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ABSTRACT
We propose an experience-based approach to the problem of
blind grasping, stable robotic grasping using tactile sensing
and hand kinematic feedback. We first collect a set of stable
grasps to build a tactile experience database which contains
tactile contacts for each stable grasp. Using the tactile expe-
rience database, we propose an algorithm to synthesize local
hand adjustment that controls the hand pose and improves
the grasp based on tactile sensor readings. Simulation ex-
periments show that local adjustment of the hand improves
the grasping performance.

1. INTRODUCTION
Stable robotic grasping is one of the most fundamental

problems in the field of robotics. To enable a robot to grasp
objects stably, one of the existing approaches is to decom-
pose a grasping procedure into two stages: planning and ex-
ecution. Some examples include [1, 2]. In the planning stage
which is usually done in simulation, a stable grasp param-
eterized by the hand posture and hand-object relative pose
is synthesized. In the execution stage, the planned grasp is
sent to a path planner to generate a collision-free trajectory
and the robot moves along the newly generated trajectory
to the target grasping pose. These methods usually use geo-
metrical models of the objects to be grasped for the planning
stage. However, since grasp planning is done in a simulation
world which is not an exact model of the actual workspace
due to imperfect perception and robot calibration, the ex-
ecuted grasps can end up unstable. So these methods are
sensitive to pose uncertainties.

Another approach is to treat grasping as a control problem
where a set of control laws are applied to adjust the hand to
achieve some preferred contact configuration on the object
(e.g. antipodal grasps [3, 4, 5]). Methods along this direc-
tion are usually object model free. Since the control laws
are relatively computationally inexpensive, these methods
run fast. In addition, these methods usually utilize the ac-
tual sensing data from force, torque, or tactile sensors; so
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Figure 1: Blind grasping - a Barrett hand picks up
everyday objects stably using only tactile and hand
kinematic data as information resource.

they do not require any specific hand-object relative pose
and are more robust under pose uncertainties. However, a
major issue is that these methods either ignore the hand
kinematics or assume simple hand designs, such as parallel
jaw grippers and their simple variants. So, it is difficult to
extend these methods to complex hand designs which have
more dexterity in object manipulation tasks.

Within a control-based stable grasping framework, the
evaluation of grasp stability is a very important component,
which directs the design of control algorithms. We believe
the difficulty to explicitly formulate a generic evaluation cri-
terion is a major reason for most control algorithms assum-
ing simple hand designs or ignoring hand kinematics. In
our previous work [6], we proposed a machine learning ap-
proach to estimate grasp stability, a method which does not
place any constraints on the hand design. The experiments
indicated that the tactile feedback along with the hand kine-
matic data carry meaningful information for the prediction
of the stability of a robotic grasp. This approach enables a
robot to blindly grasp objects using only tactile and hand
kinematic data. Figure 1 shows some physical experiments
where a robot picks up objects by randomly adjusting hand
pose and seeking for a stable grasp based on tactile and
hand kinematic data. However, to make the control loop
more intelligent, one question should be addressed, which is
“what is an intelligent (instead of random) hand adjustment
to make if the current grasp is not a stable one?”

The focus of our presented work is to address this prob-
lem by developing a method to synthesize hand adjustment.
The basic idea is that similar grasps share similar local
object geometry at locations where contacts are estab-
lished. We consider grasps as similar if they have similar
contact configurations, i.e. similar contact locations. To
develop a grasping strategy utilizing contact configuration



similarities, we first build a grasp database in simulation
which consists of thousands of stable grasps and their corre-
sponding tactile contacts, a database providing tactile expe-
rience which indicates the tactile knowledge of stable grasps.
By comparing the tactile contacts between an actual grasp
and the grasps in the experience database, we synthesize a
hand adjustment command to move the wrist and re-shape
the hand to explore around the object and achieve a grasp
that shares similar tactile contacts with a stable grasp in the
experience database.

In this paper, we discuss related work in Section 2. We de-
sign a tactile contact database in Section 3. An experience-
based grasping strategy using the tactile experience database
is proposed in Section 4. In Section 5, we discuss simulation
experiments, followed by conclusion in Section 6.

2. RELATED WORK
Tactile sensing from direct interaction of a robotic hand

with the object in touch provides local geometrical infor-
mation of the object. Researchers have been using tactile
sensing to improve grasping performance. Bekiroglu et al.
used HMM to estimate grasp stability from a series of tactile
data [7]. Hsiao et al. used tactile sensing to cope with object
pose uncertainties [8]. Platt exploited force sensing to learn
grasping strategies consisted of contact relative motions and
tested the method on grasping a mailbox with a Robonaut
hand [4]. Bierbaum et al. proposed a method to generate
anti-podal grasps from tactile contacts while moving around
the object [9]. Some earlier work also proposed methods to
achieve stable grasps based on contact sensing, e.g. [3, 10].

We utilize tactile sensing to achieve stable robotic grasps.
Conceptually, our work is within the category of data-driven
approaches, for example, the work by Goldfeder et al. [11].
In this work, the authors exploited shape similarities be-
tween objects to generate grasps on objects of similar shapes.
Compared to their work, we are focusing on the local object
geometry where the contacts are established and using the
local geometry information indicated by tactile contacts to
control the hand and achieve stable grasps. Another related
work is done by Steffen et al. where they proposed a method
to control the closing procedure of the fingers during grasp-
ing [12]. Different from our work, theirs does not control the
wrist pose, which adjusts the hand pose with respect to the
grasping object.

3. TACTILE EXPERIENCE DATABASE
A tactile experience database is an important part of our

method. It consists of stable grasps and their correspond-
ing tactile contacts. Specifically, a grasp, G, in the tactile
experience database can be considered as G = {P,J , T , C}
where

• P =< p, o >, p ∈ R3, o ∈ R4 specifies the hand pose
in the object coordinate system, including the posi-
tion and orientation of the hand. The orientation is
represented using quaternions.

• J = {j1, j2, ..., jN}, ji ∈ R records the N joint angles
of the grasp. For a Barrett hand, we chose N = 7 and
record the 7 joint values.

• T = {t1, t2, ..., tL, ti ∈ R} is the L tactile sensor read-
ings. For a Barrett hand, there are 24 tactile sensors
on each fingertip and the palm. In this case, L = 96.
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Figure 2: A hand adjustment procedure: starting
from an actual grasp, tactile contacts are extracted
first (a), then tactile contacts are used in querying
for stable grasps with similar tactile contacts from
the tactile experience database (b), once candidate
stable grasps are returned hand adjustment is com-
puted (c) and applied to control the hand (d).

• C = {c1, c2, ..., cM}, ci =< pi, oi >, pi ∈ R3, oi ∈ R4

is the set of tactile contacts, indicating the locations,
pi, and the orientations, oi of the M activated tactile
sensors.

4. STABLE GRASPING USING TACTILE
EXPERIENCE

With a tactile experience database generated, we now de-
scribe a method to utilize the tactile experience database
to synthesize a hand adjustment command to improve the
grasp stability by locally adjusting the hand. Generally, an
adjustment to the hand consists of the changes in the hand
location, orientation, and the selected degrees of freedom
(DOFs) to control. A =< p, o, s > where p ∈ R3 is a 3-D
vector specifying the new hand position in the current hand
coordinate system, o ∈ R4 is the new hand orientation in the
current hand coordinate system represented in quaternion,
and s ∈ RSdof is the set of new values for the selected DOFs
we want to control in a hand adjustment command.

We assume that initially contacts are established between
the object and the hand so that the tactile sensors provide
valid tactile data. Then, a simple grasp exploration can be
driven by a hand adjustment procedure which consists of
the four major steps as shown in Figure 2. First, the tactile
contacts are extracted using forward kinematics and tactile
sensor readings. Second, the tactile contacts are used in
querying the tactile experience database for stable grasps
with similar tactile contacts. Once the stable grasps with
similar tactile contacts are retrieved, hand adjustment pa-
rameters are synthesized and sent to control the hand to
make local movements.

4.1 Querying for stable grasps with similar tac-
tile contacts

Once the set of tactile contacts are extracted from the
actual grasp, we query the tactile experience database for
grasps that share similar tactile contacts. To this end, we
define a distance function which measures the similarity be-
tween two grasps G1 and G2. This distance function con-
siders both the tactile contact configuration and the hand
posture between two grasps. In our work, we only used the



location of a contact in the distance metric. The distance
metric can be expressed as the following equation

dist(G1,G2) =
1

2
·

N1∑
m=1

min
n

(||c1m − c2n||) +

1

2
·

N2∑
m=1

min
n

(||c2m − c1n||) + α||s1 − s2|| (1)

where ckm is the mth contact of the grasp k, Nk is the number
of contacts of grasp k, and sk is the values for the selected
DOFs of the grasp k. α is a scaling factor for the euclidean
distance between selected DOFs. We empirically chose the
value α = 100 so that 0.01 radian difference in joint angles
is equivalent to 1 mm in euclidean distance. The first two
parts of the right side of the equation measure the euclidean
distance between the two sets of contacts in terms of their
positions. The third part measures the difference between
the hand DOFs.

According to this distance function, we query the tactile
experience database for the k nearest neighbors for the cur-
rent actual grasp using tactile contacts.

4.2 Calculating hand adjustment
All the k nearest neighbors are stable grasps with positive

epsilon qualities and they share similar tactile contacts with
the actual grasp. In this case, it is reasonable to assume
that the local geometry is similar where the contacts are
established. Although the actual grasp shares similar tactile
contacts with stable grasps, it is not close enough to be a
stable one. The goal of this step is to find a hand adjustment
to achieve a grasp which has closer contact configuration to
the stable grasps.

In order to find a reasonable adjustment, we first localize
the actual grasp around each of the nearest neighbors (sta-
ble grasps). To do this, we start from each of the k nearest
neighbors, perturb the hand around the nearest neighbor
and locate a sample grasp which is closest to the actual
grasp using distance as in Equation 1. In this perturbation
test, we sample wrist orientation (yaw, pitch, roll), wrist po-
sition (approaching depth) and selected DOFs to generate
perturbed hand posture. Once the offset transform is deter-
mined, the relative pose between the stable grasp and the
actual grasp is determined. Then the reverse of the offset
transform is returned as the ideal hand adjustment. The
detailed procedure we take to search for a hand adjustment
is described in Algorithm 1.

4.3 Applying hand adjustment
Once an adjustment A∗ =< p, o, s > is found, we need to

apply this adjustment to the hand: change the hand pose
and reshape the joints. We decompose this process into three
steps.

First, the hand opens its fingers so that it lets go the
object and backs up to have some safe margin between the
palm and the object before the following movement.

Second, the selected DOFs change to the values specified
by s. The hand moves to a location 5cm (subject to change
for different hands) backed from the goal position with the
goal orientation o.

Third, the hand moves in guarded mode towards the goal
position. The hand will either reach the goal position or
stop if it hits anything before it reaches the goal.

Algorithm 1: Computing a hand adjustment

Input: A robotic grasp Gx, and a tactile experience
database D

Output: A hand adjustment A =< p, o, s >
1 Initialize A∗: p = [0, 0, 0], o = [1, 0, 0, 0], s = s(Gx)
2 Look for k nearest neighbors to Gx in D
3 min dist = MAX
4 foreach neighbor Gi do
5 pose list = Perturb(Obj(Gi))
6 s list = Sample(s(Gi), s(Gx))
7 foreach s ∈ s list do
8 foreach < p, o >∈ pose list do
9 Perturb the hand according to < p, o, s >

10 Synthesize the grasp information, Gp, of the
grasp after perturbation

11 if dist(Gp,Gx) < dist(Gi,Gx) and
dist(Gp,Gx) < min dist then

12 A∗ =< p, o, s >
13 min dist = dist(Gp,Gx)

14 end

15 end

16 end

17 end
18 Return A∗

The reason we decompose the movement into these three
parts is that the adjustment A may end up with potential
collision. So we want to first go to a safe place that is backed
from the goal location with the goal orientation and then
approach the goal position using guarded motions.

5. EXPERIMENTS

5.1 Building a tactile experience database
A tactile experience database consists of stable grasps

and their corresponding tactile contacts. To generate sta-
ble grasps, we used a subset of objects from the Princeton
Shape Benchmark (PSB) [13], which are often encountered
in our everyday life. These objects range from mugs, vases,
and bottles to screwdrivers, wrenches, and hammers. The
robotic hand we used in our work is a Barrett hand. An
Eigen-grasp planner developed by Ciocarlie and Allen [14]
was used to plan stable grasps on these objects. Tactile con-
tacts of each grasp were extracted using the Graspit! sim-
ulator [15]. These tactile contacts record the locations and
orientations of the activated tactile sensors in the hand co-
ordinate system. The detailed method we used to simulate
tactile sensor readings from a grasp could be found in our
previous work in [6].

5.2 Simulation
Seven objects were used in simulation to test our hand ad-

justment method. The tactile experience database includes
19,800 grasps with quality ε > 0.1 on everyday objects. The
goal of the simulation experiment is to quantitatively evalu-
ate the improvement of the grasping performance by apply-
ing local hand adjustments. To this end, we first generated
a set of initial grasps for each object by uniformly sampling
the relative hand-object pose. The parameters we varied
during the sampling process were 1) the pitch, yaw, and roll
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(a) stable grasps with ε > 0
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(b) stable grasps with ε > 1

Figure 3: Improvement of grasping performance
measured by an increase in stable grasps after each
local hand adjustment (grouped by object). Each
figure has seven groups of bars, corresponding to
seven objects. Each group contains six bars, corre-
sponding to the percentages of stable grasps (ε > 0
or ε > 1) after executing the initial grasp and the
following five hand adjustments.

of the palm of the hand, 2) the depth along the approach-
ing direction, and 3) the spread angle of the hand. For a
hand adjustment A =< p, o, s >, the pitch, yaw, and roll of
the palm determine the o component; the depth along the
approaching direction and the o component together deter-
mine the p component; the s component is selected as the
spread angle of a Barrett hand.

The evaluation procedure starts by closing the hand at a
sampled pose, followed by five consecutive local hand adjust-
ments to test how the local hand adjustment could influence
the grasp stability. We chose epsilon quality, ε, as an indi-
cator to the stability of a grasp.

Figures 3(a) and 3(b) show the improvement of grasping
performance (ε) after each local hand adjustment is applied.
Figure 3(a) shows the percentage of grasps with epsilon qual-
ity ε > 0 while Figure 3(b) shows the percentage of grasps
with epsilon quality ε > 0.1. From the figures, it is seen that
after each local adjustment, the number of stable grasps in-
creases. This indicates that the local hand adjustment does
improve the grasping performance by achieving stable grasps
locally.

6. CONCLUSION
This extended abstract discussed an experience based ap-

proach to the stable robotic grasping problem. In essence,
we designed a method to synthesize hand adjustment which
drives a dynamic stable grasp exploration process using tac-
tile sensing data. A tactile experience database is designed
and built for the method, which is considered as prior tactile
contact knowledge of stable grasps. Using the experience-
based approach, this method does not have any constraints
concerning the kinematic design of the robotic hand, making

this algorithm more potential to work with complex hands.
The simulation experiment results show that making local
hand adjustment improves the overall grasping performance.
Current, we are working on a physical experiment with a
Barrett hand to test the algorithm in practical robotic sys-
tems.
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