
Program Synthesis by Examples for Object Repositioning Tasks

Ashley Feniello, Hao Dang, and Stan Birchfield

Abstract— We address the problem of synthesizing human-
readable computer programs for robotic object repositioning
tasks based on human demonstrations. A stack-based domain
specific language (DSL) is introduced for object repositioning
tasks, and a learning algorithm is proposed to synthesize a
program in this DSL based on human demonstrations. Once the
synthesized program has been learned, it can be rapidly verified
and refined in the simulator via further demonstrations if
necessary, then finally executed on an actual robot to accomplish
the corresponding learned tasks in the physical world. By
performing demonstrations on a novel tablet interface, the
time required for teaching is greatly reduced compared with
using a real robot. Experiments show a variety of object
repositioning tasks such as sorting, kitting, and packaging can
be programmed using this approach.

I. INTRODUCTION

Commercially viable robots today require explicit pro-
gramming by a robotics expert in order to accomplish
even the most basic manipulation task. The tediousness and
difficulty of such programming greatly reduce the flexibility
of robots, making it cost-prohibitive for manipulators to be
used for anything other than highly-repetitive tasks over long
periods of time. The ability for a non-expert to train a robot
on the fly — without explicit programming — would open
up a host of new application domains.

To overcome this limitation, much attention in the research
community has been devoted over the past decade to learning
by demonstration [1]. In this paradigm, a robot is taught not
by explicit programming but rather by being guided through
the task by a human, or alternatively by watching a human
perform the task. Learning by demonstration is a broad area
of research, covering low-level sensorimotor learning [2], [3],
[4], [5], learning grounded symbols from continuous data [6],
[7], [8], learning trajectories from multiple demonstrations
[9], segmenting continuous trajectories into discrete tasks,
skills or keyframes [10], [11], [12], the role of the human
teacher [13], [14], [15], [16], learning object affordances
[17], and motion planning [18].

In this paper we propose a learning by demonstration ap-
proach using visuospatial skill learning (VSL) [19], in which
the robot learns to perform object repositioning tasks through
human demonstrations. Figure 1 illustrates the components
of our system. A camera detects the objects in the workspace
of the robot, along with their visual properties. A tablet
serves as the user interface on which the teacher demon-
strates a repositioning task in a simulated environment. Based
on one or more demonstrations, a synthesized program is

All authors are with the Robotics Group of Microsoft Research, Red-
mond, Washington, USA.

Email: {ashleyf, haodang, stanleyb}@microsoft.com

Fig. 1: Overview of our learning-by-demonstration system.
Arrows indicate control flow. During training, the teacher
interactively provides examples of desired output while view-
ing the behavior of the synthesized program via interface
with the tablet. Input examples either come from the camera
or are reshuffled by the tablet. After training, the synthesized
program is used to drive the robot to physically manipulate
objects in the workspace. (Dashed lines are used only during
training.)

generated which can be used to accomplish the task in the
workspace even with an arrangement of objects different
from the training inputs. With an additional automated step,
programs synthesized by our system are human-readable,
enabling the user to validate the logic learned or to introduce
new demonstrations to refine the learned program.

Specifically, our contributions are as follows:
• A stack-based concatenative domain-specific language

(DSL), inspired by [20], [21], for describing object
repositioning tasks that is flexible enough to handle a
wide variety of sorting, kitting, and packaging tasks.

• A learning algorithm that infers the intent of the user
from one or more demonstrations by searching for
the simplest human-readable program that achieves the
same behavior as the demonstrated behavior on the
training inputs. The program can then be applied to
novel configurations of objects, some of which the
system may never have seen.

• A tablet-based system that facilitates rapid training by
allowing multiple demonstrations to be performed, and
the resulting learned program validated, before applying
to the robot.

Our approach is similar to that of [22], which utilizes a
formal context-free grammar (CFG) containing basic pick,
place, move, and (un)grasp commands to learn assembly
tasks from demonstrations. In contrast, our system is aimed
at repositioning tasks, and our grammar includes a richer
set of commands to enable more abstract reasoning and
generalization about the objects in the scene. Our approach

is also similar to that of [8], which performs grounding of
discrete concepts from continuous data for the purpose of
generalizing to new objects and new scenarios. However,
although we do perform some grounding (e.g. by thresh-
olding the aspect ratio of objects to determine their shape),
this is not the primary focus of our system. Rather, our aim
is higher-level reasoning about the human teacher’s intent
in sorting, kitting, and packaging tasks. Compared with the
work of [19], our approach is able to operate with ambiguous
demonstrations, with varying numbers of objects that may or
may not have been seen before.

II. LANGUAGE FOR OBJECT REPOSITIONING TASKS

Our domain-specific language (DSL) for reasoning about
object repositioning tasks is a concatenative, stack-based
language that is able to concisely represent complex pro-
grams. Composing programs from permutations of well-
formed pieces by simple concatenation (no formal function
arguments to manage) has certain advantages over alternative
methods. Moreover, its implementation is itself extremely
concise (a few hundred lines in F#), making the approach
extensible and flexible. Here we describe the syntax and
semantics of the base DSL, followed by the operators that
are specific to object repositioning.

A. DSL syntax

The syntax of the DSL is provided in Figure 2. The
world consists of a state and an evaluation stack (used
by the program during execution). The state may consist of
any value, but for object repositioning tasks it captures the
objects in the workspace, along with their properties. The
properties of each object are stored in a rec, which consists
of zero or more (string, value) pairs, one per property. The
stack is a list of zero or more values, where each value
can be either a bool, float, string, or op (operator), or a
list or rec. A program is a list of zero or more values
(generally operators or their parameters) that modify the
world either directly through a primitive op or indirectly
through a compound op, which is a list of ops.1

B. DSL semantics

The semantics of some DSL operators are provided in
Figure 3, where for simplicity we show operators that
manipulate only the stack while ignoring the state. It is
important to note that compound operators need not be
named as they are here, but can also exist as anonymous
lists of operators, which are simply treated as values on the
stack. Several higher order operators consume and execute
such values. For example, predicate expressions used to filter
a list of objects, selector expressions used to group objects
by property (takebygroup), and conditionals executed by if.

The semantics of DSL execution are shown in Figure 4.
The meta-operator step takes a world (state ψ, stack [σ∗])
and program π = [v π∗] and applies the value v at the front

1Compound operators are sometimes called “quotations”. An operator
that take a quotation as one of its inputs is known as a “combinator”.

value := bool | float | string | list | rec | op
list := [value∗]
rec := {(string, value)∗}
op := primitive | compound

primitive := world→ world
compound := list

world := (state, stack)
state := value
stack := list

program := [value∗]

Fig. 2: Domain-specific language (DSL) syntax, in our own
simplified Backus-Naur Form. Asterisk denotes Kleene clo-
sure, brackets denote a sequence (ordered list), braces denote
a set (unordered list), and parentheses denote a tuple.

primitive :
swap : [σ∗ v1 v2] 7→ [σ∗ v2 v1]
drop : [σ∗ v] 7→ [σ∗]
dup : [σ∗ v] 7→ [σ∗ v v]
dip : [σ∗ v [o]] 7→ [o([σ∗]) v]

if : [σ∗ b [o1] [o2]] 7→ b ? o1([σ
∗]) : o2([σ

∗])
filter : [σ∗ ` [o]] 7→ [σ∗ `′]

s.t. `′ ⊆ ` and ∀e ∈ `′, o(e) = TRUE
eval : [σ∗ [o]] 7→ [o([σ∗])]
take : [σ∗ [`∗ · · · `2 `1] n] 7→ [σ∗ [`n · · · `2 `1]]

fetch : [σ∗ r s] 7→ [σ∗ v] where (s, v) ∈ r

compound :
nip : [[drop] dip]

over : [[dup] dip swap]
keep : [over [eval] dip]

bi : [[keep] dip eval]

Fig. 3: Semantics of some DSL operators. Only the input
and output stack are shown, since these particular operators
ignore the state. The top of the stack is on the right, and
the symbol σ∗ indicates the rest of the stack, which (in most
cases) is unaffected by the operator. Shown are an operator
o, list `, integer n, value v, bool b, element e of a list, rec
r, string s, and so on.

of the program: If the value is a primitive operator (a world-
to-world function), then it is applied to the current world;
if it is a compound operator, then it is expanded within the
program itself; otherwise it is a literal value and is simply
pushed onto the stack. In any case step returns the new world
and program. The meta-operator run runs a program on a
world, returning the new world once the program is empty,
or otherwise recursively calling itself on the result of step.

step : (ψ, [σ∗], [v π∗]) 7→
v ∈ primitive : (ψ, v([σ∗]), [π∗])
v = [v∗] ∈ compound : (ψ, [σ∗], [v∗ π∗])
otherwise : (ψ, [σ∗ v], [π∗])

run : (ψ, [σ∗], π) 7→
π = [] : return(ψ, [σ∗])
otherwise : run(step(ψ, [σ∗], []))

Fig. 4: Semantics of DSL execution.

C. Object repositioning syntax and semantics

For object repositioning, the state is initially populated
with the objects and their properties, and the operators either
read or modify these properties, or they compute intermediate
values. Although in theory it is not necessary to maintain the
state separately from the stack, in practice doing so avoids
“stack shuffling” and greatly simplifies the formulation and
resulting programs.

Repositioning an object is achieved by compound opera-
tors such as moveall, which sets the x, y and θ properties
contained in the rec of the objects in a list. When a program
is played back, each moveall operator causes either the
objects to move on the tablet (in the case of simulation) or
the robot to pick up the objects at the previous coordinates
and place them at the new coordinates (in the case of physical
manipulation). To determine which objects to move, the
program filters on the properties. For example, the following
program moves all the red objects to the pose (x, y, θ) =
(13, 27, 1.57):

things [‘color @ ‘red =] filter 13 27 1.57 moveall

where things places the list of objects from the state onto
the stack, and @ is shorthand for fetch.

Other commands in our DSL include between, which tests
that a value is within a certain range; bi, which applies two
operators, leaving both results on the stack; moveone, which
moves a single object to a specific (x, y, θ) position; take, in
the form n take, which takes the first n-number of elements
from a list; takeone, which is just [1 take]; takebygroup,
which groups the objects in a list by a certain property; and
distribute which consumes a list of objects along with a
list of poses and distributes the objects across the set of
poses. In total, our DSL includes approximately 50 operators
divided fairly evenly between primitive and compound. Of
these, only 14 are possibilities in final learned programs, with
the others being used solely for composing other operators.

In designing a language for any domain it is important to
recognize that an inherent tradeoff exists between its expres-
siveness and its complexity. That is, increasing the number
and types of commands enables the language to express
more interesting concepts but also leads to a combinatorial
explosion in the number of possibilities to be explored [23].
Nevertheless, as has been pointed out by [24], the tradeoff
is not always so simple, because increasing expressiveness

can also lead to shorter programs, thus facilitating efficient
search. As a result, it is important to strike the right balance
between the two. We believe our DSL achieves such a
reasonable balance and, moreover, it is extremely easy to
extend with new commands as needed.

III. LEARNING PROGRAMS FROM EXAMPLES

Given one or more example demonstrations, the goal of
the program synthesizer is to find the simplest program that
is consistent with the demonstrations. Simplicity is key to
ensuring that the program generalizes correctly to future
inputs, even though the synthesizer may have been given an
incomplete specification via the finite number of demonstra-
tions. The synthesizer searches through the space of possible
programs using the programming language grammar, with
each program represented as an abstract syntax tree (AST).

A. Searching for filters

A fundamental step in the search is to find appropriate
filter expressions. Given a set of objects and a particular
subset (e.g., those objects that were moved to a particular
location, or distributed across locations), the program syn-
thesizer generates filter expressions to separate them based
upon their properties as determined by the perception system.
First a base set of filters is produced. For discrete values this
is simply a set of program fragments for each value in the
form:

[‘property @ value =]

which means “Select objects where property is value.” For
continuous values program fragments are generated to find
particular ranges of property values:

[’property @ min max between]

which means “Select objects where property is between min
and max.” In addition, the negation of each of these is
generated:

[predicate not]

The base filters are seeded with the simple min/max for each
property within the subset of objects, as well as with ranges
from clusters across the superset of objects, thus capturing
disjoint ranges.

If one of the base filters happens to select the subset of
objects correctly, then we are done. In more complex situa-
tions, however, it is necessary to continue the exploration of
the search space by combining filters, creating conjunctions
and disjunctions in the forms:

[[filter1] [filter2] bi and]

[[filter1] [filter2] bi or]

To manage the search, filters are scored according to
the number of false positives and false negatives. Those
selecting the correct objects but including incorrect objects
are combined with the negation of filters selecting only
incorrect objects. Similarly, pairs of filters selecting only
correct objects are logically or’d together. Filters that select

at least some correct objects but also some incorrect objects
are used as the basis for additional expressions in the hopes
that the filter is correct, and the extra objects were due to
simply taking too many. Finally, filters that at least select
more correct than incorrect are generated. This process is
iterated several times, feeding the synthesized filters back
through as the basis for additional synthesis and terminating
once a set of correct filters is found, up to a fixed number of
iterations. The result is potentially very complex expressions
that satisfy the criteria.

B. Grouping

In addition to subsets of objects selected by filter expres-
sions, subsets consisting of groupings by discrete property
values are included and may form the basis of sorting and
arranging tasks. For example, “Distribute two of each color
to these three bins” is represented as

things [’color @] 2 takebygroup

[[x1 y1 θ1] [x2 y2 θ2] [x3 y3 θ3]] distribute

Essentially, objects may be grouped by a discrete property,
then groups therein may be restricted to a maximum size.
This allows for very general task descriptions depending
on relationships between object properties rather than on
particular property values.

C. Synthesis Process

The filtering and grouping process just discussed con-
structs expressions to select reasonable candidate sets of
objects to be manipulated. These are then consumed by
the synthesizers which in turn produce permutations of
interesting repositioning actions to be applied. For example,
moving the selected objects to the centroids of destination
location clusters, distributing the objects across permutations
of intervals of the destination locations, and so forth. The
result is a large number of candidate programs (hundreds
of thousands) evaluated in a short period of time (several
seconds).

D. Evaluating programs

Examples are essentially input/output pairs. Candidate pro-
grams are executed against inputs, and the resulting actions
are compared with demonstrated expected outputs. Quite
often multiple candidates produce similarly high ranking
outputs, thus requiring programs to be further ranked by a
measure of simplicity. True to Occam’s Razor, we find that
the simplest programs indeed are often the best and most
general solutions. To favor simplicity, programs are scored
by the weighted number of nodes in an abstract syntax tree
(AST). Most nodes receive a weight of 1, but some primitive
and predefined compounds are noticeably more complex (and
therefore less desirable), and are therefore assigned a higher
weight as appropriate. Adjusted weights allow for domain-
specific rank biasing favoring certain kinds of programs.

If computation were not an issue, we would exhaustively
search the space of all possible programs, and the program
with the lowest score would win. Obviously, this is not

Workspace

Control

Live Stream

Fig. 5: A Windows application running on a Microsoft
Surface tablet as the user interface of interactive teaching.

possible, because the size of the space is exponential in the
number of symbols in the program, that is, O(nm), where n
is the number of symbols and m is the length of the program.
Even with just 50 operators, the space of all programs
containing 10 operators is intractable (approximately 5010).
To handle combinatorial explosion, we must conduct a highly
directed search.

If the highest ranking program exhibits behavior entirely
consistent with all of the examples provided then the process
is complete. However, it is often the case that the user has
in fact demonstrated what is essentially multiple distinct
actions, causing multiple distinct and relatively high ranking
programs to be generated. The system discovers this by
iteratively exploring combinations of program fragments.

E. Perception

Object properties are acquired via automated processing
of the image acquired by the overhead camera. Background
subtraction is used to detect the object, then the properties are
extracted. Object properties are either discrete or continuous.
The continuous object properties computed by our current
implementation include x, y, θ, area, width, height, and
aspect ratio, all of which are computed from the zeroth-, first-
, and second-order centralized moments. Only one discrete
property is computed, namely the dominant color. For each
pixel in the object, the RGB triple is converted to hue-
chroma-value, where chroma is the unnormalized version
of saturation. Motivated by previous research showing that
normalization obscures the true color properties of objects
[25], we also have found chroma to be more discriminative
than saturation. Each pixel is then classified into one of 8
categories — the 6 psychological primaries (red, green, blue,
yellow, black, and white) along with orange and purple —
using prototypes of each. Majority vote among all the pixels
in an object wins for classifying the object according to its
dominant color.

F. System Implementation

A Windows application running on a Surface tablet serves
as a teaching interface, shown in Figure 5. Initially, the
human teacher places some objects on the workspace table
and takes a picture with the overhead camera; the objects are

segmented, and their feature properties are calculated using
the procedure explained above. The teacher then interactively
trains the system by presenting input / output pairs by
repositioning object sprites on the tablet. When a new scene
is needed, the teacher either presses a button on the tablet to
reshuffle existing inputs, or physically rearranges objects in
the workspace and takes a new picture. The input / output
pairs are iteratively fed to the program synthesizer, which
generates a program that conforms as best as possible to the
examples given. After the first demonstration, the currently
learned program is always available for the human teacher
to visualize its learning results on new inputs via the tablet
in order to facilitate rapid iterative teaching, or to drive the
robot to physically interact with the world if the teacher is
satisfied. On the tablet, the teacher can also view the program
itself at any time to verify its correctness. Once the program
is learned and confirmed by the teacher, it can be saved and
executed in the workspace.

IV. EXPERIMENTAL RESULTS

In this section we describe our experimental setup, the
object repositioning tasks demonstrated, and the results of a
robot learning and performing these demonstrated tasks.

A. Experimental Setup

We chose tabletop object repositioning tasks as our exper-
imental scenario, in which all the objects of repositioning
tasks were placed on a tabletop. The robot arm used was
a 7 degree-of-freedom Kuka lightweight robot arm, LBR
4+, with a 3-finger adaptive Robotiq gripper. Since all the
objects involved in the experiments were relatively simple in
shape, only pinch grasps were needed. All visual sensing was
performed by an overhead camera which was installed above
the tabletop to provide a top-view image of the workspace.

Due to limited space we only show snapshots of some
of the experiments that we have run, to illustrate the types
of problems that our system can handle. Figure 6 shows
snapshots corresponding to six experiments, while Table I
shows the synthesized program of each of these experiments.
Note that the system does not know which of the three
different types of problems (sorting, kitting, or packaging)
is being executed; these are merely examples.

B. Sorting Tasks

The first two experiments involved sorting tasks, in which
objects were separated based on their feature properties.

Reorganizing Go stones. In this experiment, a human
teacher demonstrated putting Go stones into two different
bowls, as in a cleanup scenario. In the training process, the
teacher dragged the white sprites to one location and the
black sprites to a different location. The synthesizer quickly
learned a filter that separates objects based on their dominant
color, and it then generated a correct program to put the Go
stones into different bowls based on their colors.

Reorganizing office supplies. In this experiment the
intention was to sort office supplies by placing markers, pens,
tape, and an eraser into separate bins of an office supply

tray. After a single demonstration the algorithm discovered
that the aspect ratio of different objects was associated with
the task in separating markers, pens, tapes, and erasers. The
algorithm synthesized a program to move two markers to one
compartment of the tray, two pens to another compartment,
one roll of tape to another, and one eraser to another. The fact
that the teacher did not move all markers or all pens indicated
that the intention was not to move all of those items, but
rather that the number was important. If, in addition, color
was important, then additional demonstrations could have
been used to indicate that fact.

C. Kitting Tasks

The next two experiments involved kitting tasks, in which
different objects were grouped together as a single unit. In
contrast to sorting tasks, kitting tasks do not require objects
of the same type to be placed in the same location.

Preparing a drawing kit. In this experiment, a human
teacher demonstrated collecting one red and one green
marker and preparing them as a drawing kit. The teacher
therefore placed one of each marker in each of two bins.
From the training process, the algorithm learned the correct
combination of markers for the intended drawing kit. Be-
cause the colors were the same for both bins, the program
learned that color was important.

Preparing an office supply kit. In this experiment, a
human teacher demonstrated a much more complex task,
namely, to place one object of each color (among the
colors available) in the bin. In the first demonstration, the
teacher moved one red, one green, one blue, and one black
marker to the bin, leaving the extra red marker untouched.
After another demonstration with a different initial set of
markers, the synthesizer learned the correct program, which
the system was then able to apply to any combination of
any number of any colored objects. In the test, the robot
was given a set of pens with different colors. With the
learned program, the robot moved one green, one yellow,
one pink, and one purple pen into the bin, leaving all the
other pens untouched. Notice that the system is able to, at
run time, handle object types and colors for which it was
never specifically trained — this shows the power of the
generalization capabilities of the system.

D. Packaging Tasks

The final two experiments involve packaging tasks, in
which objects were placed at specific locations in a given
container. Packaging tasks share similar logic with sorting
and kitting tasks but are more industrial oriented.

Packaging a tennis ball canister. In this experiment, a
human teacher demonstrated placing 3 tennis balls into each
of 2 individual tennis ball canisters. The synthesizer learned
a program to move exactly 3 balls to each canister. Note
the difference with the sorting tasks, in that here the objects
are distributed across multiple locations, and several objects
occupy the same location (at least in 2D).

Packaging a router box. In this experiment, a human
teacher demonstrated packaging a box using components of

S
O

R
T

IN
G

1

2

K
IT

T
IN

G

3

4

PA
C

K
A

G
IN

G

5

6

Training Scene Training Result Test Scene Test Result

Fig. 6: Snapshots of the six experiments. For each experiment we show the initial and final conditions of the first
demonstration, along with the initial and final conditions of a run in which the synthesized program was played on a scene
that had never been seen. Several experiments required a single demonstration, while others required two demonstrations;
space constraints do not permit other demonstrations and runs to be shown.

Synthesized Programs

1 things [’color @ ’white =] filter 561.67 350.67 1.36 moveall
things [’color @ ’black =] filter 559.00 472.67 0.87 moveall

2

things [’color @ ’black =] filter 515.00 303.00 -1.57 moveone
things [[’aspect @ 0.78 >] [’width @ 117.80 139.65 between] bi and] filter 631.50 297.50 3.12 moveone
things [’width @ 5.80 6.93 between] filter 2 take 581.00 291.50 0.07 moveall
things [’width @ 7.03 8.72 between] filter 2 take 584.10 328.73 moveall

3 things [’color @ ’red =] filter 2 take [[656.25 289.00 1.71] [602.75 287.25 1.69]] distribute
things [’color @ ’green =] filter 2 take [656.25 289.00 1.71] [602.75 287.25 1.69]] distribute

4 things [’color @] 1.00 takebygroup 637.50 314.50 1.55 moveall

5 things [’color @] 6.00 takebygroup 6.00 take [[715.33 542.33 1.15] [715.33 542.33 1.30]
[715.33 542.33 1.51] [647.33 540.33 0.95] [647.33 540.33 0.96] [647.33 540.33 0.36]] distribute

6
things [[’color @ ’blue =] [’color @ ’white =] bi or] filter 564.74 312.25 1.69 moveall
things [’length @ 30.92 34.33 between] filter 623.53 332.15 0.74 moveall
things [[’length @ 36.57 42.22 between] [’color @ ’blue = not] bi and] filter 620.11 287.19 0.06 moveall

TABLE I: Synthesized programs of the six experiments. Snapshots of the experiments are shown in Figure 6.

Demonstration Program

1

Synthesized Program:
things [’color @ ’black =] filter 590.50 272.50 3.14 moveall
Automatic translation:
“Move all things where dominant color is black to location (590.5, 272.5, 3.14).”

2

Synthesized Program:
things [[’color @ ’black =] [’aspect @ 0.11 0.52 between not] bi and] filter
588.20 270.00 3.14 moveall
Automatic translation:
“Move all things where dominant color is black and aspect ratio is not between
values 0.11 and 0.52 to location (588.2, 270.0, 3.14).”

Fig. 7: Progression of the program to move all black pens, as more demonstrations are given. Only the color was considered
after the first demonstration, while the second demonstration forced both color and aspect ratio to be considered, resulting
in the correct program. Also shown are automatically-generated human-readable English translations of the programs.

an off-the-shelf wireless router. The synthesizer learned a
program to place the router, ethernet cord, power cord, and
additional piece into their correct destinations, regardless of
the initial positions of the objects.

E. Progression of Program Synthesis on Novel Scenes
A program is synthesized with one or more training

scenes, and the correctness of the synthesized program is
validated based on these same scenes. However, it is often
the case that the first training scene does not include all the
potential objects that could be present in the test scenes.
Thus, although the synthesized program is consistent with
the given demonstration, the intent of the user may not be
correctly captured by the program. In such a circumstance,
it is necessary to provide further demonstrations to train the
robot such that the actual intent of the human teacher can be
completely discovered.

Figure 7 shows the initial scene of two consecutive
demonstrations, and the synthesized programs after each
demonstration. The actual task was to separate solid black
pens from other office supplies. In the first training scene,
only two solid black pens and three markers with different

colors were present. Therefore, when the user demonstrated
by moving the black pens only, the system learned to move
black objects to the bin. Although this program performs
successfully on this particular training scene, it is not correct.
In the second scene, three black erasers and a black marker
were present. The first synthesized program would have
mistakenly put the eraser and the black marker together into
the bin with other solid black pens, because it only sorted
based on color. However, with a second set of demonstrations
on the second scene, the correct program was learned,
namely to move only the pens. Also shown in the figure
are the nearly grammatically-correct English translations
automatically generated by the system.

V. CONCLUSION

We have presented an approach to synthesizing human-
readable computer programs for object repositioning tasks
based on human demonstrations. We first introduced a stack-
based domain specific language (DSL) for object reposition-
ing tasks that is flexible and concise. We then described
a learning algorithm which synthesizes a program of this
DSL for an object repositioning task. Several experiments

were performed, showing that the resulting system is able
to learn programs for a variety of object repositioning tasks
(including sorting, kitting, and packaging tasks) from one
or more demonstrations. We also introduced a novel tablet
interface that rapidly speeds up the training and verification
process, and we have shown that nearly grammatically-
correct English sentence descriptions of the programs can
be generated automatically.

It is easy to imagine ways to expand the capability of
our system to represent a greater diversity of tasks. Beyond
repositioning tasks, our work can be extended to more com-
plicated and generic assembly tasks, such as assembling a toy
car from individual parts. In assembly, not only the relative
spatial relationships between parts need to be learned, but
also how they come into those relationships (e.g., the mating
procedure). The timing of actions is also important, so that
by adding temporal dependence between actions, multi-step
tasks can be modeled and learned. The system could also be
extended to handle disturbances or non-determinisms in the
world that prevent the manipulator from grasping objects in
the simplistic manner shown here.

To scale our system to a wider range of objects, more
advanced perception techniques are needed, including more
robust feature extraction and object recognition. Distinc-
tive and robust features extracted from objects can provide
our learning algorithm with more reliable information to
distinguish objects from each other and to facilitate the
process of discovering the intent of the teacher. Moreover, 3D
perception and modeling would enable the system to perform
on a wider array of scenarios.

VI. ACKNOWLEDGMENTS

The authors wish to thank Harsha Kikkeri and Sumit
Gulwani for initial discussions.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, pp. 469–483, May 2009.

[2] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,”
in International Conference on Machine Learning (ICML), pp. 11–73,
1997.

[3] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to
motor learning by imitation,” Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences, vol. 358, no. 1431,
pp. 537–547, 2003.

[4] P. Abbeel and A. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proceedings of the International Conference on
Machine Learning (ICML), 2004.

[5] M. Lopes and J. Santos-Victor, “Visual learning by imitation with
motor representations,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 35, pp. 438–449, June 2005.

[6] N. Jetchev, T. Lang, and M. Toussaint, “Learning grounded relational
symbols from continuous data for abstract reasoning,” in ICRA Work-
shop on Autonomous Learning, May 2013.

[7] J. Kulick, M. Toussaint, T. Lang, and M. Lopes, “Active learning for
teaching a robot grounded relational symbols,” in Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), Aug.
2013.

[8] C. Chao, M. Cakmak, and A. L. Thomaz, “Towards grounding
concepts for transfer in goal learning from demonstration,” in IEEE In-
ternational Conference on Development and Learning (ICDL), pp. 1–
6, Aug. 2011.

[9] S. Calinon, F. Guenter, and A. Billard, “On learning, representing
and generalizing a task in a humanoid robot,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 37, pp. 286–
298, Apr. 2007.

[10] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot
learning from demonstration by constructing skill trees,” International
Journal of Robotics Research, vol. 31, pp. 360–375, Mar. 2012.

[11] S. Niekum, S. Chitta, B. Marthi, S. Osentoski, and A. G. Barto,
“Incremental semantically grounded learning from demonstration,” in
Robotics: Science and Systems, June 2013.

[12] B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz, “Keyframe-
based learning from demonstration,” International Journal of Social
Robotics, vol. 4, pp. 343–355, Nov. 2012.

[13] M. Cakmak, C. Chao, and A. L. Thomaz, “Designing interactions
for robot active learners,” IEEE Transactions on Autonomous Mental
Development, vol. 2, no. 2, pp. 108–118, 2010.

[14] M. Cakmak, Guided teaching interactions with robots: Embodied
queries and teaching heuristics. PhD thesis, Georgia Tech, Aug. 2012.

[15] A. L. Pais, B. D. Argall, and A. G. Billard, “Assessing interaction
dynamics in the context of robot programming by demonstration,”
International Journal of Social Robotics, vol. 5, no. 4, pp. 477–490,
2013.

[16] S. Calinon and A. Billard, “Incremental learning of gestures by imi-
tation in a humanoid robot,” in ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pp. 255–262, Mar. 2007.

[17] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learn-
ing object affordances: From sensory-motor coordination to imitation,”
IEEE Transactions on Robotics, vol. 24, no. 1, pp. 15–26, 2007.

[18] M. Phillips, V. Hwang, S. Chitta, and M. Likhachev, “Learning to
plan for constrained manipulation from demonstrations,” in Robotics:
Science and Systems, June 2013.

[19] S. R. Ahmadzadeh, P. Kormushev, and D. G. Caldwell, “Visuospatial
skill learning for object reconfiguration tasks,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 685–691, Nov. 2013.

[20] W. R. Harris and S. Gulwani, “Spreadsheet table transformations
from examples,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pp. 317–
328, 2011.

[21] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in Proceedings of the ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL), pp. 317–
330, 2011.

[22] N. Dantam, I. A. Essa, and M. Stilman, “Linguistic transfer of
human assembly tasks to robots,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 237–242, 2012.

[23] D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and M. Za-
kharyaschev, “Combining spatial and temporal logics: Expressiveness
vs. complexity,” Journal of Artificial Intelligence Research, vol. 23,
pp. 167–243, 2005.

[24] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipu-
lation using examples,” Communications of the ACM, vol. 55, no. 8,
pp. 97–105, 2012.

[25] A. Hanbury, “Constructing cylindrical coordinate colour spaces,” Pat-
tern Recognition Letters, vol. 29, pp. 494–500, Mar. 2008.

