HW #6

ELEN E4710 - Intro to Network Engineering
Fall 2004
Prof. Rubenstein

Due 12/6/2004

Homework must be turned in at the beginning of class on the due date indicated above. CVN students have one additional day. Late assignments will not be accepted.

1. 3 flows, \(f_1, f_2, \) and \(f_3 \) all pass through the same router \(R \). Packets from flows \(f_1 \) and \(f_2 \) arrive at \(R \) in bursts of 10 with a period of one second, packets from \(f_3 \) arrive at the router one at a time with a period of .1 seconds. Packets from all flows contain the the same number of bytes). Suppose packets from \(f_1 \) start arriving at \(R \) at time \(t = 0 \), flow \(f_2 \) at time \(t = 5 \), and flow \(f_3 \) at time \(t = 0.5 \). If each flow transmits a total of 100 packets, and the router processes a packet every 0.05 seconds, what are the completion times of the various flows when

(a) \(R \) uses FIFO (FCFS) queueing?
(b) \(R \) uses round robin?
(c) \(R \) uses weighted fair queueing where the slack (i.e., the maximum reserve that a flow can build up) is 20 packets?

2. Construct a FSM for a router that implements weighted fair queueing for two flows \(f_1 \) and \(f_2 \) where \(w_1 = 3, w_2 = 2 \), and the slack is 0.5 (where the processing of a packet from \(f_1 \) adds 1/3 to its virtual clock, and the processing of a packet from \(f_2 \) adds 1/2 to its virtual clock). Your state machine can depend on the following functions and events to simplify its design:

- \(IE() \): the queue is empty (prior to an arrival)
- \(H(i) = H(i) \) equals 0 when no packets from \(f_i \) are queued in the system, and equals 1 otherwise
- \(D() \): triggered when the router completes processing its current packet.
- \(A() \): triggered when an arrival to the router from \(f_i \) occurs (only needs to be used when the router is not processing any packets).
- \(P(i) \): process a packet from flow \(f_i \)

With these functions and events, you should build your FSM so that it indicates clearly whose packet should be processed next whenever such a decision needs to be made. (Hint: each state should indicate the current difference between the two flow’s clocks.) Suggestion: You should create functions that combine the above functions, e.g., let \(G(i) = (IE(), A(i))|D(), H(i) = 1) \).

3. Construct a Markov model for a round-robin queueing system that can store up to 4 packets for processing, where no more than 2 packets from a single flow is ever stored. Assume there are two flows in the system, where both flow’s packets are processed at rate \(\mu \), and flow \(f_i \)’s packets arrive at rate \(\lambda_i \). Label transitions with their transition probabilities.
4. Construct Markov models for each of two priority queueing systems, each processing packets from two flows. Each system can hold a total of 4 packets in total. A packet from \(f_1 \) should always be processed before any packets from \(f_2 \) in the queue. Assume both flow’s packets are processed at rate \(\mu \), and flow \(f_1 \)'s packets arrive at rate \(\lambda_1 \).

(a) In the first system, a packet from \(f_1 \) arriving to a full queue will replace a packet in the queue from \(f_2 \) (if one exists).

(b) In the second system, packets in the queue are not removed except when their processing is complete. Assume that a packet arriving from \(f_1 \) to a full queue will be turned away, even if there are packets from flow \(f_2 \) in the queue.