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Course:  COMS W4119 Computer Network  
Term:  2006 spring 
Title:  Homework 3 solution 
 
1.  

A. S = 2w , Receiver thinks i = i-2w ? 
If the sender is sending packet (i). Because S = 2w, the lower boundary of 
sender’s window must be (i-w+1), Receiver think packet(i) as packet(i-2w), but 
packet(i-2w) is not inside the possible sender’s window, therefore it couldn’t 
happen. 

 

i-2w i-w+1 i

B. S = 2w , Receiver thinks i = i+2w ? 
If the sender is sending packet (i). Because S = 2w, the upper boundary of 
sender’s window must be (i+w-1), Receiver think packet(i) as packet(i+2w), but 
packet(i+2w) is not inside the possible sender’s window, therefore it couldn’t 
happen. 

 
 

i i+w-1 i+2w 

C. S = w+1 , Receiver thinks i=i+w+1? 
If the sender is sending packet (i). Because S = w+1, the upper boundary of 
sender’s window must be (i+w-1), Receiver think packet(i) as packet(i+w+1), but 
packet(i+w+1) is not inside the possible sender’s window, therefore it couldn’t 
happen. 

 
 

i i+w-1 i+w+1 

D. S = w+1 , Receiver thinks i = i-w-1 ? 
If the sender is sending packet (i). Because S = w+1, the lower boundary of 
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sender’s window must be (i-w+1), Receiver think packet(i) as packet(i-w-1), but 
packet i-w-1) is not inside the possible sender’s window, therefore it couldn’t 
happen. 

 
 

i-w-1 i-w+1 i

E. No matter S is increasing from 2w and w, the range of sender’s window is still lies 
on  [i-w+1, i+w-1], so that will hold for all cases. wSwS >≥ ,2

 
 

2.  
(a) SR, S = 5 , W = 3  
 

 

 

0 1 2 3 4 0 1 2 

// Timeout resend 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1  

0 1 2 3 4 0 1  

// Mix up, receiver 
think this is the 
new pkt(0) 
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(b) Go-Back-N, S = 5 , W = 5 
 

 
 
 
 
 
 
 
 
 
 

// Timeout resend 
0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 

0 1 2 3 4 0 1 2 3 4 

0 1 2 3 4 0 1 2 3 4 

// Mix up, receiver 
think this is the 
new pkt(2) 

0 1 2 3 4 0 1 2 3 4 
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3. FSM  (T: timeout ), there is more than one way to do this problem. 
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4.  
A codeword of degree L has L data words XOR'd together, and can recover a codeword 
only if (L-1) of the data forming the codeword are already received (in the buffer) and one 
has not. 
 
If L > k+1, then the probability is 0. 
 
Otherwise,  
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where (x choose y) = x! / y!(x-y)! , L means the “l” letter in the document 
 
5.  

A. N is a random variable that equals the number of packets that need to be sent in 
order to receive k data packet.  
And E[N] is the expected numbers of data plus repair packets that are sent to 
recover the k data packets. 
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B.  
If n<k,  then  
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If n>=k,  then  
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for each i, the assumption is that the last packet is  received in the ith round. So you have 
that last (k th) arrived packet in the ith slot, and you have to "choose" where to put the 
remaining k-1 packets in the other i-1 slots. 

 


