
Computer Network_Hw3 Sol 2006 spring

 1

Course: COMS W4119 Computer Network
Term: 2006 spring
Title: Homework 3 solution

1.

A. S = 2w , Receiver thinks i = i-2w ?
If the sender is sending packet (i). Because S = 2w, the lower boundary of
sender’s window must be (i-w+1), Receiver think packet(i) as packet(i-2w), but
packet(i-2w) is not inside the possible sender’s window, therefore it couldn’t
happen.

i-2w i-w+1 i

B. S = 2w , Receiver thinks i = i+2w ?
If the sender is sending packet (i). Because S = 2w, the upper boundary of
sender’s window must be (i+w-1), Receiver think packet(i) as packet(i+2w), but
packet(i+2w) is not inside the possible sender’s window, therefore it couldn’t
happen.

i i+w-1 i+2w

C. S = w+1 , Receiver thinks i=i+w+1?
If the sender is sending packet (i). Because S = w+1, the upper boundary of
sender’s window must be (i+w-1), Receiver think packet(i) as packet(i+w+1), but
packet(i+w+1) is not inside the possible sender’s window, therefore it couldn’t
happen.

i i+w-1 i+w+1

D. S = w+1 , Receiver thinks i = i-w-1 ?
If the sender is sending packet (i). Because S = w+1, the lower boundary of

Computer Network_Hw3 Sol 2006 spring

 2

sender’s window must be (i-w+1), Receiver think packet(i) as packet(i-w-1), but
packet i-w-1) is not inside the possible sender’s window, therefore it couldn’t
happen.

i-w-1 i-w+1 i

E. No matter S is increasing from 2w and w, the range of sender’s window is still lies
on [i-w+1, i+w-1], so that will hold for all cases. wSwS >≥ ,2

2.
(a) SR, S = 5 , W = 3

0 1 2 3 4 0 1 2

// Timeout resend

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1

0 1 2 3 4 0 1

// Mix up, receiver
think this is the
new pkt(0)

Computer Network_Hw3 Sol 2006 spring

 3

(b) Go-Back-N, S = 5 , W = 5

// Timeout resend
0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

// Mix up, receiver
think this is the
new pkt(2)

0 1 2 3 4 0 1 2 3 4

Computer Network_Hw3 Sol 2006 spring

 4

3. FSM (T: timeout), there is more than one way to do this problem.

−
)0(1r

−
)0(2r

Wait u1
Ack(0)

Wait u2
Ack(0)

Wait u1
Ack(1)

Wait u1
or u2
Ack(1)

−
)1(2r

−
)1(1r

)1(
)0(1

S
r

)1(
)0(2

S
r

)0(
)1(1

S
r

)0(
)1(1

S
r

−
)0(|)0(|)1(212 rrr

−
)1(|)1(|)0(212 rrr

)0(σ
t

−
)0(|)0(|)1(211 rrr

 −
)1(|)1(|)0(121 rrr

Wait u1
or u2
Ack(0)

)1(σ
t

)0(σ
t

Wait u2
Ack(1)

−
)1(|)1(12 rr

)0(σ
t

)1(σ
t

)1(σ
t

−
)1(|)1(12 rr

Computer Network_Hw3 Sol 2006 spring

 5

4.
A codeword of degree L has L data words XOR'd together, and can recover a codeword
only if (L-1) of the data forming the codeword are already received (in the buffer) and one
has not.

If L > k+1, then the probability is 0.

Otherwise,

!)!*1(
!*)!*(*)(

!)!*1)!*(1(
!!*)!*(*)(

),,(
)1,,(*)(

NLk
kLLNkN

NLLk
kLLNkN

LchooseN
LchoosekkNP

+−
−−

=

−+−
−−

=

−−
=

where (x choose y) = x! / y!(x-y)! , L means the “l” letter in the document

5.

A. N is a random variable that equals the number of packets that need to be sent in
order to receive k data packet.
And E[N] is the expected numbers of data plus repair packets that are sent to
recover the k data packets.

E[N] = ∑
∞

=

=
ki

iNpi)(*

 = () ki

ki

ki
k ppi −

∞

=

−
−∑ − *)1(** 1
1

Where ()1
1

−
−

i
k = Choose k-1 from i-1 =

)!2)!*(1(
)!1(

−−−
−

kik
i

B.
If n<k, then

() 0=≤ nNp
If n>=k, then

() ()∑
=

−−
− −=≤

n

ki

kiki
k ppnNp *)1(*1

1

for each i, the assumption is that the last packet is received in the ith round. So you have
that last (k th) arrived packet in the ith slot, and you have to "choose" where to put the
remaining k-1 packets in the other i-1 slots.

