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Abstract— We design an example based planning framework
to generate semantic grasps, stable grasps that are functionally
suitable for specific object manipulation tasks. We propose to
use partial object geometry, tactile contacts, and hand kinematic
data as proxies to encode semantic constraints, which are task-
related constraints. We introduce a semantic affordance map,
which relates local geometry to a set of predefined semantic
grasps that are appropriate to different tasks. Using this map,
the pose of a robotic hand can be estimated so that the hand is
adjusted to achieve the ideal approach direction required by a
particular task. A grasp planner is then used to generate a set
of final grasps which have appropriate stability, tactile contacts,
and hand kinematics along this approach direction. We show
experiments planning semantic grasps on everyday objects and
executing these grasps with a physical robot.

I. INTRODUCTION

Grasp planning is a fundamental problem in the field of
robotics which has been attracting an increasing number of
researchers [1], [2], [3], [4], [5], [6], [7]. Previously proposed
methods are reasonably successful in generating stable grasps
for execution. However, if we consider planning a grasp
for a specific manipulation task, the stability of the grasp
is no longer sufficient to describe all of the constraints on
the grasp. Such constraints include relative hand orientation,
specific object parts the hand should make contact with, or
specific regions of the object the hand should avoid. We
call these constraints required by a specific task semantic
constraints. As we will show in Figure 1 and Section III,
a good robotic grasp should satisfy the semantic constraints
associated with an intended manipulation task.

In our work, we take an example-based approach to
build a grasp planner that considers semantic constraints of
specific tasks as a planning criterion and searches for stable
grasps satisfying these semantic constraints. This approach is
inspired by psychological research which showed that human
grasping is to a very large extent guided by previous grasping
experience [8]. To mimic this process, we propose that
semantic constraints can be embedded into object geometry,
tactile contacts and hand kinematics. We design a semantic
affordance map which contains a set of depth images from
different views and example grasps that satisfy the semantic
constraints of different tasks. These depth images help infer
the approach direction with respect to the object, guiding
the hand to an ideal approach direction. Predefined example
grasps provide hand kinematic and tactile information to the
planner as references to the ideal hand posture and tactile
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Fig. 1. Stable grasps with different semantic constraints satisfied. All grasps
are suitable for Pick-and-Place task. However, in the first two grasps, the
hand blocks the opening area of the mug. Thus, they are not suitable for
Pouring-Water task.

contact formation. Utilizing this information, the planner
searches for stable grasps with an ideal approach direction,
hand kinematics, and tactile contact formation.

II. RELATED WORK

For planning stable robotic grasps, Ciocarlie and Allen
proposed the eigen-grasp idea [1]. This method effectively
reduces the dimension of the search space for grasp planning
and results in a faster search process for form-closure grasps.
Based on this approach, a data-driven grasping pipeline is
proposed by Goldfeder [9]. Geidenstam approximated 3D
shapes with bounding boxes on decomposed objects and
trained a neural network to learn good grasps [5]. Saxena
[2] and Popovic [4] used synthesized image data to train
a classifier to predict grasping points based on features ex-
tracted from 2D images. Berenson and Srinivasa proposed a
method to generate collision-free stable grasps for dexterous
hands in cluttered environments [10].

In addition, there has also been some work in planning
grasps considering graspable parts and specific tasks. Re-
searchers, such as Li and Sastry [11], Prats et al. [3], and
Haschke et al. [6], analyzed task-oriented grasping using task
wrench space. These approaches are mainly based on the
analysis of the contacts and the potential wrench space of a
grasp. Rosales et al. presented a method to solve the con-
figuration problem of a robotic hand to grasp a given object
with a specific contact region [12]. Li et al. took a data-driven
approach to grasp synthesis using pre-captured human grasps
and task-based pruning [13]. Song et al. designed a Bayesian
network to model task constraints in goal-oriented grasping
[14]. Using a box-based planning approach, Huebner and
Kragic presented a pipeline to generate grasps with some task
constraints satisfied [15]. Detry et al. developed a method
to analyze grasp affordance on objects based on object-
edge reconstructions [16]. Aleotti and Caselli proposed a
part-based planning algorithm to generate stable grasps from
human demonstration [17]. Sahbani and El-Khoury proposed
a method to plan grasps on handles of objects by training a
classifier on synthesized data [7]. It is widely accepted that
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Fig. 2. A typical data driven grasping pipeline considering semantic
constraints. In the planning stage, semantic grasps are planned and stored
into a semantic grasp database. In a grasping process, planned semantic
grasps can be retrieved and executed based on requested manipulation tasks.
Once the semantic grasps are executed, a manipulation chain as proposed
in [18] could be executed to accomplish a manipulation task.

many everyday objects are designed with a graspable part
(e.g. a handle). However, with certain knowledge of where
the graspable part is, it is still difficult to determine how to
grasp the graspable part appropriately.

In fact, looking solely at the stability of the grasp, the
potential task wrench space, or the location of the graspable
part of an object leaves out the following important semantic
constraints for object grasping in the context of a specific
manipulation task. The first constraint is how a robotic hand
is oriented and shaped with respect to the object. The second
constraint is the locations of the contacts between the hand
and the object. In our work, we are trying to encode them
directly and use them to plan semantic grasps accordingly.

III. SEMANTIC GRASPING

A. Semantic constraints and data-driven grasping

Every robotic grasp is used for an intended manipulation
task. To perform a specific manipulation task, some con-
straints are required to be satisfied by the robotic grasp.
For a mug, Pick-and-Place and Pouring-Water are two
possible manipulation tasks. For Pick-and-Place, stability is
one constraint. This constraint requires a grasp to be able to
resist possible external disturbances during the manipulation
process. For Pouring-Water, stability is still necessary, but in
addition to this, an extra constraint might require the robotic
hand to avoid blocking the opening area of the mug or to
grasp the handle of the mug.

In order to plan appropriate grasps for different tasks,
satisfying semantic constraints is essential. Figure 1 shows
some examples of robotic grasps on a mug that are evaluated
as stable grasps according to the epsilon quality [19]. All the
grasps in Figure 1 are stable in terms of force/form closure
metric and they are all suitable for a Pick-and-Place task.
However, if we consider using these grasps for a Pouring-
Water task, only grasps shown in Figure 1(c) and 1(d) are
suitable because in the first two grasps the palm blocks the
opening area of the mug conflicting with the second semantic
constraint required by a Pouring-Water task. This example
demonstrates that semantic constraints for grasps should be
considered in grasp planning procedures.

In our work, we follow the data-driven grasping pipeline
where grasp planning and execution are separated and focus
on developing a planning method that considers semantic

constraints. Figure 2 illustrates a typical data-driven grasping
pipeline where our method fits in: compared to traditional
data-driven grasping pipelines, our method considers seman-
tic constraints in the planning stage while keep the rest of
the pipeline intact. It is worth noting that the planning takes
place off-line and is within a simulation environment that is
separated from the physical execution.

B. Embedding semantic constraints

Semantic constraints are high-level concepts that are dif-
ficult to describe and difficult to generalize. Instead of
representing semantic constraints explicitly, we attempt to
specify semantic constraints using a predefined example
grasp and use the example grasp to infer corresponding
semantic constraints.

Many everyday objects are designed such that their ge-
ometries are appropriate for the corresponding manipulation
tasks that they are associated with. For example, a mug has a
handle which is designed to be grasped. For a Pouring-Water
task, it is always a good strategy to grasp the body of the mug
or to grasp the handle from the direction in which it stretches
away from the body, because these two grasps satisfy the two
semantic constraints a Pouring-Water task requires: 1) grasp
stability and 2) avoid blocking the opening area of the mug.

Semantic constraints imply requirements on the following
aspects: 1) part of the object to be grasped, 2) relative
orientation of the hand to the graspable part, 3) hand posture,
and 4) contact locations on the hand.

The graspable part of an object being approached by a
robotic hand can be encoded using 3D depth images of
the object from the approach direction of the hand. The
depth images describe the partial geometry in view. It also
indicates the orientation of this part of the object with
respect to the hand. Hand posture can be derived directly
from the joint values of the hand and contact information
can be extracted from a set of tactile sensor arrays on the
hand. Thus, we propose embedding semantic constraints into
these related sensory data. Given an example grasp which
has already satisfied specific semantic constraints, we can
compare these quantities to those of candidate grasps on the
same object or novel objects of the same class. If they are
similar, we consider the corresponding semantic constraints
as satisfied. Otherwise, we consider the semantic constraints
as unsatisfied.

C. Semantic Grasp: a definition

We define the semantics of a robotic grasp as the intended
manipulation task whose semantic constraints are satisfied
by the grasp. It is a symbolic label or a phrase that uniquely
identifies a task of the object (e.g. Pouring-Water).

A semantic grasp is a robotic grasp that satisfies the
semantic constraints imposed by a manipulation task. We
write a semantic grasp formally as

SG =< S, T ,K >

where S is the semantic label of the grasp, e.g. Pouring-
Water; T is the tactile contacts of the grasp, e.g. arrays



of tactile sensor reading; K is the hand kinematic data of
the grasp, e.g. a set of joint angles and the orientation and
location of the wrist.

D. Semantic Affordance Map: a definition

In Section III-B, we discussed that the semantic constraints
can be indirectly embedded in the object range data, hand
kinematic data, and tactile contacts. We now introduce a
semantic affordance map MC to associate semantic grasps
with an object class C.

A semantic affordance map MC is a set of triples:

MC = {< P,F(D),B >}, (B = {SG})

where P is the approach direction from the hand to the
object; D is a depth image of the object from P; F(·) is a
function that extracts features from D; B is a set of semantic
grasps from P .

In this map, the following two relations are established.
1. F(D) → P , given an image feature descriptor F(D)

of a depth image of the object from a particular viewing
angle (approach direction), this mapping tells us the current
approach direction of the hand to the object. If the object is
symmetric, this mapping can be one to many.

2. F(D) → B, given an image feature descriptor F(D)
of a depth image of the object from a particular viewpoint,
this mapping tells us the possible semantic grasps on the
corresponding geometry.

A semantic affordance map is considered as a manual for
semantic usage of an object. In a semantic affordance map, it
is probable that many triples have an empty set of semantic
grasps. This is because there are many approach directions
that are not good for any manipulation tasks. So, only a few
B’s in a semantic affordance map contain semantic grasps.

E. Method overview: planning semantic grasps

Our planning method is inspired by Castiello who showed
that both cognitive cues and knowledge from previous experi-
ence play major roles in visually guided grasping [8]. We use
an example-based approach to mimic this experience-based
method. By analogy, MC acts like an experience base. B
records all the successful grasps that are experienced before.
P and D are used to mimic human knowledge of the object
geometry.

To plan a grasp with semantics S on an object of class C,
we assume a semantic affordance map on this object class,
MC , has been given. First, a semantic grasp of semantics S
is retrieved from MC . Then, an initial approach direction is
randomly chosen and a depth image of the object from this
approach direction is taken. With the depth image, the current
hand approach direction to the object is estimated by looking
up in the semantic affordance map. Utilizing this estimated
approach direction, along with the tactile and kinematic
information stored in the predefined semantic grasp, our
method adjusts the hand to the ideal approach direction and
searches along the ideal approach direction for grasps that
have similar tactile contact formation and hand kinematics.

Fig. 3. Shape context computation. C − xyz is the camera coordinate
system with its origin at point C. In an eye-on-hand system, C is also the
origin of the palm. The three dimensions of the spherical coordinate system
for our shape context feature are as follows: d is the depth from the origin
of the camera; α is the latitude in the camera coordinate system; β is the
longitude in the camera coordinate system.

With all these similarities being achieved, we consider the
semantic constraints specified by the predefined semantic
grasp are also satisfied by the newly planned grasp. In
the following sections, we discuss in detail how to build
a semantic affordance map for an object class and how a
grasp planner uses it to plan semantic grasps for a specific
manipulation task.

IV. BUILDING A SEMANTIC AFFORDANCE MAP

A semantic affordance map is dedicated to one object
class. It is built in simulation and is designed to be a
knowledge base that stores semantic grasps suitable for
possible manipulation tasks an object could be involved in.
It also provides hints to a grasp planner about how to satisfy
these semantic constraints by relating semantic grasps with
partial object geometry and approach directions. To build a
semantic affordance map, we first choose a representative
object of an object class and collect depth images from
different approach directions to this object. Then, these
depth images are encoded and example semantic grasps are
manually defined.

A. Sampling strategy

To sample around an object in simulation and obtain the
object’s partial geometry information, we first create a unit
sphere centered at the geometrical center of the object model.
Along the latitude lines and the longitude lines, every two
degrees, we collect a depth image of the object model using
OpenGL. The virtual camera in OpenGL is placed at the
crossing of the longitude and latitude with its horizontal axis
aligned with the latitude line and its depth axis aligned with
the radius of the sphere. We also move the virtual camera
along the radius such that the bounding box of the object
model is right within the field of view. By doing this, we
make sure that the entire object model is in the view.

B. Encoding a depth image

Given a set of sampled depth images using the strategy
above, we encode them such that they can be used as keys
to index all the samples effectively. Then, using the relation
F(D)→ P as in Section III-D, we can estimate the approach
direction of the hand given a depth image from an unknown



direction. To encode a depth image, we use a similar idea
from the shape context method [20].

Figure 3 illustrates the spherical coordinate system to
compute the shape context, which co-locates with the cam-
era’s coordinate system C − xyz. The discretization of the
spherical space is along the latitude (α), the longitude (β),
and the depth (d). In this case, the shape context vector
stores the distribution of the object surface points over this
discretized spherical segment where the points exist.

C. Recording semantic grasps

From the previous sampling step, we have already com-
puted all the P’s and F(D)’s of a semantic affordance map.
To input sets of semantic grasps and complete a seman-
tic affordance map, we manually select a good approach
direction for each possible manipulation task with some
semantics. Along this approach direction, a semantic grasp
can be specified manually. Then, the following information
is recorded and associated with this semantic grasp.

1) Hand kinematics: Hand kinematic data is stored only
with a semantic grasp. This data indicates the shape of the
hand when the grasp is applied. To store the hand kinematics,
we store the angle value for each joint.

2) Tactile contacts: In order to represent where a hand
is in contact with the object, we take into consideration the
tactile contacts when a grasp is being applied on an object.
In a semantic grasp, we use T to store the readings from the
simulated tactile sensor pads.

If there is more than one approach direction for a specific
manipulation task, we apply the same method to define
additional semantic grasps along other approach directions.

V. PLANNING SEMANTIC GRASPS

Given a manipulation task and a semantic affordance
map, planning a semantic grasp on a target object can be
thought of as a search for grasps that satisfy the semantic
constraints indicated by a predefined semantic grasp. A
planning procedure includes the following three steps.

A. Step 1: Retrieve semantic grasps

The first step is to retrieve a predefined semantic grasp
from the semantic affordance map. This is done by searching
within the semantic affordance map and looking for semantic
grasps with an appropriate semantic label according to the
requested manipulation task. In the following steps of the
pipeline, we will use this semantic grasp as a reference for
planning.

B. Step 2: Achieve the ideal approach direction

The first semantic constraint we need to satisfy is the geo-
metric constraint which requires a specific part of the object
to be grasped. This constraint can be implicitly inferred by
the approach direction of the hand. So, in order to get to the
most appropriate approach direction required by the semantic
constraints, we first estimate the current approach direction
of the hand. To do this, a depth image of the object is taken
from the hand’s current approach direction. We encode the

depth image as in Section IV-B to get the shape context
feature. Then, we look up in the semantic affordance map
and search for k nearest neighbors based on this geometry
feature.

To match against the entries in the semantic affordance
map, we used χ2 distance to calculate the difference between
two geometry features. Since k could be larger than one, we
need to use some rules to decide a neighbor that is most
widely agreed among these k nearest neighbors. To do this,
we calculate a cumulative distance for each neighbor from
the remaining neighbors, which indicates the extent to which
other neighbors disagree with it. Algorithm 1 illustrates
this scheme, where D(·) denotes a distance function that
calculates the actual angle between the approach directions
represented by the two neighbors.

Algorithm 1: Computing the most agreed neighbor
Input: k nearest neighbors N = {n1, ..., nk}
Output: the most agreed neighbor nm

1 Initialize array v with k entries for cumulative distances
2 foreach ni ∈ N do
3 foreach nj ∈ N − {nj} do
4 v[i]+ = D(ni, nj);
5 v[j]+ = D(ni, nj);
6 end
7 end
8 nm = 1st neighbor with a minimum cumulative distance
9 return nm

Once the current approach direction is estimated, adjust-
ment can be done by calculating the transform between the
current approach direction and the ideal approach direction
that satisfies the semantic constraints.

C. Step 3: Refine the grasp

Based on the previous two steps, a promising hand ap-
proach direction has been achieved for the specific manip-
ulation task. This is only a good start to satisfy all the
semantic constraints embedded in the predefined semantic
grasp, because solely relying on the approach direction
is not sufficient. For example, the stability of the grasp,
similar kinematics, and tactile contacts of the hand cannot be
guaranteed simply by approaching the object from an ideal
direction. We consider them in a grasp refinement step. In
this step, we first use the eigen-grasp planner to generate
a sequence of potential stable grasps along the approach
direction [1]. We then sort them according to their similarities
with the predefined semantic grasp.

1) Grasp Stability: To ensure the grasp stability, we use
epsilon quality as a quality metric [19]. The planner checks
the epsilon quality each time it finds a promising solution and
outputs only those grasps that have positive epsilon qualities.

2) Hand Kinematics: During this refinement procedure,
we use an eigen-grasp planner to search for grasps around
the ideal approach direction as discussed in [1]. We first
place a constraint on the hand kinematics, i.e. the DOF’s



TABLE I
OBJECTS, MANIPULATION TASKS, AND SEMANTIC CONSTRAINTS

Object Manipulation Task Semantic Constraints

Mug pour water not blocking the opening area

Phone answer a call grasping the handle

Door handle pull/push the door power grasping the mid-point

Door handle slide the door hook grasping the mid-point

Drill hold and drill grasping the handle

of the hand. We use the corresponding eigen-grasps of the
DOF values recorded in the semantic grasp as a kinematic
reference and probabilistically limit the search region to be
around this kinematic reference. Based on this, the output
grasps of the planner should share similar kinematics of the
example semantic grasp, maximumly preserving a similar
hand posture during grasping.

3) Tactile Contacts: Similar tactile contact formation as
recorded in the predefined semantic grasps is achieved by
comparing the reading of each sensor pad attached to each
link. With similar tactile contacts, we expect the hand to
touch similar parts of the object which improves the pos-
sibility that the planned grasp holds the object in the way
which is defined in the example semantic grasp.

VI. EXPERIMENTS

We conducted two levels of experiments: planning se-
mantic grasps inside the GraspIt! simulator [21] and grasp-
ing physical objects with planned semantic grasps using
a physical robot, which correspond to the first two levels
shown in Figure 2. Table I summarizes everyday objects
that were chosen for our test and the corresponding semantic
constraints of each task the grasp should be suitable for.

A. Planning semantic grasps

In table-top object manipulation tasks, objects are usu-
ally placed in their canonical upright orientations. So, we
assumed that all the object models were defined in their
canonical upright orientations with respect to a common
plane. For each of the object classes in Table I, we chose
a source object model as a representative (shown in the left
part of the third column in Figure 4) to build a semantic
affordance map. Using OpenGL, we first generated depth
images of the representative object model from different
approach directions. To define example semantic grasps, we
used the Graspit! simulator to manually record stable grasps
suitable for related tasks. Tactile sensors were simulated
based on the soft finger model proposed by Ciocarlie et
al. [22]. By associating example semantic grasps with the
depth images, we built a semantic affordance map for an
object class. With a semantic affordance map, we then chose
different object models from the same object class as targets
and used the proposed algorithm to plan semantic grasps
on them. The target objects were different from the source
models that were used to build the semantic affordance maps,
as they had different sizes and shapes.

In Figure 4, we show experimental results of planning
semantic grasps on different object models. In each row,
the second column shows a predefined semantic grasp that
was stored in the semantic affordance maps. The third
column shows the comparison of the geometry between
the source(left) and the target(right) objects. The source
objects are those ones that were used for building semantic
affordance maps. They are different from the target objects,
but similar in shape. The last two columns show the top two
ranked grasps generated by our planning method according to
their tactile and hand posture similarities. The experimental
results indicate that, by using our planning algorithm, se-
mantic grasps can be synthesized from similar objects with
predefined example semantic grasps.

B. Semantic grasping with a physical robot

Following the planning experiments, we connected our
planning method to a grasp execution system and tested
an entire grasping pipeline from modeling a physical object
using an off-the-shelf 3D scanner to planning a semantic
grasp on the model and to executing a semantic grasp for a
requested manipulation task on a physical object.

We chose a mug, a phone, and a drill as target objects,
shown in experiments 3, 5, and 8 in Figure 4 respectively.
A NextEngine 3D scanner was used to obtain geometrical
models of the physical objects (shown in the right part of
the third column of each experiment). Using our proposed
method, we then planned semantic grasps and stored them
in a semantic grasp database. In the grasping stage, a target
object was placed in front of the robot. A Kinect sensor
acquired a 3D point cloud of the scene. The recognition
method proposed by Papazov et al. [23] was used in our
perception system, which uses partial geometry of an object
to recover its full 6D pose. Once the pose of an object was
recovered, a planned semantic grasp was retrieved from the
semantic grasp database according to the object name and the
semantic label. Finally, the OpenRave [24] planner generated
a collision-free trajectory to the final grasping pose and the
hand moved to the target pose and executed the grasp.

Figure 5 shows snapshots of the process of the grasping
pipeline using semantic grasps in the experiments. The first
two columns show the predefined semantic grasps on the
source objects and the generated semantic grasps on the
target objects. The third column shows the physical objects
placed in the robot workspace. The fourth column shows the
point clouds of the workspace reconstructed from a Kinect
sensor. The fifth column shows the final grasp of a Barrett
hand.

VII. CONCLUSION AND DISCUSSION

In this paper, we develop an example-based grasp planning
method to plan stable robotic grasps which satisfy semantic
constraints required by a specific manipulation task. We
propose using partial object geometry, hand kinematic data,
and tactile contacts to embed semantic constraints. We also
introduce a semantic affordance map which relates partial
geometry features to semantic grasps. Using this map, our



ID Predefined Semantic Grasp Source Object vs. Target Object Grasp1 Grasp2

1 mug sg1

2 mug sg1

3 mug sg1

4 phone sg1

5 phone sg1

6 handle sg1

7 handle sg2

8 drill sg1

Fig. 4. Semantic grasps planned on typical everyday objects. From left to right: experiment ID, the predefined semantic grasps stored in the semantic
affordance map, a pair of source object and target object for each experiment, and top two grasps generated. Last two columns for the top two grasps were
obtained within 180 seconds and are both stable in terms of their epsilon quality. Some objects are displayed with transparency to show the grasp.

Fig. 5. Grasping physical objects with semantic grasps. From left to right: predefined semantic grasps on source objects, semantic grasps on target objects
generated using the proposed method, a snapshot of the physical object in the workspace, reconstructed point cloud of the object in the workspace, and
the final grasp of a Barrett hand attached to a Staubli arm. Pink points in the point clouds are object models placed with the estimated pose.

of a grasp. For example, we did not check whether the
robot is able to execute the grasp in a real environment due
to collisions or other workspace constraints. This could be
solved by using collision checking to filter out infeasible
grasps after a number of good semantic grasps are produced
or utilizing algorithms such as in [26] to achieve the required
pre-grasp pose of the object.

For the next step, we will be considering possible ways
to generalize the semantic affordance map so that it would
be easier to transfer grasping knowledge between objects
and tasks while preserving their semantic affordance. In our
current approach, a semantic affordance map is associated
with a specific class of objects and it requires similarities
between objects. This, to some extent, limits the application
of our approach, especially in an environment which has
many different classes of objects that are frequently changing
over time. We believe that, in these situations, a more generic
representation of semantic affordance map could help.
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grasping,” Robotics & Automation Magazine, IEEE, vol. 11, no. 4,
pp. 110–122, 2004.

Fig. 5. Grasping physical objects with semantic grasps. From left to right: predefined semantic grasps on source objects, semantic grasps on target objects
generated using the proposed method, a snapshot of the physical object in the workspace, reconstructed point cloud of the object in the workspace, and
the final grasp of a Barrett hand attached to a Staubli arm. Pink points in the point clouds are object models placed with the estimated pose.



method considers the semantic constraints imposed by a
specific task and plans semantic grasps accordingly. We show
experiments of planning and executing semantic grasps on
everyday objects.

A model of the object may not be necessary. For a system
where grasp planning and executing are separated, it is ideal
to get the model of the object beforehand. If the object
model is not obtained in advance, some existent modeling
algorithms can be used to reconstruct the object from the real
scene using depth sensors, such as a Kinect sensor. Another
approach can be to connect this algorithm with a physical
robot system, obtaining depth images directly from physical
depth sensors and making hand movements with the robot. In
this case, we are merging the virtual world and the physical
world. The planning process which used to be in a virtual
world now becomes an exploration process in the physical
world, defining a control process to achieve a semantic grasp
specified in a predefined example grasp, making this planning
algorithm more like a control algorithm.

Currently, the refinement step in our method consists of 1)
planning a sequence of stable grasps using a stochastic grasp
planner and 2) sorting planned grasps based on their sim-
ilarities to predefined semantic grasps. However, stochastic
planning may not be the ideal solution. It can take more time
than necessary to find an appropriate grasp. One potential
alternative approach is to use local geometry information to
synthesize hand adjustment as we proposed in [25].

Symmetric objects may raise challenges for our matching
method which estimates the approach direction of the hand
since multiple views of a symmetric object could have
the same depth images. We believe that by utilizing more
sophisticated localization methods this problem could be
alleviated.

In our work, we do not consider the kinematic feasibility
of a grasp. For example, a planned semantic grasp may not be
kinematically feasible in a real environment due to collisions
or other workspace constraints. This could be solved by
using collision checking to filter out infeasible grasps after
a number of good semantic grasps are produced or utilizing
algorithms such as in [26] to achieve the required pre-grasp
pose of the object.

For the next step, we will be considering possible ways
to generalize the semantic affordance map so that it would
be easier to transfer grasping knowledge between objects
and tasks while preserving their semantic affordance. In our
current approach, a semantic affordance map is associated
with a specific class of objects and it requires similarities
between objects. This, to some extent, limits the application
of our approach, especially in an environment which has
many different classes of objects that are frequently changing
over time. We believe that, in these situations, a more generic
representation of semantic affordance map could help.
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