45. http://www.amazon.com/

46. http://www.cs.umn.edu/~bentlema/unix/

47. http://www.ibrado.com/sock-faq/

48. http://pandonia.canberra.edu.au/ClientServer/

49. gopher://gopher-chem.ucdavis.edu/11/Index/Internet_aw/Intro_the_Internet/intro.to.ip/

50. http://www-iso8859-5.stack.net/pages/faqs/tcpip/tcpipfaq.html

51. http://www.cyberport.com/~tangent/programming/winsock/

46

Beej’s Guide to Network Programming

52. http://www.rfc-editor.org/

53. http://www.rfc-editor.org/rfc/rfc768.txt

54. http://www.rfc-editor.org/rfc/rfc791.txt

55. http://www.rfc-editor.org/rfc/rfc793.txt

56. http://www.rfc-editor.org/rfc/rfc854.txt

57. http://www.rfc-editor.org/rfc/rfc951.txt

58. http://www.rfc-editor.org/rfc/rfc1350.txt

47

	Table of Contents
	1. Intro
	1.1. Audience
	1.2. Platform and Compiler
	1.3. Official Homepage
	1.4. Note for Solaris/SunOS Programmers
	1.5. Note for Windows Programmers
	1.6. Email Policy
	1.7. Mirroring
	1.8. Note for Translators
	1.9. Copyright and Distribution

	2. What is a socket?
	2.1. Two Types of Internet Sockets
	2.2. Low level Nonsense and Network Theory

	3. structs and Data Handling
	3.1. Convert the Natives!
	3.2. IP Addresses and How to Deal With Them

	4. System Calls or Bust
	4.1. socket()--Get the File Descriptor!
	4.2. bind()--What port am I on?
	4.3. connect()--Hey, you!
	4.4. listen()--Will somebody please call me?
	4.5. accept()--"Thank you for calling port 3490."
	4.6. send() and recv()--Talk to me, baby!
	4.7. sendto() and recvfrom()--Talk to me, DGRAM-style
	4.8. close() and shutdown()--Get outta my face!
	4.9. getpeername()--Who are you?
	4.10. gethostname()--Who am I?
	4.11. DNS--You say "whitehouse.gov", I say "198.137.240.92"

	5. Client-Server Background
	5.1. A Simple Stream Server
	5.2. A Simple Stream Client
	5.3. Datagram Sockets

	6. Slightly Advanced Techniques
	6.1. Blocking
	6.2. select()--Synchronous I/O Multiplexing
	6.3. Handling Partial send()s
	6.4. Son of Data Encapsulation

	7. More References
	7.1. man Pages
	7.2. Books
	7.3. Web References
	7.4. RFCs

	8. Common Questions
	9. Disclaimer and Call for Help

