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Figure 1: We present a computational approach to designing transformables – physical characters that can take on vastly different forms with
distinct functional capabilities. In object mode, these transformables are disguised as common items, such as a car or an egg. In character
mode, they take on the form of a spider or a humanoid.

Abstract
We present a computational approach to designing transformables, physical characters that can shape-shift to take on vastly
different forms. The design process begins with a morphological description of an input character and a target object that it
should transform into. Guided by a set of objectives that model the core attributes of desirable transformable designs, optimized
embeddings are interactively generated. Intuitively, embeddings represent tightly folded character configurations that fit within
the target object. From any feasible embedding, skin meshes are then generated for each body part of the character. The process
for generating these 3D models is based on a segmentation of the target object, which is achieved through a growth-based model
applied to a multiple level set representation of the transformable. A set of transformation-aware post-processing algorithms
ensure the feasibility of the final designs. Building on this technical core, our computational design system provides many
opportunities for users to inject their intuition and personal preferences into the process of creating transformables, while
shielding them from tasks that are challenging and tedious. As a result, they can intuitively explore the vast space of design
possibilities. We demonstrated the effectiveness of our computational approach by creating a variety of transformable designs,
three of which we fabricate.

CCS Concepts
•Computing methodologies → Animation;

1. Introduction

Thanks to numerous depictions in comic books, cartoons and
movies, robots that change their shapes to perform different tasks
have captured our imagination. Remarkably, these robots are not
confined to digital media. The iconic Transformer action figure toys
continue to entertain children and adults alike, and have even in-
spired the development of fully operational robots [Rus14]. Going
beyond entertainment, multi-functional transformable devices hold

considerable promise: with the ability to shape-shift, robots could
be given the different locomotion modes required to traverse highly
varied environments; fabricated in a tightly packed configuration,
transformables can unfold to become functional when needed and
shift back to their compact form to be stowed away or transported;
disguised as everyday objects, household robots can pave the way
to smart appliances whose mobile capabilities better accommodate
the needs of their users.
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As captivating as they are, transformable objects are very chal-
lenging to design. For shape-shifting action figures, for example,
going from an initial vision to a working prototype is a labo-
rious, time-consuming and expensive iterative process [Wag13].
In robotics, research into self-reconfigurable systems [YmSS∗07]
studies closely related challenges. To adapt their shape according
to different tasks, reconfigurable robots rely on modular compo-
nents that are simple and interchangeable. The discrete nature of
modular robots, however, limits both their ability to seamlessly take
on specific forms, and their overall motor capabilities. In contrast,
the types of transformable characters considered in our work are
custom-designed based on a description of their morphology and
the target shape they should transform into.

Overview and contributions We present a novel computational
approach to addressing challenges that are unique to the design of
transformable physical characters. Starting from an input charac-
ter skeleton and a target shape, our method can generate fabricable
designs in a fully automated manner. To help account for hard to
quantify considerations such as aesthetic or functional preferences,
we also present a suite of interactive tools that allow non-expert
users to guide the design process if desired. Our design system
first creates an optimized, tightly-packed embedding of the char-
acter into the target shape. The objectives driving the optimization
process are specifically formulated based on the requirements we
define for desirable transformable designs. Based on the optimized
folded pose, the target shape is decomposed into 3D models that
are attached to the character’s body and limbs. To create these 3D
models, we propose automated and user-driven editing modes that
operate on a highly-versatile multiple level set representation. A
set of finishing algorithms that model the spatio-temporal transfor-
mation process are then applied. They post-process the generated
geometry and create collision-free transition motions between the
character and object modes.

We demonstrate the versatility of our computational approach
by designing a diverse set of transformable characters. Under the
user’s guidance, each transformable takes just minutes to complete.
As exemplified by our results, the space of possible designs is vast.
Even for the same character morphology and target shape provided
as input, drastically different transformables can be created. One of
the key benefits of our work, therefore, is that it enables an efficient,
user-guided exploration of various design choices. We validate the
feasibility of the designs created with our system by fabricating
several transformable prototypes.

2. Related Work

Fabrication-Aware Design Advances in digital manufacturing
technologies are opening up a vast space of opportunities for phys-
ical artifacts with complex functional and aesthetic characteris-
tics. Fueled by these advances, the graphics community has wit-
nessed a surge in research efforts aimed at formalizing computa-
tional methods for fabrication-aware design of interesting classes
of objects. Examples include design systems for objects whose
mass distribution can be precisely controlled to enable them to
stand, spin or float stably [PWLSH13, BWBSH14, MAB∗15], pa-
per airplanes and kites with optimized aerodynamics [UKSI14,
MUB15], sound filters whose acoustic properties are intuitively

prescribed [LLMZ16], and furniture pieces that are structurally sta-
ble [UIM12,KLY∗14]. The unifying characteristic of many of these
computational systems is that they aim to allow non-experts to eas-
ily explore the space of achievable results by automatically adjust-
ing design parameters based on high-level notions of desired intent.
In line with this philosophy, our work enables the design of trans-
formables – physical characters that have the ability to shape-shift
between vastly different forms.

Articulated Shape Design The design of articulated structures
provides interesting opportunities and challenges that have at-
tracted the attention of the research community. Calì et al.
[CCA∗12] proposed a method to generate fabricatable models that
convert joint configurations of an animation rig to mechanically
functional geometries. Concurrently, Bächer et al. [BBJP12] pro-
posed a technique that uses skinning information associated with
virtual characters to design the placement of mechanical joints
and their properties. The design system described by Ureta et
al. [UTZ16] further takes into account the range of motion when
designing geometry for 3D printable mechanical joints. Several
methods that design functional mechanisms and articulated link-
age structures to create animated mechanical automata have also
been proposed [CTN∗13, CLM∗13, TCG∗14, BCT15]. Similar to
these works, our goal is to automatically design functional geom-
etry for mechanical joints and the rigid components that they con-
nect. However, the artifacts that we create are specifically designed
to enable a seamless transformation process between two very dis-
tinct shapes. One of these shapes aims to be nearly indistinguish-
able from a target object, while the other maintains the overall look
of an articulated character.

Reconfigurables Objects with seamlessly reconfigurable struc-
tures are captivating to observe in action. Recognizing the tech-
nical challenges that arise in designing such objects, a number
of research projects focused on reconfigurables have been pro-
posed. For example, Li et al. [LHAZ15] proposed a computa-
tional approach to designing furniture items that fold compactly
when not in use. The design system proposed by Zhou and col-
leagues [ZSMS14] generates mechanical structures that can fold
a pre-specified shape into a box. The structure of the mechanism,
which consists of unit cubes interconnected with joints, is designed
solely to produce a successful folding process, and is therefore not
likely to be otherwise functional. In contrast, our approach takes
as input the morphological design of a character, whose range of
motion is preserved. Furthermore, we pair the computational tools
we develop with intuitive editing tools that allow users to inject
their intuition and personal preferences into design process. Most
closely related to our mission is the recent work of Huang and col-
leagues [HCLC16], who explored the problem of creating trans-
formables for animation purposes. Our work shares their vision,
but the efficient representations and mathematical models we em-
ploy, the user-controllable segmentation method we propose, and
our fabrication-oriented methodology fundamentally differentiates
our approach from theirs.

Our work also bears resemblance to previous methods that focus
on the design of 3D puzzles. However, rather than creating disjoint,
interlocking blocks [LFL09, XLF∗11, SFCO12], our method gen-
erates articulated structures. The arbitrary length of the kinematic
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(a)	Input (b)	Embedding (c)	Segmentation (d)	Output

Figure 2: Overview of our design system for transformable characters. (a) Our system takes as input the morphological descriptions
(skeleton) of a character and an object mesh. (b) The embedding stage fits the skeleton tightly inside the object mesh with considerations
of bulkiness and collisions. The combination of efficient embedding optimization and IK-based user interface allows users to explore the
large design space. (c) The segmentation stage uses a collision-aware multiple level set-based growth model to partition the project. Intuitive
editing tool is provided for users to direct the segmentation. (d) The finishing stage unions skeletal and skin meshes together to create a
fabricatable design.

chains in these articulated structures, the ability of our designs to
transform between a functional character and an arbitrary object, as
well as the conceptually different approach that we base our com-
putational method on, are also in contrast to recent work on creating
twisty puzzles [SZ15].

The computational system described by Garg et al. [GJG16] is
also related to our work. This design system takes as input a chore-
ography, which consists of a set of objects and their spacetime mo-
tion trajectories. The goal of our method is to generate precisely
this type of choreography for transformables. Consequently, we
adopt several techniques from their work to post-process our de-
signs. Although not focused on fabrication, the recent work of Won
and Lee [WL16], where multiple virtual characters choreograph
their poses such as to cast a specific shadow pattern, inspired the
approach we developed to optimize folded character configurations
that best fit inside the target object.

Mesh Segmentation Image and geometry segmentation have been
studied extensively by computer vision and graphics researchers;
a recent survey on well-established techniques can be found
in [Sha08]. Thanks to their ability to robustly handle topological
changes and efficiently implement collision detection queries, level
set-based approaches (e.g. [VC02, GF05]) are particularly well-
suited for our work. The method we use to generate geometric
models for the transformable’s body parts is inspired by the re-
cent work of Yao et al. [YCL∗15]. While their application domain
is very different – segmentation and packing to handle constraints
due to limited print volumes – we share concepts required to parti-
tion a volumetric object using an evolving multiple level set model.
However, we introduce an additional technique that allows users to
intuitively control the evolution of the target object’s segmentation.

3. Design Process Overview

Figure 2 provides an overview of our computational approach to
designing transformables. The input to our method consists of a
character Ψ and a target shape Θ (Figure 2-a). The kinematic struc-
ture of the input character is defined by a hierarchical arrangement

of joints and rigid body parts, or bones. We let M = (β1, · · · ,βm)
be a morphology vector that stores a scaling parameter for each
bone. The morphology vector provides a convenient way of adapt-
ing the character’s body proportions during the design process, if
desired. When βi is set to 1, bone i has the dimension specified by
the input character. The geometry of each bone, which we refer to
as its skeletal mesh, is procedurally created based on the known
positions and orientations of the joint geometries, using a strategy
similar to [MTN∗15].

A pose, or configuration, of the transformable is defined by a
vector S = (p,o,α1, · · · ,αn), which stores the position and orien-
tation of the root as well as an angle value for each of its joints.
The initial pose of the character, which we call character mode, is
denoted by SR. Motions are represented by a set of states Sti , where
ti denotes a discrete time index.

Our goal is to enable the input character to seamlessly trans-
form into the target shape. To this end, we first compute an op-
timized embedding E = (SO,M). The embedding stores a folded
character pose, SO, and a morphology vector. Intuitively, the folded
pose, which we call object mode, corresponds to a configuration
of the character that fits inside the target shape (Figure 2-b). The
morphology vector can either be optimized concurrently with the
folded pose, or it can be kept fixed. Although the choice is left
entirely to the user, our experiments show that adapting the mor-
phology of the character based on the target shape often results
in higher quality embeddings. This is because by growing the in-
put skeleton as much as possible while concurrently optimizing the
character’s folded pose, the overall size of the skin meshes relative
to the bones they are attached to is minimized. The resulting de-
signs in both character and object modes are therefore as compact
as possible, as shown in Fig 4. Section 4 describes our technical
approach to generating optimized embeddings based on functional
and aesthetic considerations.

While adopting an optimized folded pose, the character will fit
inside the target object. However, given the generic geometry of its
skeletal meshes, it can only create a poor depiction of this shape. As
a next step, we therefore generate high-fidelity skin meshes for each
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(a) (b)
Figure 3: (a) High-quality segmentation generated using the mul-
tiple level set-based growth model. (b) Approximate segmentation
generated using the voxel-based flood-fill approach. The latter ap-
proach is hundreds of times faster than the former.

body part of the character (Figure 2-c). We create these geometric
models with an approach inspired by character skinning techniques
used in the field of computer animation [JDKL14]. Starting from
an optimized embedding, the target shape Θ is partitioned into a set
of components that are to be assigned to each bone. As detailed in
Section 5, we employ a versatile multiple level set representation
to generate this segmentation. Starting from the location of each
bone in the character’s folded configuration, a growth-based model
generates overlap-free, smooth skin meshes that partition the tar-
get shape based on geodesic distances. Leveraging this model, we
also propose intuitive editing modes that afford explicit control in
shaping the skin meshes according to user preferences or functional
requirements. With the resulting skin meshes attached to its bones,
the character then becomes indistinguishable from the target shape
when in object mode.

The process of creating skin meshes as summarized above is
not informed by the motions the character will have to perform
during the transformation process or while performing functional
tasks such as walking. While this approximation allows us to de-
vise a computationally-efficient numerical solution, it does prevent
the character from performing any meaningful tasks. We therefore
post-process the skin meshes with a set of algorithms that are aware
of motion requirements, as explained in Section 6. The end result is
a functional, 3D-printable transformable character (Figure 2-d). As
a final step, a motion sequence (SR, · · · ,Sti , · · · ,SO) between char-
acter mode and object mode is also generated.

4. Embedding

Given an initial character Ψ and an object mesh Θ, our goal is to
find an embedding E∗ = (S∗O,M

∗) that is optimal with respect to
objectives capturing both aesthetic and functional aspects of the
design:

E∗ = argminE Lcompact +Lskin +Lskeleton +Lprotrude, (1)

where the individual objective terms will be defined shortly.

As the most basic requirement for an optimization procedure,
each objective must evaluate a different characteristic of the trans-
formable’s design. Ideally, they would be functions of the final skin
meshes generated by our design system. Unfortunately, while the
model we develop in the next section produces a high-quality seg-
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Figure 4: Segmentation of target object with an initial (top) and
optimized embedding (bottom). After the optimization, the skin
meshes conform better to the character’s bones, and are therefore
more aesthetically pleasing.

mentation of the target shape, it is too slow to employ in the in-
ner loop of our optimization process. Furthermore, it is impossi-
ble to predict how users will choose to shape the individual skin
meshes. For these reasons, we resort to a computationally efficient
algorithm that instead approximates the segmentation of the target
shape.

To efficiently estimate a segmentation Ω based on an embedding
E, we adapt the method of [DdL13] to our problem setting. Briefly,
we begin by voxelizing the target object. Each voxel stores a visited
flag, which is initialized to false, as well as the index of the charac-
ter bone that it is closest to. Using a flood-fill approach, we create
a voxel front that initially consists of the set of voxels overlapping
with the character’s skeleton meshes. Each voxel in this initial front
is marked as belonging to the bone whose skeletal mesh it overlaps
with. At each iteration of the flood-fill algorithm, we create a new
front that includes all unvisited voxels neighboring the old front.
For each voxel added to the new front, the index of the closest bone
is set according to which voxel in the old front it neighbored. The
process terminates when no unvisited voxels remain. This simple
algorithm fully partitions the volume occupied by the target mesh.
While providing only a coarse approximation of the final segmenta-
tion, our experiments demonstrate that it leads to comparable opti-
mized embeddings, but hundreds of times faster. Figure 3 compares
the segmentation obtained using the flood-fill algorithm against the
higher-quality result obtained with the growth-based method de-
scribed in the following section.

With an efficient way to approximate the segmentation Ω, we
now turn our attention to the objectives that drive the process of
generating optimized embeddings.

Compactness objective Based on a geodesic distance measure, Ω
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(a) (b)
Figure 5: (a) The highlighted points are sampled on the interface
defined by the skin-meshes of parent and child bones; arrows indi-
cate their instantaneous velocities, relative to the joint’s range of
motion, as calculated in the skin collision objective. Arrows point-
ing towards the skin-mesh of the parent bone indicate collisions
as the joint moves from θmin to θmax. The larger the arrows are,
the more severe the collisions will be. (b) For this embedding, the
arrows pointing towards the parent are fewer and shorter, which
corresponds to fewer collisions in the unfolded configuration.

maps points in space to the bone of the character they will be as-
signed to. The set of all points assigned to bone i therefore consti-
tute its skin mesh. As an intuitive interpretation, for a given embed-
ding, the compactness objective quantifies the degree to which the
corresponding skin meshes conform to the character’s bones. Infor-
mally, the bulkier these skin meshes are, the larger the value of the
compactness objective will be:

Lcompact(E) =
K

∑
i=1

D(xi,Ω(E,xi))
2, (2)

where {xi}K
i=1 is a set of points uniformly-sampled on the surface

of the skin-meshes and D(x,b) is the function that calculates the
distance from point x to bone b. As illustrated in Figure 4, opti-
mizing an embedding according to the compactness objective leads
to the character being posed such that it uniformly occupies the
volume defined by the target object. Consequently, the resulting
segmentation is more even, and the skin meshes more aesthetically
pleasing.

Skin collision objective Skin meshes are generated by partition-
ing, based on geodesic distances, the entire volume occupied by
the target shape. Consequently, as illustrated in Figure 5, they typi-
cally collide with each other while the transformable is performing
the motions it was designed for (see Figure 5). The post-processing
algorithms described in Section 6 address this shortcoming. Never-
theless, the embedding plays an important role in just how much the
geometry of the skin meshes need to be adapted to eliminate self-
collisions. To make our optimization process aware of this fact, we
define another objective that operates on pairs of bones (bc,bp)i
that are connected by joint Ji. For each such pair, the objective esti-
mates how much the skin meshes of the two bones will collide with
each other while the joint goes through its full range of motion:

Lskin(E) =
n

∑
i=1

∑
p∈Pi

[max(〈θminLi×p,N (p)〉,0)

+max(〈θmaxLi×p,N (p)〉,0)] .
(3)

As illustrated in Figure 5, Pi is a set of points sampled at the inter-

face between the skin meshes corresponding to joint Ji’s child and
parent bones. N (p) represents the surface normal at a point p that
lies on this interface, and we use moving least squares on sampled
interface points neighboring p to estimate the normal. The segmen-
tation Ω is used to estimate both Pi and N (p). The world coor-
dinates joint axis is denoted by Li, and [θmin,θmax] represent Ji’s
range of motion relative to the embedding angle. The term L× p
outputs the velocity of point p due to infinitesimal changes in Ji’s
joint angle. Scaling this term by θmin and θmax therefore provides
a first-order approximation of how much point p moves as the joint
goes through its full range of motion. Projecting this estimate onto
the normal direction of the interface then measures the expected
severity of self-collisions. The example shown in Figure 5 illus-
trates the benefits of minimizing the skin collision objective. For
the same range of motion of the joint, the optimized embedding
results in skin meshes that collide significantly less. Consequently,
as discussed in Section 6, the skin meshes resulting from the opti-
mized embedding will need to undergo smaller changes during the
post-processing steps.

Skeleton collision objective Aiming for tightly packed poses, the
character’s bones can easily end up intersecting one-another. To en-
sure the feasibility of the design, we must prevent this from happen-
ing. We therefore enclose each bone in a capsule and penalize col-
lisions between each pair of bones not directly connected through
a joint. Let P be this set of bone pairs. The collision objective is
defined as:

Lskeleton(E) = ∑
(bi,b j)∈P

max(Ri +R j−G(bi,b j),0)
2, (4)

where Ri,R j are the capsule radii of bones bi,b j , and G is the func-
tion computing the distance between bone bi and b j . For all pairs of
bones that are directly linked, we penalize the angle between them
if it goes outside the [αmin,αmax] interval that encodes the maxi-
mum allowed range of motion. The bounds of this interval are spec-
ified by the type of joint used to fabricate the physical prototypes.
Note that [θmin,θmax] in Eq. (3) also represents the range of motion
of a joint, but it uses the embedding angle as 0, while [αmin,αmax]
uses joint’s default angle as 0. Protrusion objective To ensure a
successful transformation process, the character’s bones must be
fully confined to the interior of the target shape when in object
mode. This requirement is captured by the following objective:

Lprotrude(E) =
1
M

M

∑
i=1

max(φ̂(si),0)
2, (5)

where φ̂ is the level set function of the target object and {si}M
i=1

are points sampled on the character’s skeletal meshes. In our im-
plementation, all level set functions are negative inside the shape.
If si is outside the grid where φ̂ is defined, we replace φ̂(si) with a
large positive number.

Optimization To initialize the optimization, the root of the charac-
ter is placed at the center of the bounding box of the input mesh.
If symmetry is imposed, the symmetry axes of the input mesh and
the character will be aligned. The optimization process searches for
an optimized embedding by minimizing the objective function (1),
a weighted sum of the four constituent sub-objectives we describe
above. As weights, we use 103 for Lprotrude and Lskeleton, and 1 for
Lskin and Lcompact for all our examples. If the morphology vector is
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(a) (b) (c) (d)

Figure 6: Starting from the character’s skeletal meshes (a), the skin
mesh for each bone is grown until the entire volume occupied by the
target shape is filled (b-d).

also being optimized, we add a small regularizer that is proportional
to the amount by which each bone’s scaling factor deviates from
1. Furthermore, if the user desires a symmetric solutions, then we
reparameterize the folded pose and morphology vector using just
half the parameters, which are then automatically mirrored when
evaluating each objective.

To generate optimized embeddings, we employ the powerful
non-linear solver CMA-ES [HO96]. We note that due to the highly
non-convex nature of the embedding task, the optimization land-
scape features many local minima. However, for our problem do-
main, this is not necessarily an undesirable attribute. In fact, local
minima enrich our design space. Consider, for example, the trans-
formable shown in Figure 1. One can certainly envision other ways
in which the spider-like character can be made to transform into the
target car shape. For example, it could be facing upside down, or
its front and hind legs could be folded symmetrically. Each cor-
responding embedding would represent a local minimum, but it
would nevertheless correspond to an interesting design.

To allow users to explore different variations of their design, we
provide them with the means to explicitly influence the embedding
process. Through a familiar click-and-drag editing mode powered
by inverse kinematics, the user can adjust the pose of the character
at any time. The optimization, which is efficient enough to run at
interactive rates, then starts from this user-provided configuration
to generate an optimal embedding. We found that this user-guided
optimization strategy is very effective, as it leverages human insight
and intuitively allows personal preferences to be accounted for.

5. Geometry Generation

Starting from an embedding E?, our next goal is to decompose the
target object into skin meshes that are to be associated with the
transformable’s body parts. To accomplish this task, we adopt a
versatile multiple level set representation due to its simple defini-
tion of constructive solid geometry operations, its ability to grace-
fully handle topological changes, and the efficient implementation
of collision detection queries that it enables. To begin, we define a
multiple level set vector Φ = (φ0,φ1, · · · ,φm), where φ0 is the level
set of the outer domain of the target object, and φi is the level set
representing the skin mesh of bone bi. As shown in Figure 6 (a), φi
is initialized with the level set corresponding to bone bi’s skeletal
geometry. Our strategy for decomposing the target object is to grow
each skin mesh gradually, but without overlaps, until the entire vol-
ume occupied by the target shape is filled. We note that for all our
examples the grid step size of all level sets is 0.01.

Level set growth To evolve the surface of each level set φi, we

define a scalar velocity field vi = v0− cκ̃i, where v0 is a nominal
growth speed, κ̃i is a function of the mean curvature, and c is a scal-
ing factor. Including the κ̃i term in computing the velocity field en-
sures that high-frequency geometric features erode over time. This
term is defined as:

κ̃i = max(|κi|−κ0,0) · |κi|/κi, (6)

where κi is the mean curvature of the level set and κ0 is a threshold.
Intuitively, with this definition of κ̃i, geometric features begin to
smooth out only if they become too sharp [YCL∗15]. Given the
scalar velocity field vi, the evolution of the skin mesh is governed
by the Level Set Equation:

φ̇+ vi|∇φ|= 0. (7)

To solve this PDE, we couple an upwinding scheme for gradient
evaluation with an explicit time integrator. Thanks in part to the
level set correction step that modulates the growth process, as out-
lined below, we have not observed any stability problems with this
numerical solution when a reasonably-sized time step is used.

Level set correction Using the method outlined above, each skin
mesh is evolved independently. Collisions between them are there-
fore to be expected. We use a level set projection method [LSSF06]
to modify the evolving segmentation such that collisions are re-
solved as soon as they occur. The method is based on the obser-
vation that if the multiple level set is a unit segmentation of space,
and each level set corresponds to a signed distance field, then at any
point p, the two closest level sets φs1,φs2 satisfy φs1(p)+φs2(p) =
0. If the sum of signed distances from p to the two level sets
is less than zero, then the two level sets intersect one-another. If
it is greater than zero, then there are voids between them. Since
we aim to have empty space be filled in through the incremental
growth process, we only apply the projection step where level sets
are found to intersect. The projection operation is simple: For ev-
ery grid point p used to define Φ, let the two closest level sets be
φs1,φs2. If e = φs1(p)+φs2(p)< 0, then we shift the value of both
φs1(p) and φp by −e/2. We use a similar strategy to ensure that no
level set φi overgrows the target shape. To this end, we resolve col-
lisions between φi and φ0 as before, except that we shift the value
of φi(p) by −e and keep φ0(p) intact. Before applying the projec-
tion step, we apply the fast marching method [Set95] to ensure that
each level set corresponds to a signed distance field.

Why growth? It is tempting to consider using the level set projec-
tion method to directly fill out the entire empty space when seg-
menting the target object. However, our growth-based model has
several important advantages. First, it achieves a segmentation that
is based on geodesic distances, rather than an Euclidean metric. As
noted in the character skinning literature [DdL13, JDKL14], this
feature is crucial in avoiding artifacts when concave target shapes
are provided as input. Furthermore, because the segmentation pro-
cess is incremental, we have observed it is better behaved numeri-
cally than our early experiments that relied solely on level set pro-
jections. Last, our growth-based method allows us to seamlessly
incorporate user input in the skin mesh generation process.

Mesh transfer The segmentation generated through level set
growth is unaware of the motions that the transformable will need
to perform. To deal with this shortcoming, we first address col-
lisions between each pair of bones that are connected by a joint
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(a) (b) (c) (d)

Figure 7: (a) After the geometry generation process described
in Section 5, collisions exist between the skin meshes of bones
connected by a joint. (b) A large transfer radius R is overly-
conservative. Although it resolves collisions, it alters the appear-
ance of the skin meshes too much. (c) If R is too small, collisions
are reduced, but they still exist. (d) The smallest transfer radius R
that resolves collisions.

since their relative motions are already determined. As shown in
Figure 7 (a), collisions between the original skin meshes of a joint’s
child and parent bones are likely to be significant once its full range
of motion is considered. To resolve these collisions, we developed
a technique that we call mesh transfer. In effect, this step adjusts
the segmentation that was produced with our growth-based method
such that it becomes collision-aware. This is achieved by trans-
ferring over the collision-causing geometry from one bone to the
other, in a way that does not affect the overall shape of the trans-
formable when it is in object mode.

Due to fabrication-imposed constraints, the hinge joints used
in transformables only have a single degree-of-freedom. Conse-
quently, we can parameterize the geometry to be transferred over
with the aid of a cylindrical shape. The origin of this cylinder co-
incides with the position of the joint. It is aligned with the axis of
the joint and has a radius R. Using level set operations, the transfer
operation is defined as:

φtransfer = max(φcyl(R),φchild) (8)

φchild = max(φchild,−φtransfer(R)) (9)

φparent = min(φparent,φtransfer(R)). (10)

Figure 7 illustrates the effect of the mesh transfer step for a range
of values of the cylinder’s radius: as R increases, collisions vanish.
However, if R is too large, the changes to the original segmenta-
tion become needlessly intrusive. It is worth noting that the mesh
transfer operation is performed when the transformable is posed
in object mode. Consequently, for any value of R, large or small,
the net volume occupied by the skin meshes does not change. As
a second remark, the skin collision objective that guides the gener-
ation of optimized embeddings promotes the use of small transfer
radii, and therefore smaller changes to the segmentation during this
post-processing step.

The optimal transfer radius R?, one that is as small as possible
yet eliminates all collisions, depends non-trivially on the shape of
the skin meshes that the transfer operation is applied to, as well as
on the range of motion of the joint. While we cannot compute R?

analytically, a simple bisection search algorithm is very effective in
finding it: We evaluate the quality of any candidate transfer radius

(a) (b)

Figure 8: Before editing, the wheel sockets are fragmented into
several parts. (a) Through the editing tools we provide, users can
edit the segmentation by dragging point handles on the skin mesh
interfaces. (b) After editing, each wheel socket is contained by a
single skin mesh.

R using:

LCollision =
T ′

∑
i=1

LevelSetCollision(φ̃child, φ̃parent,Si), (11)

where φ̃child, φ̃parent are the skin meshes of the parent and child bone
after the transfer operation, {Si}T ′

i=1 are sampled character config-
urations across the joint’s range of motion, and LevelSetCollision
is a function that evaluates the net overlap between the two level
sets when they are positioned relative to each other according to Si.
Starting with a conservative value of R, we iteratively increase it if
collisions are detected, or decrease it otherwise, as typical done in
interval halving methods. Once the search procedure converges, the
skin meshes are finalized using the steps outlined in Eq. (8). Users
can choose to transfer geometry from child to parent, or vice versa,
to further direct the design of their transformable.

User interaction An important goal of our work is to keep users in-
volved in the design process. This allows personal preferences and
intuition to be taken into account when creating transformables.
We provide several ways in which users can control the segmen-
tation of the target object. First, at any time, users can inhibit the
growth process for any selected skin mesh. This feature is impor-
tant if users would prefer some of the resulting skin meshes to be
more compact than others. To implement this feature, the scalar ve-
locity field that controls the growth process of a skin mesh is set
to 0, and the level set projection operator is modified to no longer
change the values of the associated level set during the correction
step. Users can also remove entirely any subset of skin meshes. The
remaining ones then simply grow to fill in the resulting void. The
contrast between some body parts of the transformable having only
skeletal meshes, while others feature prominent skin meshes, can
lead to interesting designs as shown in our results. Our design sys-
tem also provides an editing mode that allows users to explicitly
manipulate the shape of any skin mesh as described next.

Editing skin meshes To provide direct control over the shape of the
skin meshes, we propose an intuitive editing mode that integrates
seamlessly with our growth-based model. At a high-level, this edit-
ing mode translates user inputs into a change of the scalar velocity
field that guides the evolution of the level sets. Figure 8 illustrates
the editing mode. Users are provided with a visualization of the in-
terfaces between level sets. These interfaces act as handles that the
user can drag along the surface of the target object. As the shape of
the interfaces changes due to the user actions, the geometry of the
skin meshes follows suit.

Our first task is to generate a set of points Qi, j that lie on the
surface of the target object and delineate the interface between two
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neighboring level sets φi and φ j. We obtain Qi, j by merging points
from Qi and Q j that are sufficiently close. Here, Qi represents the
contour of φi along the surface of the target shape, φ0. Q j is defined
analogously. To compute this contour, we begin with a seed point
q0 that is added to Qi. This seed point is found by repeatedly pro-
jecting a point q onto φi and φ0 until convergence. Starting from
a point qt ∈ Qi, the next point along the contour can be found by
tracing along the mesh surface in a direction tangent to φi(qt):

qt+1 = Pφ0(Pφi(qt +Normalize(∇φ̂0(qt)×∇φi(qt)) ·h)). (12)

where Pφ projects points on the surface of level set φ, and h controls
the spacing between consecutive points in Qi. The process termi-
nates when the next candidate point to add to Qi is sufficiently close
to q0.

Once the points in Qi, j are generated, they act as an editing han-
dle for the user. Briefly, the user can select any point qt ∈ Qi, j and
move it to a new location on the surface of the target object. Using
a soft-selection approach, points in Qi, j neighboring qt follow. A
fall-off function inversely proportional to distance from qt is used
to compute their relative displacements. The user input therefore
results in a new set of points, Q̄i, j. Our next task is to modify level
sets φi and φ j such that Q̄i, j becomes their new interface. In the
following, we present the approach we use to modify φi, with the
understanding that an equivalent method is applied to φ j. The new
interface Q̄i, j imposes a set of constraints that must be satisfied at
the next iteration of the growth process:

φ
t+1
i (q) = 0, ∀q ∈ Q̄i, j. (13)

To satisfy these constraints, we modify the velocity field governing
the level set evolution described by Eq. (7). In particular, given the
simple nature of our time integrator, we compute the velocity ui
that would satisfy the constraints:

ui(q) =−φ
t
i(q)/δt, ∀q ∈ Q̄i, j, (14)

where φ
t
i(q) is the current value of the level set at q, and δt is the

time step used to integrate the level set equation forward in time.
To ensure that ui(q) takes on the correct values for all points in
Q̄i, j, we must compute appropriate velocities at the grid points used
to represent φi. With q expressed through trilinear interpolation of
grid points v, the relationship we seek is:

∑
v∈Vert(q)

wv(q)ui(v) = ui(q),∀q ∈ Q̄i, j, (15)

where Vert(q) is the set of grid points of the voxel that contains
q, and wv(q) are trilinear interpolation weights associated with
each grid point v ∈ Vert(q). In matrix form, this equation takes
on the standard form, Ax = b, where the unknown vector x con-
tains the velocity field ui for the underlying grid points. We ob-
tain a solution to this equation using regularized least-squares,
x = (AT A+λI)−1AT b, where λ is set to be 1. With the new veloc-
ity terms computed, all that remains is to update the final velocity
field that controls the growth process for φi:

vi = v0− cκ̃i +ui. (16)

For points in Qi, j that are unaffected by user edits, the new ve-
locity term evaluates to zero and the typical geometry generation
process is unaffected. However, for all other points, the evolution

Figure 9: Extension: A self-transforming robot prototype with mo-
tors installed at the joints.

of the level sets is biased such that the resulting skin meshes take
on the profile delineated by Q̄i, j. Due to the regularized solver we
employ to compute ui, and because users often provide incremental
changes to the interface Q̄i, j, we continuously compute updates to
the velocity field using Eq. (16). Qi, j and Q̄i, j are updated with each
iteration. The computational overhead of this update step is negli-
gible, so users are provided with a seamless interactive experience.
Note that every time the user edits the segmentation, mesh trans-
fer operation will be applied to resolve any incurred collisions. In
this way, the user can always make edits on the segmentation that
is used for fabrication.

6. Design Finishing

Folding sequence generation The mesh transfer step outlined
above ensures there are no collisions between the skin meshes
of child-parent bone pairs. Nevertheless, collisions between body
parts that are not directly connected by a joint can still occur. Our
design system therefore searches for a sequence of folding states,
(SR, · · · ,S fi , · · · ,SO), between character and object mode (SR and
SO, respectively) that minimizes collisions. The physics-based ap-
proach presented by Zhou and his colleagues [ZSMS14] could be
used for this purpose. However, because we cannot guarantee that
a collision-free folding sequence exists for any transformable de-
sign, we resort to a greedy algorithm instead. Because of the re-
versibility of the folding sequence, the algorithm aims to find an
unfolding sequence, (SO, · · · ,S fi , · · · ,SR). Starting from the object
mode SO, if there are unfolded joints, each time we choose one
joint to unfold all the way that causes least amount of collisions.
We use Eq. (11) to evaluate collisions between the character’s skin
and skeletal meshes. For all our examples, after the user-guided ge-
ometry generation step, the best folding sequence is found within 1
minute of computation.

Final carving If the folding sequence that is generated is not
collision-free, we apply the level-set based carving method in
[GJG16] to ensure that the final design of the transformable is func-
tional. Importantly, we carve the geometry of each skin mesh to
resolve collisions with other skin meshes, as well as with the char-
acter’s skeletal meshes.

7. Results

We used our computational method to create a variety of trans-
formable designs, as seen in Figure 10. To validate our results, we
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Input mesh Input robot Embedding Object mode Robot mode

(a) CarSpider1 

(b) CarSpider2

(c) WheelSpider

(d) EggSpider

(e) EggHuman

(f ) OvalDog

(g) BunnySnake

(h) BunnyHuman

Figure 10: A gallery of transformable designs. Their dynamic folding and unfolding processes are shown in the supplemental video.

Example #Bone Grid Size
Time (s)

Embedding Segmentation Folding Opt. Finishing
CarSpider1 17 23×18×50 x x 32.0 127.1
CarSpider2 17 23×18×50 x x 36.7 132.4

WheelSpider 17 26×41×41 13.0 4.3 12.0 148.1
EggHuman 20 44×54×44 34.5 13.0 50.6 262.6
EggSpider 17 41×50×41 23.5 10.0 24.7 177.4
OvalDog 19 30×37×37 15.1 4.2 13.7 153.9

BunnySnake 15 45×54×54 31.2 18.6 15.7 279.6
BunnyHuman 20 27×33×34 x 11.1 14.1 117.1

Table 1: Timing information for automatically generated examples.
x indicates that user interaction is involved.

fabricated three transformable action figures (Figure 1). The trans-
formation process for both simulated and fabricated prototypes is
best seen in the supplementary video. We run our design system on
a standard PC with 2.7 GHz Intel Core i7 processor.

Our design system enables functional transformable designs to
be generated either fully automatically, or under the guidance of
the user. The results shown in Fig 10 (d,e,f,g), for example, were
created without any user intervention. These results show that our
method does not depend on user input to create valid segmentations
or collision-free designs. For the examples shown in Fig 10 (a-c),
the embedding stage was user-guided, as shown in the supplemen-
tary video. As can be seen, within about a minute, the user guides
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Figure 11: Timing information for embedding and growth-based
segmentation.

the system into generating three different ways of embedding the
skeleton into the car object. Each one of these is valid and corre-
sponds to a different local minimum of the embedding optimization
process. As demonstrated also by the result shown in Fig 10 (h),
where the head of the character is purposefully aligned with the
head of the bunny, this interactive tool enables users to effectively
create the transformable designs they envision.

For the results shown in Fig 10(a, b) we further used our interac-
tive, user-guided segmentation editing method, which is also shown
in the results video. The goal here is to efficiently edit the resulting
skin meshes such that the wheel section is not split up into multiple
parts. If the users would so choose, they could also use this editing
mode to align the segmentation boundaries with specific seams in
the target model. Such considerations are largely aesthetic, which
is why they are left to the user.

As our results indicate, the space of possible transformable de-
signs is vast. The same input character can be designed to trans-
form into different target shapes (Figure 10(a,d) and (e,h)). Con-
versely, characters with unmistakably different morphologies can
seamlessly transform into the same target shape (Figure 10(d,e) and
(g,h))). Even for the same input character and target shape pair, our
computational approach can easily create, under the guidance of the
user, distinctly different transformable designs (Figure 10(a,b)).

To generate final skin meshes for the tranformables, we can use
two strategies, that each start with CSG operations between the
level sets of the skin meshes and the target object. This step pro-
duces high-quality 3d models that capture all the surface details
featured by the input shape. What is different, however, is that our
system can either generate volumetric models, or shells. The vol-
umetric models can be directly attached to the character’s skele-
tal meshes through CSG operations. The shells can be attached
to the underlying skeleton through lightweight support structures.
Given the segmentation of the input shape, it is relative easy for us
to manually create the support structures that won’t interfere with
other parts. Each strategy has its own advantages. Transformables
with volumetric skin meshes are structurally stable when in object
mode, which could be important if they are designed to be easily
stowed away or transported, for example. Shell skin meshes, on
the other hand, are much lighter, and are therefore less likely to
hinder the functional capabilities of the character. Furthermore, if
the shells attach to the character skeleton through snap-on or mag-

netic connectors, then they can be easily replaced. This would allow
the same character to enrobe different skins in order to transform
into different types of objects. It is worth noting that, although not
demonstrated, our design system can easily support this type of
application by simply keeping the character’s morphology vector
fixed while optimizing embeddings.

Self-transforming robotic device As an exciting extension that we
wish to pursue in future work, our method can be applied to de-
signing fabricatable robotic devices that shape-shift to perform dif-
ferent tasks. Towards this application, we fabricated a wheel robot
(Figure 9) using our design platform. However, it highlights an im-
portant consideration that is not yet addressed. The robot’s servo-
motors are not strong enough to carry the full weight of the skin
meshes. Ideally, actuation limitations should therefore be taken into
account at design time. To bypass actuation constraints, we further
tested our designs in a physically-simulated environment. As the
results video shows, in our black-box physically simulated environ-
ment, transformables can transition from object mode to character
mode, walk successfully, and then change back into object mode.
The walking motions were generated using the method proposed
by Megaro and his colleagues [MTN∗15].

8. Limitations and Future Work

We presented a computational approach to designing transformable
robots that shape-shift in order to take on vastly different forms.
Our method allows users to drive the design process by injecting
their own intuition and personal preferences into the transformables
they create. To validate our computational models, we designed a
variety of simulated and physical prototypes.

Our method is not without limitations. We would like, for ex-
ample, to investigate more powerful ways of creating motion se-
quences for the transformation process. Ideally, this step would be
tightly integrated with the embedding optimization and skin mesh
generation algorithms, in order to reduce or eliminate altogether
the need to post-process the designs. Higher-level goals could also
be considered while planning transformation sequences. For exam-
ple, we would like to ensure that the robot does not lose balance
while transforming to and from object mode. Designing the skin
meshes such that they enhance the functionality of the robot is also
an interesting direction for future work. For example, they can be
designed to house electromechanical components and wiring, they
can be optimized to be lightweight, yet sufficiently strong to bear
load, or they can be made to give the transformation process a more
puzzle-like feel.
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