
1

Last Year’s COMS 4119
Computer Networking
Socket Programming

Vishal Misra
Department of Computer Science

2

Socket Programming

• What is a socket?
• Using sockets

• Types (Protocols)
• Associated functions
• Styles

• We will look at using sockets in C
• For Java, see Chapter 2.6-2.8 (optional)

• Note: Java sockets are conceptually quite similar

3

What is a socket?

• An interface between application and
network
• The application creates a socket
• The socket type dictates the style of

communication
• reliable vs. best effort
• connection-oriented vs. connectionless

• Once configured the application can
• pass data to the socket for network

transmission
• receive data from the socket (transmitted

through the network by some other host)

4

Two essential types of sockets
• SOCK_STREAM

• a.k.a. TCP
• reliable delivery
• in-order guaranteed
• connection-oriented
• bidirectional

• SOCK_DGRAM
• a.k.a. UDP
• unreliable delivery
• no order guarantees
• no notion of “connection” –

app indicates dest. for each
packet

• can send or receiveApp

socket
3 2 1 Dest.

App

socket
3 2 1

D1

D3

D2

Q: why have type SOCK_DGRAM?

5

Socket Creation in C: socket
• int s = socket(domain, type, protocol);

• s: socket descriptor, an integer (like a file-handle)
• domain: integer, communication domain

• e.g., PF_INET (IPv4 protocol) – typically used
• type: communication type

• SOCK_STREAM: reliable, 2-way, connection-based service
• SOCK_DGRAM: unreliable, connectionless,
• other values: need root permission, rarely used, or obsolete

• protocol: specifies protocol (see file /etc/protocols for a list
of options) - usually set to 0

• NOTE: socket call does not specify where data will be coming
from, nor where it will be going to – it just creates the
interface!

6

A Socket-eye view of the
Internet

• Each host machine has an IP address
• When a packet arrives at a host

soorma.cs.columbia.edu

(128.59.22.237)

cluster.cs.columbia.edu

(128.59.21.14, 128.59.16.7,
128.59.16.5, 128.59.16.4)

newworld.cs.umass.edu

(128.119.245.93)

7

Ports

Port 0

Port 1

Port 65535

• Each host has 65,536
ports

• Some ports are
reserved for specific
apps
• 20,21: FTP
• 23: Telnet
• 80: HTTP
• see RFC 1700 (about

2000 ports are
reserved)

❒ A socket provides an interface
to send data to/from the
network through a port

8

Addresses, Ports and Sockets

• Like apartments and mailboxes
• You are the application
• Your apartment building address is the address
• Your mailbox is the port
• The post-office is the network
• The socket is the key that gives you access to the right

mailbox (one difference: assume outgoing mail is placed
by you in your mailbox)

• Q: How do you choose which port a socket
connects to?

9

The bind function

• associates and (can exclusively) reserves a port
for use by the socket

• int status = bind(sockid, &addrport, size);
• status: error status, = -1 if bind failed
• sockid: integer, socket descriptor
• addrport: struct sockaddr, the (IP) address and port of the

machine (address usually set to INADDR_ANY – chooses a
local address)

• size: the size (in bytes) of the addrport structure
• bind can be skipped for both types of sockets.

When and why?

10

Skipping the bind

• SOCK_DGRAM:
• if only sending, no need to bind. The OS finds a

port each time the socket sends a pkt
• if receiving, need to bind

• SOCK_STREAM:
• destination determined during conn. setup
• don’t need to know port sending from (during

connection setup, receiving end is informed of
port)

11

Connection Setup (SOCK_STREAM)

• Recall: no connection setup for SOCK_DGRAM
• A connection occurs between two kinds of

participants
• passive: waits for an active participant to request

connection
• active: initiates connection request to passive side

• Once connection is established, passive and active
participants are “similar”
• both can send & receive data
• either can terminate the connection

12

Connection setup cont’d

• Passive participant
• step 1: listen (for

incoming requests)
• step 3: accept (a

request)
• step 4: data transfer

• The accepted
connection is on a new
socket

• The old socket
continues to listen for
other active
participants

• Why?

• Active participant

• step 2: request &
establish connection

• step 4: data transfer

Passive Participant
l-socka-sock-1 a-sock-2

Active 1
socket

Active 2
socket

13

Connection setup: listen & accept
• Called by passive participant
• int status = listen(sock, queuelen);

• status: 0 if listening, -1 if error
• sock: integer, socket descriptor
• queuelen: integer, # of active participants that can

“wait” for a connection
• listen is non-blocking: returns immediately

• int s = accept(sock, &name, &namelen);
• s: integer, the new socket (used for data-transfer)
• sock: integer, the orig. socket (being listened on)
• name: struct sockaddr, address of the active participant
• namelen: sizeof(name): value/result parameter

• must be set appropriately before call
• adjusted by OS upon return

• accept is blocking: waits for connection before returning

14

connect call

• int status = connect(sock, &name, namelen);
• status: 0 if successful connect, -1 otherwise
• sock: integer, socket to be used in connection
• name: struct sockaddr: address of passive

participant
• namelen: integer, sizeof(name)

• connect is blocking

15

Sending / Receiving Data

• With a connection (SOCK_STREAM):
• int count = send(sock, &buf, len, flags);

• count: # bytes transmitted (-1 if error)
• buf: char[], buffer to be transmitted
• len: integer, length of buffer (in bytes) to transmit
• flags: integer, special options, usually just 0

• int count = recv(sock, &buf, len, flags);
• count: # bytes received (-1 if error)
• buf: void[], stores received bytes
• len: # bytes received
• flags: integer, special options, usually just 0

• Calls are blocking [returns only after data is sent
(to socket buf) / received]

16

Sending / Receiving Data (cont’d)

• Without a connection (SOCK_DGRAM):
• int count = sendto(sock, &buf, len, flags, &addr, addrlen);

• count, sock, buf, len, flags: same as send
• addr: struct sockaddr, address of the destination
• addrlen: sizeof(addr)

• int count = recvfrom(sock, &buf, len, flags, &addr,
 &addrlen);

• count, sock, buf, len, flags: same as recv
• name: struct sockaddr, address of the source
• namelen: sizeof(name): value/result parameter

• Calls are blocking [returns only after data is sent (to
socket buf) / received]

17

close

• When finished using a socket, the socket
should be closed:

• status = close(s);
• status: 0 if successful, -1 if error
• s: the file descriptor (socket being closed)

• Closing a socket
• closes a connection (for SOCK_STREAM)
• frees up the port used by the socket

18

The struct sockaddr

• The generic:
struct sockaddr {

u_short sa_family;
char sa_data[14];

};

• sa_family
• specifies which

address family is
being used

• determines how the
remaining 14 bytes
are used

• The Internet-specific:
struct sockaddr_in {

short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};
• sin_family = AF_INET
• sin_port: port # (0-65535)
• sin_addr: IP-address
• sin_zero: unused

19

Address and port byte-ordering
• Address and port are stored as

integers
• u_short sin_port; (16 bit)
• in_addr sin_addr; (32 bit)

struct in_addr {
 u_long s_addr;
};

❒ Problem:
❍ different machines / OS’s use different word orderings

• little-endian: lower bytes first
• big-endian: higher bytes first

❍ these machines may communicate with one another over the
network

128.119.40.12

128 119 40 12

12.40.119.128

128 119 40 12

Big-Endian
machine Little-Endian

machine

WRONG!!!

20

Solution: Network Byte-Ordering
• Defs:

• Host Byte-Ordering: the byte ordering used by
a host (big or little)

• Network Byte-Ordering: the byte ordering
used by the network – always big-endian

• Any words sent through the network should be
converted to Network Byte-Order prior to
transmission (and back to Host Byte-Order once
received)

• Q: should the socket perform the conversion
automatically?

❒ Q: Given big-endian machines don’t need
conversion routines and little-endian machines do,
how do we avoid writing two versions of code?

21

UNIX’s byte-ordering funcs

• u_long htonl(u_long x);
• u_short htons(u_short x);

• u_long ntohl(u_long x);
• u_short ntohs(u_short x);

❒ On big-endian machines, these routines do nothing
❒ On little-endian machines, they reverse the byte

order

❒ Same code would have worked regardless of endian-
ness of the two machines

128.119.40.12

128 119 40 12

128.119.40.12

128 119 40 12

Big-Endian
machine Little-Endian

machine

ht
on

l ntohl

128 119 40 12 1281194012

22

Dealing with blocking calls

• Many of the functions we saw block until a certain
event
• accept: until a connection comes in
• connect: until the connection is established
• recv, recvfrom: until a packet (of data) is received
• send, sendto: until data is pushed into socket’s buffer

• Q: why not until received?

• For simple programs, blocking is convenient
• What about more complex programs?

• multiple connections
• simultaneous sends and receives
• simultaneously doing non-networking processing

23

Dealing w/ blocking (cont’d)

• Options:
• create multi-process or multi-threaded code
• turn off the blocking feature (e.g., using the fcntl file-

descriptor control function)
• use the select function call.

• What does select do?
• can be permanent blocking, time-limited blocking or non-

blocking
• input: a set of file-descriptors
• output: info on the file-descriptors’ status
• i.e., can identify sockets that are “ready for use”: calls

involving that socket will return immediately

24

select function call

• int status = select(nfds, &readfds, &writefds,
&exceptfds, &timeout);
• status: # of ready objects, -1 if error
• nfds: 1 + largest file descriptor to check
• readfds: list of descriptors to check if read-ready
• writefds: list of descriptors to check if write-ready
• exceptfds: list of descriptors to check if an

exception is registered
• timeout: time after which select returns, even if

nothing ready - can be 0 or ∞
 (point timeout parameter to NULL for ∞)

25

To be used with select:

• Recall select uses a structure, struct fd_set
• it is just a bit-vector
• if bit i is set in [readfds, writefds, exceptfds],

select will check if file descriptor (i.e. socket) i
is ready for [reading, writing, exception]

• Before calling select:
• FD_ZERO(&fdvar): clears the structure
• FD_SET(i, &fdvar): to check file desc. i

• After calling select:
• int FD_ISSET(i, &fdvar): boolean returns TRUE

iff i is “ready”

26

Other useful functions

• bzero(char* c, int n): 0’s n bytes starting at c
• gethostname(char *name, int len): gets the name of

the current host
• gethostbyaddr(char *addr, int len, int type): converts

IP hostname to structure containing long integer
• inet_addr(const char *cp): converts dotted-decimal

char-string to long integer
• inet_ntoa(const struct in_addr in): converts long to

dotted-decimal notation

• Warning: check function assumptions about byte-
ordering (host or network). Often, they assume
parameters / return solutions in network byte-
order

27

Release of ports

• Sometimes, a “rough” exit from a program (e.g.,
ctrl-c) does not properly free up a port

• Eventually (after a few minutes), the port will be
freed

• To reduce the likelihood of this problem, include
the following code:

#include <signal.h>
void cleanExit(){exit(0);}

• in socket code:
signal(SIGTERM, cleanExit);
signal(SIGINT, cleanExit);

28

Final Thoughts

• Make sure to #include the header files that
define used functions

• Check man-pages and course web-site for
additional info

