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The real world is full of sounds: a babbling brook winding through a tranquil

forest, an agitated shopping cart plugging down a flight of stairs, or a falling

piggybank breaking on the ground. Unfortunately virtual worlds simulated by

current simulation algorithms are still inherently silent. Sounds are added as

afterthoughts, often using “canned sounds” which have little to do with the an-

imated geometry and physics. While recent decades have seen dramatic success

of 3D computer animation, our brain still expects a full spectrum of sensations.

The lack of realistic sound rendering methods will continue to cripple our abil-

ity to enable highly interactive and realistic virtual experiences as computers

become faster.

This dissertation presents a family of algorithms for procedural sound syn-

thesis for computer animation. These algorithms are built on physics-based

simulation methods for computer graphics, simulating both the object vibra-

tions for sound sources and sound propagation in virtual environments. These

approaches make it feasible to automatically generate realistic sounds synchro-

nized with animated dynamics.

Our first contribution is a physically based algorithm for synthesizing

sounds synchronized with brittle fracture animations. Extending time-varying

rigid-body sound models, this method first resolves near-audio-rate fracture

events using a fast quasistatic elastic stress solver, and then estimates fracture

patterns and resulting fracture impulses using an energy-based model. To make



it practical for a large number of fracture debris, we exploit human perceptual

ambiguity when synthesizing sounds from many objects, and propose to use

pre-computed sound proxies for reduced cost of sound-model generation.

We then introduce a contact sound model for improved sound quality. This

method captures very detailed non-rigid sound phenomena by resolving modal

vibrations in both collision and frictional contact processing stages, thereby pro-

ducing contact sounds with much richer audible details such as micro-collisions

and chattering. This algorithm is practical, enabled by a novel asynchronous in-

tegrator with model-level adaptivity built into a frictional contact solver.

Our third contribution focuses on another major type of sound phenomena,

fluid sounds. We propose a practical method for automatic synthesis of bubble-

based fluid sounds from fluid animations. This method first acoustically aug-

ments existing incompressible fluid solvers with particle-based models for bub-

ble creation, vibration, and advection. To model sound propagation in both

fluid and air domain, we weight each single-bubble sound by its bubble-to-ear

acoustic transfer function value, which is modeled as a discrete Green’s function

of the Helmholtz equation. A fast dual-domain multipole boundary-integral

solver is introduced for hundreds of thousands of Helmholtz solves in a typical

babbling fluid simulation.

Finally, we switch gear and present a fast self-collision detection method

for deforming triangle meshes. This method can accelerate deformable sim-

ulations and lead to faster sound synthesis of deformable phenomena. In-

spired by a simple idea that a mesh cannot self collide unless it deforms

enough, this method supports arbitrary mesh deformations while still being

fast. Given a bounding volume hierarchy (BVH) for a triangle mesh, we operate

on bounding-volume-related submeshes, and precompute Energy-based Self-



Collision Culling (ESCC) certificates, which indicate the amount of deformation

energy required for the submesh to self collide. After updating energy values

at runtime, many bounding-volume self-collision queries can be culled using

the ESCC certificates. We propose an affine-frame Laplacian-based energy def-

inition which sports a highly optimized certificate preprocess and fast runtime

energy evaluation.
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level nodes with adjacent submeshes. . . . . . . . . . . . . . . . . 129

7.3 Culling performance increases at finer scales: Certificates tend
to become stronger for smaller nodes as more deformation en-
ergy (per triangle) is required to deform smaller submeshes to
self collide. (Data for flag example.) . . . . . . . . . . . . . . . . 130

7.4 Minimum-energy deformation for self contact: (Left) A hand
model is globally and smoothly deformed (Right) to bring
two fingertips into contact as per the minimum displace-
ment Laplacian energy defined in (7.1). The smoothness of
minimum-energy deformation enables meaningful certificates
on BV nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.5 Reducing affine deformation: Smaller deformation energies can
be obtained by using a suitable affine transformation to reduce
mesh deformation. Shown are (a) the undeformed mesh, and
(b) the deformed mesh. While deformation energies in a tracked
rigidbody frame (c) are smaller, they cannot undo stretching. In
contrast, pulling back to an affine frame (d) can further reduce
deformation energy while still preserving intersection proper-
ties. Affine frames are also cheaper to estimate than rigidbody
frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.6 Separating weakly coupled sub-meshes with a separation
plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.7 Timing breakdown of post-deformation update . . . . . . . . . 147
7.8 Benefits of ESCC optimizations for runtime SCD . . . . . . . . 147
7.9 SCD performance vs cover ratio, r . . . . . . . . . . . . . . . . . 148
7.10 Conservativeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.1 Bubble entrainment by a falling water drop (cut-away view) . 162

xviii



C.1 Simplification of the objective function: (a) The numerator and
denominator of the objective function in (C.6) are plotted as two
elliptical contours. (b) We apply an affine transformation to reg-
ularize the objective function into a simpler form (C.7), in which
the numerator has a circular contour and the denominator has
an axis-aligned elliptical contour centered at the origin. . . . . . 172

C.2 Contour optimum: The optimum of objective function (C.7) on
elliptical contours form the red curve which can be analytically
determined. (a) shows the general case, and (b) and (c) illustrate
the special cases where the center of the circular contours of the
numerator is on x- or y- axes. . . . . . . . . . . . . . . . . . . . . 175

xix



CHAPTER 1

INTRODUCTION

Over the past decades, computer graphics has been tremendously successful.

Many endeavors in entertainment, design, education and medicine etc. have

come to rely upon photo-realistic synthetic images and computer-simulated mo-

tions using sophisticated graphics techniques. This in turn motivated many re-

searches on efficient generation of realistic visual effects.

However, our brains sense the physical world with not just our eyes but

also our ears. The real world is full of sounds: a babbling brook winding

through a tranquil forest, an agitated shopping cart plugging down a flight of

stairs, or a falling piggybank breaking on the ground. They provide important

clues to enhance human perception [VG00] of the physical world. Inevitably,

computer-generated realities must incorporate a full spectrum of human sen-

sations to enable highly immersive virtual realities. Unfortunately, current vir-

tual worlds simulated by computer graphics models are still inherently silent.

Sounds are added as afterthoughts, often using “canned sounds” which have

little to do with the animated geometry and physics. Consequently, generat-

ing sounds synchronized with animated motions is expensive and laborious:

production sounds rely on talented foley artists who manually record and pro-

cess desired sound effects; and most interactive applications simply play pre-

recorded sounds triggered by specific events, but those sounds can be repeti-

tive, expensive to store, and hard to be synchronized with user input. In the

long term, the lack of realistic sound rendering methods will continue to crip-

ple our ability to enable highly interactive and realistic virtual experiences even

as the computer becomes faster.
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Figure 1.1: A piggybank breaking on the ground and producing sound

In recent years, numerous computer simulation methods have been pro-

posed for computer graphics applications, capturing highly detailed motions

of many phenomena with affordable computation cost [OBH02, Sta99, CMT04,

GHF+07, GBF03, KJM10]. The advancement of these simulation models also

opens a door toward automatic procedural sound synthesis. Although re-

searchers have started developing sound models built upon physical principles

of object vibrations and sound propagation, previous work only addressed cer-

tain simple sound phenomena, and we will summarize the work in chapter 6.

In this thesis, we present a family of algorithms for physics-based sound

synthesis of different types of sound phenomena, including sounds from rigid-

body brittle fracture (Figure 1.1), modal contacts (Figure 1.2) and fluids (Fig-

ure 1.3). The sound phenomena we address in this thesis consider general and

complex cases. Our goal is to develop computational methods practical on mod-

ern computers. We synthesize virtual sounds by capturing detailed motions that

produce sound waves as well as simulating sound propagation in media. Our

methods, based on physical principles, promise automatic generation of realis-

tic sounds fully synchronized with animated geometry and physics.
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Figure 1.2: A number of steel marbles rolling through a double helix of
plastic chutes and producing rolling contact sounds

Figure 1.3: A faucet pouring water into a water pool, producing
thousands of air bubbles and generating familiar babbling
sounds

Generally speaking, a major portion of sound that we hear originates from

object movement. These abrupt motions compress surrounding air or other me-

dia of objects, perturbing the medium pressure. Such disturbances then prop-

agate as sound waves through the surrounding media. Possibly after some re-

flection, refraction or diffraction, those waves finally reach a listener. If those

waves have frequency components in human hearing range (20Hz–20kHz), our
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Figure 1.4: The visible and audible wavelength ranges: The audible
wavelength is much larger than visible wavelength, and the
audible wavelength range is much wider than visible wave-
length range.

ear can perceive them. Computationally, in order to synthesize audible sounds,

we need to model two steps of dynamics: sound generation and its propagation.

Sound Generation: To model sound sources, we

need to simulate different types of motion that pro-

duce audible sounds: when we tap a coffee mug, a

major part of sound comes from the mug’s surface vi-

bration excited by the tapping forces; physicists have

revealed that bubbles generated when we pour water

can vibrate and produce familiar water sounds; and even some air movement

such as air vortices generated by swinging a sword produces audible aerody-

namic sounds. Therefore, a physics-based sound rendering method must first

resolve those audible motions. It is important to notice that simulating audible

motions requires higher fidelity than the traditional simulations used in graph-

ics applications. This is because human ear is capable of hearing motions up to

20kHz (see Figure 1.4), but those high frequency motions are often very tiny and

invisible. Consequently, previous simulations for visual purposes took large in-

tegration time-steps for higher simulation performance, very often neglecting

those invisible motions. When directly used for high-quality sound rendering,

those simulation methods will miss audible sound details and lead to artifacts.
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In this thesis, we will present high-fidelity simulation methods which are capa-

ble of capturing audible motions for sound synthesis In addition, as illustrated

in chapter 3, 4 and 5, they can also improve the realism of visible motions.

Sound Propagation: Sound is a sequence of waves

propagating through compressible media such as air

or water1. When multiple waves are traveling at the

same time, they interact with each other to produce

a new wave. Because of the wave interaction, also

called interference, sounding objects, such as a loud

speaker, can emit sound waves with directionality, boosting sound magnitude

along certain directions while suppressing it along others. When obstacles

present, the sound propagation can be reflected or diffracted—that is, the fact that

one can hear sounds around barriers while shadowed from the sound sources.

Some medium properties affect the behavior of sound propagation as well, such

as medium density, viscosity, and the motion of the medium itself. Sound waves

are refracted when propagating through a medium which has spatially varying

properties—for example, a medium that has non-uniform density distribution.

In this thesis, we simulate sound propagation by solving the related partial dif-

ferential equations, namely the Wave equation (2.9) and the Helmholtz equa-

tion (2.12). For practical simulation of sound propagation in complex environ-

ments, we exploit the inherent features of sound simulation, such as parallelism,

pre-computation and insights from psychoacoustics. We present the details of

all these methods in the following chapters.

1Sound can also propagate through solids, but there are additional propagation modes in
solids. In this thesis, we will not consider the bulk waves propagating in solids.

5



1.1 Contributions and Outline

The organization and contributions of each subsequent chapter are as follows:

Chapter 2 overviews basic mathematical models that describe object vibrations

and sound propagation. We first introduce linear model analysis that

has been widely used to model surface vibrations of solid object. For

sound propagation, we briefly introduce the governing equations: the

time-domain acoustic wave equation is introduced, and its properties that

have been exploited for numerical solves are presented; the frequency-

domain Helmholtz equation is derived next, followed by an introduction

of the multipole and far-field approximations. Finally, we also provide an

overview of a pipeline for physics-based rigid-body sound synthesis.

Chapter 3 starts to present the sound rendering methods we have developed.

In this chapter, we present a practical method to synthesize sounds from

large-scale rigid-body fracture events [ZJ10]. Inspired by laboratory exper-

iments, we approximate brittle fracture sounds using time-varying rigid-

body sound models. A new energy-based model of fracture pattern gen-

eration is introduced to estimate “crack”-related fracture impulses. More-

over, to reduce the cost of generating sound models for complex fracture

debris, we propose to replace certain fracture debris with simplified sound

models. This approximation is based on the observation that sounds pro-

duced by small pieces of debris can be masked partially by large objects

and become indiscernible. Those simplified sound models can be precom-

puted, stored in a database and quickly retrieved for runtime sound syn-

thesis. Implemented in parallel, this approach leads to much faster run-

time computation while retaining comparable sound quality.

6



Chapter 4 revisits the long-studied problem of frictional contacts simulation

to resolve non-rigid sound details such as micro-collisions, chattering,

squeaking and contact damping. Previous contact simulations were

largely motivated by visual realism and thus failed to capture these de-

tails. In contrast, we simulate acoustic vibrations of objects to capture

these sound details. Exploiting the transient nature of the small-scale

dynamics, we propose an asynchronous simulation that adapts time-step

sizes at runtime. Small time-steps are required only when micro-collisions

have significant sound contributions, otherwise large time-steps are used.

Consequently, we achieve a considerably faster simulation without sacri-

ficing unprecedented small-scale sound details.

Chapter 5 switches to model sound phenomena from liquids like water. It in-

troduces a computational model to produce liquid sounds synchronized

with simulated fluid dynamics, largely based on our paper [ZJ09]. Acous-

tic research showed that the majority of sound from splashing liquids

arises from harmonic vibrations resulting from the creation of tiny air bub-

bles [Lei94]. To practically simulate acoustic bubbles, We augment the

existing incompressible fluid solvers for bubble creation and advection

without explicitly simulating their acoustic vibrations. It is computation-

ally expensive to accurately calculate sound propagation passing through

time-varying water domain and air domain. Therefore, we approximate

the associated two-phase scattering problems with one-way coupling: the

sound propagation in water domain is solved first, and then the results

on water surface are used as boundary conditions to solve for the air-

domain propagation. These solves are implemented in parallel on dis-

tributed computing clusters. And we are able to simulate large-scale fluid
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sound phenomena involving tens of thousands of bubbles and more than

half a million two-phase Helmholtz solves.

Chapter 6 discusses the previous work on physics-based simulations and

sound synthesis methods related to this thesis.

Chapter 7 is not directly related to sound. Instead, it presents a method of effi-

ciently detecting self-collisions for arbitrarily deforming triangle meshes.

This method can accelerate general deformable simulations, such as cloth,

thin shell and elastic volumes. Provided that physics-based sound render-

ing algorithms desire high-fidelity simulation methods to model sound

generation, this fast self-collision detection method can also improve the

performance of deformable sound synthesis. Our method presented in

this chapter achieves an order of magnitude speedup over traditional self-

collision detection methods. Moreover, it is complementary to most of the

existing self-collision detection methods, and can be used in combination

with them.

Chapter 8 presents our conclusions and suggestions for future work.

Finally, we provide several appendices on the technical details and mathemati-

cal derivations appeared in our presentation in chapter 3, 5 and 7.
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CHAPTER 2

BASIC PHYSICAL MODELS OF SOUND PHENOMENA

In this chapter, we present basic physical models of sound generation and prop-

agation. First, solid object vibration, a major type of motion that produces audi-

ble sounds, is introduced. We start from basic vibration equations that describe

general object vibrations, and then introduce the linear modal vibration model

widely used for rigid-body sound synthesis. In the second part of this chapter,

we describe mathematical models for sound propagation, and briefly outline

their computational methods. Finally, this chapter ends with an overview of the

pipeline for rigid-body sound synthesis.

2.1 Modeling Sound Sources

2.1.1 Basic Vibration Model

X

m

Perhaps the simplest vibration can be demonstrated

using a spring-mass system, which has a single degree

of freedom (DOF). And its position x is described by

the equation

mẍ + kx = 0, (2.1)

where k is the stiffness of the spring and m is the mass. If the spring is initially

stretched by a distance of A and released, the spring starts vibrating following a

sinusoid function x(t) = A cos(ωt), where ω is the angular frequency with a value

ω =
√

k/m.
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X

m

Damped Vibration: The spring-mass system (2.1)

will vibrate forever, since the energy is conserved in

this model. To model energy dissipation, one can add

a “viscous” damper that outputs a damping force proportional to the velocity

of the mass. Let c denote the strength of the damper, then this damped system

follows an ordinary differential equation:

mẍ + cẋ + kx = f . (2.2)

where f , if existing, is the external force applied on the system. This is a second-

order ODE, whose solution depends on the amount of damping c. If c is larger

than the critical damping, cc = 2
√

km, the system is over-damped; that is, no

vibration motion will be observed. If c < cc, then the system will vibrate, but

eventually will stop vibrating over time. The 1-D vibration equation (2.2) can

be numerically integrated using many different schemes. Among them, forward

Euler method is probably the simplest one to implement, but suffers from being

unstable with large time-step size. Higher-order methods, such as Runge-Kutta

methods [But03], can be more suitable in many situations. In discrete time, the

vibration can also be solved efficiently using an IIR digital filter [Ham83, JP02].

2.1.2 Elastic Vibration of Solid Object

Now we consider the vibration of an elastic object. This vibration will further

perturb the pressure of surrounding air, producing propagating sound waves.

Elastic vibration has been well understood using the models in continuum me-

chanics. In this section, we will not present the details of those models, but refer

the readers to the books [Sha91, Fun77] for an introduction. We now directly
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present the resulting equations of motion which describes the structural vibra-

tions of an object.

The Equation of Motion: Using the finite element method (FEM), we dis-

cretize a solid object with a set of finite elements (e.g. a tetrahedral mesh). Un-

der this discretization, the object vibration is described by the motions of n FE

nodes. We represent the FE nodal positions using a vector u ∈ R3n, in which

each 3 × 1 sub-vector indicates the displacement of an FE node of the object. It

satisfies the Euler-Lagrange equation,

Mü +C(u, u̇) +R(u) = f , (2.3)

where M ∈ R3n×3n is the mass matrix, C(u, u̇) ∈ R3n determines damping forces,

describing the energy dissipation of the system, R(u) ∈ R3n are internal defor-

mation forces which resist the object from deformation, and f ∈ R3n are external

forces, for example, the forces due to object collisions.

Now if we assume the considered object is rigid—in other words, the dis-

placement u is infinitesimal, then it is sufficient to consider the linearize equa-

tion of (2.3), and we get

Mü +Du̇ +Ku = f , (2.4)

Here K = ∇R(03n) ∈ R3n×3n denotes the Jacobian matrix of R, evaluated at u =

03n (03n is a 3n × 1 zero vector). This matrix is called the stiffness matrix. D is

the damping matrix. So far, there is no simple mathematical models to describe

the damping mechanism in elastic materials. In many situations, one can use a

ad hoc damping model; for example, Rayleigh damping is often used for ease of

computation,

D = αM + βK,
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Figure 2.1: Three vibration modes of a dinner plate: We sampled three
eigen-vectors from the eigen-matrixU , and deforms the dinner
plate using each eigen-vector. The magnitude of displacement
of each vertex on the FE triangle mesh is colormapped.

where α ≥ 0 and β ≥ 0 are two scalar parameters to weight the damping contri-

bution from inertia and stiffness.

Linear Modal Analysis: We now present how to efficiently solve the lin-

earized vibration equation (2.4). Notice that in (2.4), the mass matrix M is con-

stant in time, depending only on the object’s geometry and density distribution;

K is constant as well, depending on the object’s geometry and material. Under

FE discretization, both M and K are sparse and symmetric; M is positive-

definite; and K is positive-semidefinite, having null space spanned by rigid

translation and linearized rotation. Using Rayleigh damping,D is also a sparse

symmetric positive-definite matrix if α > 0. We refer the reader to [OSG02] for

the details of computing these matrices.

First we solve a generalized eigenvalue problem,

KU = ΛMU

to get the eigen-vector matrix U and diagonal eigen-value matrix Λ. The ma-

trix U has the property that U TMU = I3n×3n (I3n×3n is a 3n × 3n identity ma-

trix). We write Λ as Λ = diag(ω2
i ), where ωi is the undamped natural frequency.

Intuitively, each column of U describes a vibration mode with a fixed natural
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frequency (see Figure 2.1). In practice of sound synthesis, we only compute

eigenvalues and eigenvectors for frequencies ωi up to 20kHz, which can be done

efficiently using implicitly restarted Arnoldi methods (with “shift-and-invert”

spectral transformation) in the ARPACK library [GVL96a, LSY98]. Substituting

the modal coordinate transformation, u = Uq into (2.4) yields

q̈ + (αI + βΛ)q̇ + Λq = U Tf . (2.5)

Now this is a system of independent vibration equations, each of which is a

damped harmonic oscillator (2.2),

q̈i + (α + βω2
i )q̇i + ω2

i q = Qi, i = 1 . . . n, (2.6)

where Qi is the modal force. These oscillators can be solved individually as intro-

duced for (2.2). Finally, object vibrations are given by the linear superposition

of all vibration modes, u(t) = Uq(t).

2.2 Propagation of Sound

The object vibration causes pressure fluctuations of the surrounding media, pro-

ducing sound waves which then propagate in the media. The mathematical

model describing the propagation is the acoustic wave equation.

2.2.1 Acoustic Wave Equation

First, we present a brief derivation of the acoustic wave equation. Let p(x, t) de-

note the pressure value in a domain Ω of the media, in which the density field is

ρ(x, t) and the air particle motion field is v(x, t). The divergence of mass flow ρv
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indicates the net flow of mass of a infinitesimally small region. Mathematically,

it can be expressed as
∂ρ

∂t
= −∇ · ρv. (2.7)

A pressure gradient produces net forces in a local region, and causes air to flow

in the opposite direction (because the gradient vector of a function points to-

ward increasing direction). According to Newton’s second law, we have

∇p = −
∂

∂t
(ρv).

Taking the divergence of the pressure gradient, and exchange the order of oper-

ators on the right-hand side, we get

∇ · ∇p = −∇ ·
∂

∂t
(ρv)

= −
∂

∂t
(∇ · ρv)

Substituting (2.7) produces

∇2 p =
∂2ρ

∂t2 . (2.8)

Now we need to connect the pressure with the density values. From the ideal

gas law we have

p = ρkT

where k is Boltzman’s constant and T is the temperature in Kelvin. Substituting

it into the right-hand side of (2.8) produces

∇2 p =

(
1

kT

)
∂2 p
∂t2 .

If we define the speed of sound wave as c =
√

kT , this equation is the standard

acoustic wave equation,

1
c2

∂2 p(x, t)
∂t2 = ∇2 p(x, t), x ∈ Ω (2.9)
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where c, the speed of sound in the medium, takes a value of 343.2m/s in air at

standard temperature and pressure.

Now consider a vibrating object O in the domain, producing sound waves.

The effect of O’s surface motion on p is introduced via the boundary condition

∇p(x, t) · n(x) = −ρan(x, t), x ∈ ∂Ω, (2.10)

where ρ refers to density of the surrounding medium, assumed constant

(1.2041kg/m3 for air at standard pressure and 20◦ C). n(x) and an(x, t) denote

the surface normal and normal acceleration of position x on O’s surface.

Some properties of the wave equation can be useful for a numerical solver.

First, the solution of a wave equation is translation invariant in time. In particular,

let p(x, t) be the solution of the wave equation with boundary condition

∇p(x, t) · n(x) = b(x, t),

then p(x, t −C) is the solution of the wave equation with boundary condition

∇p(x, t) · n(x) = b(x, t −C).

Next, the solution is linear in terms of boundary condition; namely, let p1(x, t)

and p2(x, t) are respectively the solutions of wave equation with boundary con-

dition

∇p(x, t) · n(x) = b1(x, t)

and

∇p(x, t) · n(x) = b2(x, t),

then given a linear combination of the two boundary conditions,

∇p(x, t) · n(x) = αb1(x, t) + βb2(x, t),
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the corresponding solution is αp1(x, t) + βp2(x, t). These properties enable a

decomposition of complex boundary conditions. For example, as presented

in §2.1.2, solid object vibration can be decomposed into a superposition of in-

dividual modal vibrations. For each modal vibration, its wave propagation can

be solved independently and possibly in parallel, and the final sound wave is a

superposition of individual waves.

Numerous numerical methods has been proposed to solve the wave equa-

tion. Usually they discretize the domain, and approximate both the spatial and

time derivative using Finite Element, Finite Difference or Finite Volume meth-

ods. Then the evolution of sound waves is simulated by explicitly or implic-

itly time-stepping the discretized wave equation. We refer the reader to the

book [LT09] for an overview of numerical solvers of wave equations and other

types of PDEs. There are also open-source (e.g., openEMS) and commercial

computer software packages (e.g., Abaqus and COMSOL) to solve wave propa-

gation problems.

2.2.2 Helmholtz Equation

The Helmholtz equation is an equivalent model of wave equation to describe

sound propagation. It results from applying the technique of separation of vari-

ables on the wave equation. Assuming the wave function p(x, t) can be sepa-

rated as

p(x, t) = ψ(x)q(t). (2.11)

Suppose that the time function q(t) represents a harmonic oscillation of the pres-

sure, q(t) = eiωt at a fixed frequency ω. Substituting the expression (2.11) into the
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Figure 2.2: Three transfer functions of a dinner plate: We sample three
vibration modes of a dinner plate, and compute their spatial
transfer function ψ(x) in free space. Their colormapped cross-
sectional transfer values are shown here.

wave equation, and using a harmonic oscillation of q(t), we reach the Helmholtz

equation

∇2ψ + k2ψ = 0, (2.12)

where k = ω
c is the wave number. The Helmholtz solution ψ(x), called the acous-

tic transfer function, hence describes the spatially varying magnitude of a har-

monic wave with a frequency ω (see Figure 2.2). Correspondingly, assuming

the surface of object O is under a harmonic oscillation of frequency ω; namely

the motion of a surface point x is assumed to be v(x)eiωt. Then we achieve a

boundary condition for the Helmholtz equation

∇ψ(x) · n(x) = −iωρv(x) · n(x) x ∈ ∂Ω. (2.13)

Solution of the Helmholtz Equation

First we introduce the general solution of the Helmholtz equation, then we con-

sider numerical solvers.
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General Solution using Green’s Identity: We briefly derive a general

Helmholtz solution using Green’s functions. A detailed derivation can be found

in [Duf01]. Consider a position y ∈ Ω. A function ψ at that point can be written

as

ψ(y) =

∫
Ω

ψ(x)δ(x − y)dV(x), (2.14)

where δ is the Dirac delta function. Now define G(x;y) as a Green’s function

solving the Helmholtz equation with a delta source term

∇2ψ + k2ψ = δ(x − y).

Then we can substitute this equation into (2.14), and get

ψ(y) =

∫
Ω

ψ(x)
(
∇2G(x;y) + k2G(x;y)

)
dV(x), (2.15)

Applying the Green’s second integral theorem to the volume integral, we get

ψ(y) = −

∫
Ω

[∇2ψ(x) + k2ψ(x)]G(x;y)dV(x)

+

∫
∂Ω

[G(x;y)n · ∇ψ(x) − ψ(x)n · ∇G(x;y)]dS (x)
(2.16)

If we assume the pressure field ψ satisfies the homogeneous Helmholtz equa-

tion, the first term in (2.16) vanishes, and we get the Kirchhoff integral formula for

a general Helmholtz solution

ψ(y) =

∫
∂Ω

[
G(x;y)∂nψ(x) − ψ(x)∂nG(x;y)

]
dS (x). (2.17)

In this formula, the Green’s function depends on the virtual environment to cap-

ture the effects such as reflection of ground. If we assume each sounding object

is isolated from others, and ignore the scattering interaction between multiple

sound objects, then we can use the free-space Green’s function,

G(x;y) =
eik‖x−y‖

4π‖x − y‖
.
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Evaluating (2.17) requires the acoustic transfer function values ψ(y) and its

outward-pointing normal derivative ∂nψ(y) on the object’s surface y ∈ Γ; the

normal derivative is given by the Neumann boundary condition of (2.13), and

the boundary transfer values are computed using the boundary element solver.

In this thesis, we obtain ψ(y) on Γ using the FastBEM Acoustics implementation

(www.fastbem.com) of the fast multipole boundary element method [Liu09].

Multi-pole Expansion: The cost of evaluating the acoustic transfer ψ(x) with

(2.17) is linear in the number of surface elements, and becomes expensive for

fine surface meshes. Unfortunately, breaking objects into tiny pieces almost

inevitably leads to increased geometric complexity which will slow down our

sound synthesis pipeline. We circumvent this issue by using a standard mul-

tipole expansion of ψ(x). The Green’s function can be expanded in a series of

singular and regular basis functions using the identity [GD04],

G(x;y) = ik
∞∑

n=0

n∑
m=−n

S m
n (x − x0) R−m

n (y − x0). (2.18)

In this expansion, S m
n is the singular spherical Helmholtz basis function

S m
n (r) = h(2)

n (kr) Ym
n (θ, φ), (2.19)

where (r, θ, φ) are spherical coordinates of r; h(2)
n ∈ C are spherical Hankel func-

tions of the second kind; and Ym
n ∈ C are spherical harmonics. Rm

n in (2.18) is the

regular counterpart of S m
n , namely,

Rm
n (r) = jn(kr) Ym

n (θ, φ), (2.20)

where jn ∈ R are the spherical Bessel functions. Finally, x0 in (2.18) is an arbi-

trary fixed point satisfying ‖x − x0‖ > ‖y − x0‖ to ensure that (2.18) converges

absolutely and uniformly; In practice, we place x0 at the object’s center of mass.

19



Substituting (2.18) into (2.17), we can pull the S m
n out of the surface integral to

obtain the multipole expansion of ψ(x):

p(x) =

∫
Γ

ik
[ ∞∑

n=0

n∑
m=−n

S m
n (x − x0) R−m

n (y − x0)
∂ψ

∂n
(y)

−ψ(y)
∞∑

n=0

n∑
m=−n

S m
n (x − x0)

∂R−m
n

∂n
(y − x0)

]
dΓy

=

∞∑
n=0

n∑
m=−n

S m
n (x − x0) Mm

n

where the multipole coefficients, Mm
n , can be evaluated numerically using the

formula

Mm
n = ik

∫
Γ

[
R−m

n (y − x0)
∂ψ

∂n
(y) − ψ(y)

∂R−m
n

∂n
(y − x0)

]
dΓy, (2.21)

with ∂nψ from the Neumann BC (2.13), and ψ from the BEM solver.

Far-field Approximation: If the distance from a sound source to a listener is

large compared to the size of the object and the wave length, then the sound

sources can be treated as a point source, making the far-field approximation

applicable. According to the Huyghens’ integral formula, the sound pressure con-

tribution of a harmonic oscillation with a frequency ω is

p = −
ρ

2π
∂

∂t

∫
∂Ω

e−ikr

r
∂φ

∂n
ds,

where r is the distance from the sound source to the listener, and φ is the acous-

tic potential due to the object vibration, satisfying v = −∇φ. Therefore, for an

object whose surface vibration is v(x)eiωt, x ∈ ∂Ω, the far-field approximation

of acoustic transfer is

p = iωρ
e−ikr

2πr

∫
∂Ω

v(x) · n(x)ds

where the integral of surface normal velocity is called volume velocity.
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2.3 Pipeline of Rigid-body Sound Synthesis

Provided the basic models of sound generation and propagation, we now out-

line the pipeline used in physics-based rigid-body sound synthesis:

1. First we simulate the motions of objects in a virtual environment, often

using rigid-body simulation methods.1 During the simulation, the time

series of object positions as well as impulses applied on the objects are

recorded. The object positions will be used to determine the listener’s

position in space relative to the object. The impulses, mostly produced by

collisions between objects, will excite object vibration and produce sound.

2. The time series of impulses resulting from a rigid-body simulation then ex-

cite the object’s elastic vibration introduced in §2.1.2. In particular, they are

used to solve the linear vibration equation (2.4). Using linear modal anal-

ysis, each modal vibration can be solved individually using equation (2.6).

3. Next we solve for sound propagation excited by object’s surface vibra-

tion. This can be done by solving the wave equation (2.9), for which the

boundary condition (2.10) is determined by the object’s vibrations from

step 2. The position x to evaluate the sound pressure p(x, t) is the listener

location relative to the sounding object. This position is time-varying,

and can be determined from the time series of object positions recorded

in step 1. More conveniently, we can compute sound propagation using

the Helmholtz equation (2.12): Modal analysis in step 2 decomposes ob-

ject vibrations into individual modes, each with a fixed natural frequency.

Therefore, the sound propagation from each mode can be solved using the

1In chapter 4 we will show that rigid-body solver is insufficient to capture all the audible
motion details.
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Helmholtz equation. And all the resulting sound waves are summed to-

gether to produce final sound. This approach can easily generate stereo

sounds as well: instead of evaluating sound pressure at a single listener

position, we evaluate sound independently at the positions of two ears.

Finally, post-processing filters might be used to capture the head-related

transfer effects [Vor07].
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CHAPTER 3

BRITTLE FRACTURE SOUND

In this chapter, we extend the rigid-body sound model introduced in chap-

ter 2, and consider the sound generation for brittle fracture animations. Frac-

ture sounds are usually important and loud parts of physically based anima-

tion and interactive virtual environments, for which an automatic and efficient

sound synthesis method is desired. Current sound production methods have

to rely on audio recordings of fracture events. These prerecording methods in-

herit shortcomings of implausibility, lack of physical synchronization, and large

memory footprints to avoid repetition. Our method, motivated by laboratory

experiments, approximates brittle fracture sounds using time-varying rigid-

body sound models (see Chapter 2). We extend methods for fracturing rigid

materials, and propose a fast quasistatic stress solver to resolve near-audio-rate

fracture events. Fracture pattern and the resulting “crack”-related fracture im-

pulses are estimated using an energy-based model. Moreover, we propose a

multipole radiation model to enable level of detail control and scalable compu-

ation of sound radiation for complex debris. Finally, to reduce sound-model

generation costs for complex fracture debris, we propose Precomputed Rigid-

Body Soundbanks comprised of precomputed ellipsoidal sound proxies.

3.1 Introduction

This chapter introduces a physically based approach for automatic synthe-

sis of synchronized brittle fracture sounds for computer animation (see Fig-

ure 3.1). Despite the familiar complexity of 3D fracture animation, our fracture
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Figure 3.1: SMASH! We synthesize the violent fracture and impact sounds
of a glass table setting smashed into over 300 pieces (see sound
spectrogram). We use time-varying rigid-body sound models
to approximate this brittle fracture sound by a superposition
of 4046 modal vibrations (up to 14kHz). To avoid thousand-
mode modal analysis and acoustic transfer costs for complex
fracture geometry, we use sound proxies sampled from Pre-
computed Rigid-Body Soundbanks, here producing plausible
fracture sound models at almost 500× speedup.

sound synthesis method inherits the simplicity of rigid-body sound synthesis.

Based on observations from laboratory fracture experiments with high-speed

video and sound recordings (see figure 3.2), we hypothesize that brittle fracture

sounds can be efficiently and effectively approximated by time-varying rigid-

body sound models (see Figure 3.3). Our rigid-body fracture sound synthesis

has three parts: (i) a fracture preprocess which generates rigid-bodies with con-

tact and “crack”-related fracture impulses; (ii) a parallel sound model genera-

tion phase consisting of modal and acoustic transfer analysis; and (iii) a sound

synthesis phase where sounds are rendered at the listener’s position.

We leverage prior work on fracturing rigid materials [BHTF07], and propose

a sparse, direct, least-squares solver for the rank-deficient elastostatic problem
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score line
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time (s)

Missing low-freq modes

(f) at t=0.30
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Figure 3.2: Laboratory experiments reveal the time-varying modal sound
structure of brittle fracture events, as shown by (Top) high-
speed video at 1200 Hz, (Bottom) 96 kHz sound recordings,
and (Middle) frequency spectrograms (2048 bins & 93% over-
lap for frequency clarity). In this experiment, a pre-scored
ceramic tile dropped from two feet onto a concrete floor (a)
impacts without breaking; (b) bounces and vibrates with the
spectrogram showing distinct tile vibration frequencies; (c) a
second impact fractures the tile halfway, and produces louder
vibrations with higher relative half-tile frequencies; (d-f) addi-
tional post-fracture collision events further excite the half-tile
frequencies.

Timet=0   t1   t2   t3

Figure 3.3: Time-varying rigid-body sound models are used to approxi-
mate fracture sounds. Discrete fracture events result in spectral
discontinuities due to modal sound model destruction (××) and
creation (•◦). Fracture impulses excite created sound models.
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(Ku=f ) to resolve fracture sound events at near audio rates. An energy-based

fracture model is used to model plausible fracture energy and sound generation,

and also to estimate stress-based fracture impulses which excite the initially

silent sound models of rigid-body debris to produce characteristically loud

“crack” sounds (see Figure 3.2). The fracture simulation’s fracture and contact

impulses are used to excite each rigid-body’s modal sound model. Frequency-

domain acoustic transfer functions are computed for all vibration modes, and

represented using high-order Helmholtz multipole expansions for efficient on-

the-fly model generation and level of detail control. Real-time auralization and

visualization of fracture simulations is possible, with GPU-accelerated transfer

evaluation.

Unfortunately significant sound-model generation costs (due to modal anal-

ysis and acoustic transfer) can be a bottleneck for violent fracture processes

generating hundreds of rigid-body sound models. Sadly, many small debris

sounds are difficult to discern, and can be masked by larger objects or loud frac-

ture events. We propose Precomputed Rigid-Body Soundbanks to efficiently

replace many rigid-body sound models with simpler ellipsoidal sound proxies.

We sample the space of material-specific ellipsoidal sound models, exploiting

fundamental scale dependencies to reduce the problem to a 2D lookup table.

During sound synthesis, any rigid-body can retrieve its precomputed ellipsoid

proxy (indexed by its inertia matrix), and scale it to have matching fundamental

frequency. Rigid-body fracture and contact impulses (from the correct geome-

try) are then applied to the ellipsoid proxy to produce sound. Plausible fracture

sounds involving hundreds of rigid bodies can be synthesized at a fraction of

the cost (see Figure 3.1).
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3.2 Rigid Fracture Simulation

Our sound synthesis pipeline uses rigid-body fracture simulation to generate

and animate fracture debris. Estimated contact and fracture impulses are used

to excite rigid-body sound models—readers not familiar with rigid-body sound

can find background on modal analysis and acoustic transfer in chapter 2. Our

fracture simulator is closely related to the method for fracturing rigid materi-

als of Bao et al. [BHTF07]. We also use an impulse-based rigid-body simula-

tor [GBF03] since contact iteration costs amortize well over small near-audio-

rate timesteps, e.g., ∆t =1/10000s to 1/5000s in our examples. We propose three

extensions for rigid-fracture sound synthesis: (i) a sparse, direct, least-squares

solver for fast quasistatic stress analysis at high near-audio rates, (ii) an energy-

based method for generating plausible fracture patterns, which we used to (iii)

estimate stress-based fracture impulses that produce fracture-related “crack”

sounds.

3.2.1 Fast Quasistatic Stress Analysis

Quasistatic stress analysis is commonly used to approximate brittle frac-

ture [MDM01, BHTF07]. Given an N node tetrahedral mesh, it involves solving

the elastostatic equation

Ku = f , (3.1)

for the quasistatic displacement, u ∈R3N , resulting from external contact forces,

f , in order to compute element stresses using standard methods [BW97]—we

also compute the elastic strain energy, ES , for energy-based fracture (§3.2.2).

In contrast to computer animation where (3.1) is solved near or at graphics
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rates [MDM01, BHTF07, SSF09], for fracture sound synthesis it is desirable to

timestep the system at much higher rates, e.g., 5 kHz, to resolve micro-collisions

and fracture events. In practice, large fracture simulations can request solves for

hundreds of thousands of micro-impact problems.

It is well known that K is sparse, symmetric, and also rank deficient: its rank

is always 3N − 6, due to a rank-6 null space associated with translation and lin-

earized rotation of the unconstrained rigid body. To calculate the linearized qua-

sistatic stress distribution, we can either compute the min-norm least-squares

solution to (3.1), or just solve the least-residual problem (3.1) since the rigid com-

ponent of u (or f ) produces no stress. The iterative MINRES algorithm [PS75]

can solve the least-residual problem, but suffers from slow convergence. Müller

et al. [MDM01] approximated it by anchoring a number of points in the objects,

thereby enforcing extraneous constraints that break momentum conservation.

Bao et al. [BHTF07] solved (3.1) using a modified Conjugate Gradient method

with an additional projection at each iteration to remove the null space. Unfor-

tunately this iterative method converges slower than we would like, in part due

to the difficulty preconditioning the rank-deficient K matrix.

We propose a sparse, direct least-squares solver that exploits temporal co-

herence, and is faster and more robust for sound applications. After a one-time

setup/factorization cost per object, solutions can be obtained essentially via

back substitution. We briefly sketch the method here, and defer solver details

(on P and V) to Appendix A.1. First, we project out the linearized rigid-body

motion using an orthogonal projection P to ensure that the system is compat-

ible, i.e., that Pf ∈ range(K). Next we construct a special 3N × (3N − 6) sparse

orthogonal matrix V, then premultiply (3.1) by VT and substitute u= Vr, to ob-
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tain a sparse, symmetric and full-rank (3N − 6) × (3N − 6) system which can be

solved directly with Cholesky factorization [GVL96a]:

VT KV r = VT
Pf . (3.2)

Given that Vr is a least-residual solution of (3.1) for compatible RHS (see Ap-

pendix A.2 for a proof), we simply project out the particular translation and

rotation chosen by V, to obtain the min-norm least-squares displacement solu-

tion, u∗=PVr. In summary, each time a rigid object is created we compute and

cache its sparse Cholesky factorization, LLT =VT KV and data forP. For each sim-

ulation timestep with nonzero contact forces, f , we evaluate the least-squares

quasistatic displacement incrementally (from right to left),

u∗ = PV(VT KV)−1VT
Pf , (3.3)

with the primary cost being the Cholesky backsubstitution for (VT KV)−1; for our

examples, one-time factorization costs were 0.18s–1.30s, whereas (3.3) solves

cost only 0.007s–0.23s.

3.2.2 Energy-based Debris Generation

We use an energy-based method for generating plausible fracture patterns, with

energy also used later for plausible sound generation (§3.2.3). To determine

when brittle fracture occurs, we use the Rankine hypothesis [GS06] wherein ma-

terial breaks when any principal stress value exceeds a given threshold. We use

a Voronoi-based fracture pattern method similar to [Rag02, BHTF07], however,

in contrast, we incrementally construct the fracture pattern to maintain bounded

fracture energy. We estimate the energy required to generate fracture surfaces
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Figure 3.4: Fracture toughness dependent sound: (Top) A window sim-
ulated with low fracture toughness (Gc = 50 J/m2) produces
smaller debris with overall higher pitch than (Bottom) a win-
dow with higher fracture toughness (Gc =120 J/m2).

of total area AF by

EF =Gc AF ,

where Gc is the fracture toughness material parameter (e.g., the critical strain en-

ergy release rate for mode-I fracture) which describes the material’s ability to

resist fracture; Gc values we used in examples are given in Table 3.1. To avoid

excessive fracturing and uncontrolled sound generation, we require the con-

sumed fracture energy EF to be less than the quasistatic strain energy,

EF ≤η ES ,

where the parameter η ∈ (0, 1) controls how much strain energy is converted

into fracture energy; we use η = 0.8 in our examples. The impact of fracture
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toughness on sound generation is illustrated in Figure 3.4.

We generate Voronoi-like fracture patterns by incrementally sampling region

“seed” points pi (with probability proportional to strain energy density) then us-

ing a region-growing strategy. Each unassigned tetrahedral node x has prority-

queue values for each region i given by the weighted distance ki dist(x,pi) where

ki is the strain energy density at pi raised to the power α > 0; we use α = 0.15.

Tetrahedral nodes are captured by adjacent regions with minimal queue values,

and tend to produce smaller pieces in regions of high strain energy density. To

ensure regions are connected, we use geodesic distances with edge-based ap-

proximations computed with Dijkstra’s algorithm. After each point insertion,

we estimate EF , then continue adding points until EF ≤η ES can not be satisfied.

Multi-region elements are split [BGTG04]. Fine region meshes are generated for

rendering, modal analysis and Helmholtz sound radiation analysis; our mesh

edge lengths h satisfy a 20 kHz sampling condition, h<λ/6 ≈ 5mm [Liu09].

3.2.3 Fracture Impulse Estimation

Previous rigid-body fracture simulations in computer animation

ignore stress-based impulses introduced by fracture events, relying

instead on contact forces to push debris apart [MDM01, BHTF07].

While this can be sufficient for animation, these additional “frac-

ture impulses” can be important contributors to debris sound. For

example, snapping a candy cane in two can produce audible fracture sound

even when the pieces separate cleanly without subsequent contact. We pro-

pose an energy-based model to estimate impulses from fracture events so that
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Figure 3.5: Bigger “cracks” with fracture impulses: Our quasistatic frac-
ture impulses produce more explosive fractures, thereby pro-
ducing louder and more characteristic “crack” sounds. In con-
trast, simulations without fracture impulses applied (see in-
set) lack fracture-released kinetic energy. This ceramic chess-
board (38cm × 38cm) was dropped from one meter high onto
the ground.

(i) explosive effects are introduced by the strain energy release, and (ii) impulses

excite the modal sound models of the initially silent debris (see Figure 3.5).

Our fracture-impulse model assumes that unused quasistatic strain energy

is converted into kinetic energy

∆EK = ES − EF

and introduced by stress-based fracture impulses. For each fracture-surface tri-

angle i, the exerted stress force si and torque ji are

si = aiPini; ji = ri × aiPini (3.4)

where ai is the triangle area, ni is unit direction perpendicular to the triangle,

ri is the distance vector from the object’s center of mass to the center of the
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questioned triangle, andP is the Piola-Kirchhoff stress tensor of the tetrahedron

on which the triangle is contained [BW97].

Let τ denote the effective duration to exert fracture forces (3.4). Let v−d andω−d

respectively denote the pre-fracture linear and angular velocity of the material

associated with the d-th piece of debris. The post-fracture linear and angular

velocity are

v+
d = v−d +

τ

md

∑
triangle i

si; ω+
d = ω−d + τI−1

d

∑
triangle i

ji, (3.5)

where md and Id are the dth rigid body’s total mass and angular inertia, respec-

tively. We estimate τ by equating ∆EK with the system’s change in kinetic en-

ergy,

∆EK =
1
2

∑
debris d

(
md‖v

+
d ‖

2 − md‖v
−
d ‖

2 + (ω+
d )T Idω+

d − (ω−d )T Idω−d
)
,

which is a quadratic equation in τ, where only the smallest positive solution is

physically relevant. Each time an object is fractured, we solve for τ and apply

the fracture impulses to the debris.

3.3 Parallel All-Frequency Multipole Sound

We approximate each object’s acoustic transfer function, p(x), using a single-

point multipole expansion for reliable estimates of far-field sound [GD04]. This

simple representation also has three major benefits: (i) runtime level of detail

control for complex fracture sound simulations (unlike [JBP06]), (ii) an efficient

parallel GPU implementation, and (iii) convenient support for our Rigid-Body

Soundbanks (in §3.4) to enable scalable fracture sound synthesis.
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Multipole Radiation Model: The spherical multipole wave expansion of each

mode’s p(x) takes the form

p(x) ≈
n̄∑

n=0

n∑
m=−n

S m
n (x − x0) Mm

n (3.6)

where Mm
n ∈ C are multipole expansion coefficients, and S m

n are multipole basis

functions (singular, radiating solutions to the Helmholtz equation). A deriva-

tion of this multipole expansion is introduced in §2.2.2 of chapter 2. In practice,

we can precompute the multipole coefficients, Mm
n , for each object since they are

independent of listening position x. At runtime, only (n̄ + 1)2 summation terms

need be computed, which is independent of the object’s geometric complexity.

In our implementation, we place the multipole expansion point, x0, at the

object’s center of mass. Since the distance between the listener’s position and

the center of mass, ‖x − x0‖, is much larger than the object’s diameter, the se-

ries approximation typically converges quickly to the accurate transfer func-

tion. However, convergence is frequency dependent with higher n̄ required at

higher frequencies; we use the empirical formula, n̄=max(1
4kL, 4) [Liu09], where

the length scale, L, is the object diameter; fewer terms can be used to reduce

transfer-evaluation costs.

Multipole Coefficient Solver: The Mm
n coefficients can be precomputed in

various ways. For example, source simulation or equivalent source meth-

ods [Och95, JBP06] directly estimate Mm
n by requiring that (3.6) matches the Neu-

mann boundary condition in a least squares sense (note that this requires that x0

lies inside the object). In our implementation we use the fast multipole bound-

ary element method to first solve the associated Helmholtz boundary integral

problem, and then evaluate the multipole coefficients via their integral repre-

sentations; we refer the reader to §2.2.2 and the book [GD04] for implementation
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details. We exploit mode-level parallelism by computing transfer models on a

cluster.

Parallel Sound Evaluation: Evaluating the sound pressure from all modes of

all objects involves significant transfer evaluation costs, but is a pleasantly par-

allel computation. The sound contribution from an object’s vibration mode, i, is

estimated using pi(x, t) = |pi(x)| qi(t). The total fracture sound is the superposi-

tion of all object mode contributions:

sound(x, t) =
∑

mode i

|pi(x)| qi(t) (3.7)

=
∑

mode i

∣∣∣∣∣∣∣
n̄i∑

n=0

n∑
m=−n

S m
n (x − x0i; i) Mm

n (i)

∣∣∣∣∣∣∣ qi(t)

where Mm
n (i) are precomputed for mode i using (2.21). In our parallel imple-

mentation, we evaluate {pi(x)} on the GPU (using NVIDIA’s CUDA API) sam-

pled in time at high graphics rates ( 200 Hz), then copy it back to the CPU,

and (optional) apply an HRTF filter. Modal amplitudes qi(t) are computed us-

ing an IIR filter in parallel on multi-core CPUs at audio sample rates (although

GPU implementations are possible [TO09]), then each qi is multiplied by |pi(x)|

(with p interpolated up to audio rates) to obtain the mode’s sound contribution,

|pi(x)|qi(t). The GPU evaluation of pi(x) values exploits thread-level parallelism

across modes (i), and in pi’s (m, n)-summation using parallel reduction [Har07].

Furthermore, all modes’ multipole basis functions, S m
n = h(2)

n (kr)Ym
n (θ, φ) are first

computed in parallel using a multi-pass GPU algorithm:

• In a first pass, one thread per mode computes the h(2)
n (kr) values for n =

0 . . . n̄i (with kr = kiri) using the recurrence relation, h(2)
n+1(kr) = 2n+1

kr h(2)
n (kr) −

h(2)
n−1(kr).
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• Next Ym
n (θ, φ) is computed in two passes: (1) one thread per mode com-

putes Ym
m (θ, φ),m = 0 . . . pi using the recurrence relation between Ym

m and

Ym−1
m−1 [PTVF07], then (2) one thread per mode per m value computes

Ym
n , n = m + 1 . . . n̄i using the recurrence relation between Ym

n and Ym
n−1.

3.4 Precomputed Rigid-Body Soundbanks

Complex fracture sounds can involve very large numbers of rigid-body sound

sources, each of which requires computing an expensive, object-specific sound

model. For complex fracture scenarios, the simulation bottleneck quickly be-

comes rigid-body sound model generation (modal analysis, and multipole radi-

ation analysis). Unfortunately, the opportunities for precomputation are limited

by the unpredictable nature of fractured geometry generation.

Ironically, for complex fracture scenarios, it can be difficult to fully discern

each individual rigid-body sound. Sounds produced by small objects can be

masked partially by large pieces of debris. We exploit this perceptual ambi-

guity by augmenting debris with simple precomputed sound models of simi-

lar frequency content. Specifically, we propose to use ellipsoid-shaped sound

proxies during sound synthesis (see Figure 3.6) since (i) ellipsoids provide the

smoothest shape matching the rigid-body inertial mass, and (ii) the smooth sur-

face allows us to parameterize the proxy contact location using contact normal.

While the rigid-body fracture simulation and contact impulses are based on the

original fractured geometry, external forces can be applied to the proxy’s sound

model, thereby avoiding the bottleneck of model-specific sound model genera-

tion.
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Figure 3.6: Fracture debris and ellipsoidal sound proxies

Rf0

γRv
f0

v
ω0

f0

v
ω0

Figure 3.7: Ellipsoidal sound proxies are indexed by each object’s inertia
matrix, and scaled γ to have matching base frequency, ω0. Con-
tact forces f0 and relative listening positions v are rotated R to
the precomputed proxy frame for sound synthesis.

For each material we precompute a Rigid-Body Soundbank, where each

sound model has ellipsoidal geometry, mode shapes U, frequencies ω, and pre-

computed multipole coefficients Mm
n . To generate object sounds, we first re-

trieve its closest soundbank proxy based on an inertia tensor metric, and scale

it to match our object’s base frequency. Next we map the external forces to the

proxy, load precomputed eigendata and multipole Mm
n values, and synthesize

the sound at the relative position. This process is illustrated in Figure 3.7, and

summarized in Algorithm 1.
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Algorithm 1: Runtime use of Rigid-Body Soundbanks
input: The soundbank S; external forces f
foreach sounding object ob j do

if use proxy(ob j) then // §3.4.4
a←find best proxy(ob j,S) // §3.4.4
γ ←scale factor(ob j,a) // §3.4.4
R←rotation(ob j,a) // §3.4.2
f ′ ←map forces(γ,R,f) // §3.4.2
(ω,U)←load eigen(a,S)
(ω′,U′)←scale eigen(ω,U,γ) // §3.4.1
M ←load moments(a,S)
M′ ←scale moments(M, γ) // §3.4.1
generate proxy sound(ω, U′,M′,f ′)

else
directly generate sound(ob j)

end
end

3.4.1 Exploiting Scale Dependence

Naı̈ve sampling of sound models over the 3D space of ellipsoidal shapes will

lead to significant memory requirements and/or poor shape resolution. We

therefore exploit the fact that uniformly scaling a rigid-body model does not

fundamentally alter its modal vibration and multipole radiation models, but

only induces power-law scalings. By precomputing a sound model for one

rigid-body shape, we obtain sound models for all scaled versions. In particular,

if the geometry of an object is scaled by γ, then the following scalings result (see

Appendix A.3 for derivations):

x ω kx α+βω2 U Mm
n

↓ ↓ ↓ ↓ ↓ ↓

γx γ−1ω kx α+βγ−2ω2 γ−3/2U γ−5/2Mm
n

(3.8)

In order to guarantee all-frequency sound up to a high-frequency cutoff, e.g.,

16 kHz, we note that shrinking models (γ < 1) increases their frequency range
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since [ωmin, ωmax]→ [ωmin
γ
, ωmax

γ
], and therefore will preserve the all-frequency prop-

erty. In contrast, enlarging (γ > 1) may not since ωmax
γ

may drop below the high-

frequency cutoff. We therefore precompute all-frequency models which are as

large as needed to ensure γ<1.

3.4.2 Ellipsoidal Sound Proxies

Normalized ellipsoids: Our soundbank is based on precomputing sound

models for axis-aligned ellipsoids,

x2

a2 +
y2

b2 +
z2

c2 = 1, (3.9)

where the ellipsoid’s shape is parameterized by the lengths of the principal axes,

â = (a, b, c)T . To avoid sampling this three-dimensional (a, b, c) parameter space,

we exploit scaling dependences (§3.4.1) to eliminate scale via the normalization,

‖â‖2 = 1 meter ⇔ a2 + b2 + c2 = 1, (3.10)

effectively reducing the dimensionality from three to two. Furthermore, we can

assume that a ≤ b ≤ c, to reduce the parameter space to a small triangular patch

on the unit sphere (see Figure 3.8(Left)). For each ellipsoid, we conduct the

modal analysis, and solve the boundary integral problems to precompute Mm
n

values; the eigen-modes, frequencies, and Mm
n values are stored in the sound-

bank.

Inertia-matrix parameterization: Given a rigid body’s symmetric inertia ma-

trix, I ∈ R3×3, we identify the rigid-body’s ellipsoidal sound proxy using the

principal moments of inertia. These are obtained from the eigenvalue decom-

position, I = VI ΛI VT
I , where VI are the orthogonal eigenvectors (specifying the

principal axes of inertia), and the principal moments of inertia are the diagonal
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(a) Spherical patch

“Pancakes”

“Cigars”

“Spheres”

(b) Ellipsoid sample space

Figure 3.8: Ellipsoid sampling on the unit sphere

values of ΛI = diag(I1, I2, I3), with I1 ≥ I2 ≥ I3. The ΛI are directly related to the

normalized ellipsoid parameters, â: the corresponding unit ellipsoid proxy is

parameterized by 1

â =
1

√
I1 + I2 + I3


√
−I1 + I2 + I3

√
+I1 − I2 + I3

√
+I1 + I2 − I3

 ∈ R3. (3.11)

Proxy contact forces are estimated by mapping rigid-body contact forces to

the proxy as follows. Let f0 denote an external rigid-body force defined in the

object’s material frame. The equivalent proxy contact force is fp = Rf0, where

the precomputed rotation matrix R = VT
I maps forces from the object’s mate-

rial frame to the proxy’s material frame. The proxy contact point is estimated

uniquely by assuming that the contact force is applied in the normal direction,

which is easily computed by solving a 3× 3 linear equation (see Appendix A.4).

1This follows from the ellipsoid’s principal moments of inertia,
I1 = m

5 (b2 + c2), I2 = m
5 (a2 + c2), I3 = m

5 (a2 + b2).
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Material Density Young’s mod. Poisson Gc

Glass 2600 kg/m3 6.2 × 1010 GPa 0.2 80 J/m2

Ceramic 2700 kg/m3 7.2 × 1010 GPa 0.19 200 J/m2

Table 3.1: Material Parameters

Proxy sound mapping: We evaluate each proxy’s sound in its axis-aligned

frame. Given the listening position vector in the rigid-body’s center-of-mass

frame, v, we simply rotate and scale the vector into the proxy frame, v → γRv,

and evaluate the proxy sound there (see Figure 3.7).

3.4.3 Soundbank Sampling

In practice it is desirable to precompute and store as little soundbank informa-

tion as possible. To avoid uniformly sampling the spherical patch in ellipsoid

parameter space, we use a simple adaptive strategy to resolve faster modal fre-

quency variations in ellipsoid samples near shape singularities at the “pancake”

and “cigar” vertices (see Figure 3.8(Right)).

Material-specific Soundbanks: In theory, a different soundbank must be pre-

computed for each homogeneous material, e.g., for our glass and ceramic mate-

rial parameters (see Table 3.1). Runtime adjustments can still be made to scale,

and Rayleigh damping parameters, α and β. However, often plausible mate-

rial parameters are similar, e.g., glass and ceramic, and we precompute a single

“glass” soundbank and scale the models appropriately.

41



Dinner Plate Glass Slab Wine Glass

Figure 3.9: Fracture simulation images

3.4.4 Proxy Retrieval and Scaling

Proxy use criterion: In practice, we use sound proxies for sufficiently small

debris with base frequencies above a user-specified threshold, ωproxy. Given a

rigid-body candidate for proxy replacement, we first compute the lowest eigen-

frequency ω0 of the object. A rigid body will only use the proxy when ω0>ωproxy

is satisfied. Note that this single-frequency ω0 calculation is far cheaper than

computing the object’s modal sound model.

Proxy retrieval: Given a rigid body for proxy replacement, we first compute

its normalized parameter vector, â, then select the soundbank ellipsoid, a′, with

the minimum Euclidean distance, ‖a′ − â‖2. We use a kd-tree to accelerate this

closest-point query.

Equi-frequency scaling: The retrieved ellipsoid proxy is unscaled. Instead of

using inertia to scale the object, which can be a poor indicator of sound fre-

quency, we select the proxy scale γ such that the proxy and rigid body have the

same base eigen-frequency, ω0, since it is an important perceptual attribute to

match [MCR04]. Specifically, if the unscaled proxy’s lowest eigen-frequency is

ωp0, then the desired scale is γ=ωp0/ω0. We then scale the proxy’s mode shapes,

frequencies, multipole coefficients, Mm
n , etc., as described in section 3.4.1.
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Figure 3.10: Fracture experiments were recorded using high-speed video
(1200 FPS) and stereo audio recordings (96 kHz).

3.5 Results

For information on simulation cost versus fracture debris complexity, please see

example statistics in Table 3.3. Representative stills are provided in Figure 3.9.

Please see our video for all sound and animation results, including compar-

isons to reference laboratory fracture experiments (see Figure 3.10). Rigid-Body

Soundbank performance improvements are described in Table 3.2.

Ground sound model: Ground vibrations can play an important role in sound

generation when smashing objects onto it, especially given the ground’s large

size and wide frequency range. For example, a small piece of glass with ex-

tremely high pitch can produce low-frequency sound responses when dropped

on the ground. We approximate ground sounds by first precomputing a modal

model of a large concrete slab (9m × 9m × 0.9m) with 1000 modes with frequen-

cies from 700Hz to 4kHz, and each modes’ corresponding multipole coefficients.

Next we estimate the ground vibration response q(t) due to a unit impulse ap-

plied at the center of the slab. To synthesize ground sounds for simulations, we

simply convolve the ground response with ground contact forces, and emanate

multipole radiation from the appropriate contact position.
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Example ωproxy
%Modes CPU Sound Time (min)
Replaced Direct With Proxies

Glass Slab
4000 Hz 36.4%

5631
3944

2000 Hz 64.8% 2323
0 Hz 100% 5.2

Window
(low Gc)

3400 Hz 49.1% 4262 2202
0 Hz 100% 9.2

Window
(high Gc)

2000 Hz 45.2% 6023 3029
0 Hz 100% 12.2

Table
2000 Hz 22.8%

17792
12980

600 Hz 62.7% 7103
140 Hz 95.7% 36.2

Table 3.2: Rigid-Body Soundbank Performance: Increasing ellip-
soid proxy use (by lowering ωproxy) leads to dramatic
reductions in expensive sound model generation costs
(modal+transfer+audio) over direct computation (serial
timings). By replacing all fragment sound models by proxies,
sound differences were barely audible, and roughly 500×
speedups were observed in some cases—limited by disk I/O in
our implementation.

1 kHz

2 kHz

5 kHz

4 kHz

3 kHz

time (s)

Missing low-freq modes

Debris base frequencies

Tile base frequency

Figure 3.11: Simulated tile fracture experiments

Example (Ceramic dinner plate): We simulated the fracture of a ceramic plate

(see Figure 3.9). Laboratory experiments of plates dropped on the ground pro-

duced qualitatively similar fracture patterns and sounds. For reference, we also

provide a fracture-free simulation of a spolling (spinning + rolling) plate.
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Figure 3.12: Breaking the bank! A piggy bank is smashed into 58 pieces,
and releases 300 coins.

Example (Ceramic tile): To compare against our laboratory tile experiments

(see Figure 3.2), we synthesized sounds for a pre-scored virtual tile fracture ex-

periment (see Figure 3.11). Our rigid-body restitution model produced faster

bouncing behavior and our tile had slightly higher pitch, however qualitatively

similar time-varying rigid-body sounds were observed.

Example (Glass slab): We dropped a glass slab which shattered into about 70

pieces (see Figure 3.9). This example was particularly well approximated by

Soundbank proxies, and sounded similar even for 100% replacement.

Example (Glass window): We smashed two thick glass windows of differing

fracture toughness (see Figure 3.4), which also fared well with proxy replace-

ment.

Example (Wine glass): We dropped a wine glass onto its bowl, which ex-

ploded and left its stem behind (see Figure 3.9). Similar laboratory experiments

produced qualitatively similar sounds.

Example (Piggy bank): We simulated two piggy banks: “Poor Piggy” con-

tained only a few coins, whereas “Rich Piggy” contained many coins (see Fig-

ure 3.12). The latter example had the most expensive fracture dynamics due

primarily to the impulse-based solver’s handling of hundreds of coins stacked
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inside.

Example (Table): The smashed table setting (see Figure 3.1) is our largest ex-

ample, with over 4000 modes, and over a million quasistatic stress solves. Given

the high model-generation costs, the Rigid-Body Soundbank is particularly use-

ful on this example.

Comparison (With/without fracture impulses): Without fracture impulses

(§3.2.3), excitations are only due to rigid-body contact forces (recall Figure 3.5).

We synthesized the sound of the glass slab falling onto the ground with and

without fracture impulses, to demonstrate the more distinct “crack” obtained

when using fracture impulses.

Example (Interactive GPU-accelerated demonstrations): Real-time demon-

strations were performed for the dinner plate and the piggy bank. For the

spolling and smashing dinner plate (with
∑

modei n̄i = 2176 expansions) our

OpenMP 8-core CPU implementation required 0.156s to compute all-mode

transfer, whereas our GPU-based transfer implementation (§3.3) only required

0.0003s (3.3kHz) on an NVIDIA Tesla card—a 520× speedup.

Soundbank Comparisons (Varying proxy-replacement threshold): To evalu-

ate results produced by varying degrees of rigidbody soundbank use, we sim-

ulated the glass window, glass slab, and table examples with varying proxy-

replacement thresholds—as controlled by the frequency-based ωproxy proxy-use

criterion. Surprisingly, replacing even all the object sound models with the el-

lipsoidal proxies (for large reductions in sound model computations) still pro-

duced plausible sounds. See the video for these comparisons, and Table 3.2 for

model-generation speedups.
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3.6 Limitations and Future Work

Significant challenges remain for physically based fracture sound synthesis.

One open problem is the approximation of fracture sounds for very large ob-

jects, such as buildings, which pose many difficulties: expensive stress/modal

analyses, complex debris, dense frequency spectra with huge numbers of eigen-

modes, and more complex sound radiation, e.g., simple multipole sound mod-

els are invalid for large objects where the listener is inside the object.

Rigid-body sound is a convenient abstraction of brittle fracture, but not

all fracture processes are so instantaneous or conveniently modeled. Gradual

cracking, such as cracking lake ice or tearing, can require time-domain model-

ing of crack propagation which complicates modal sound modeling. Our qua-

sistatic fracture impulse is a simple approximation of the effective fracture im-

pulse resulting from complex time-dependent fracture processes. Since crack

propagation speeds in brittle materials can be close to the Rayleigh wave speed

(typically several km/s) the physical fracture impulses are determined by an ex-

tremely rapid process [GFM+93], e.g., brittle fracture of 10 cm scale objects can

occur on the time-scale of a 20 kHz wave period. Due to the ill-posed nature of

fracture-impulse estimation with a quasistatic model, we instead proposed an

energy-based fracture-impulse model using quasistatic stress.

Ductile objects, such as metals, can undergo visible deformation during the

fracture process [OBH02] and require additional investigation. Quasistatic frac-

ture modeling works well for contact forces, but dynamic resonance-based frac-

ture and fluid-solid coupling can also be important, e.g., a soprano smashing a

wine glass with her voice. Contact coupling can significantly affect vibration-

based sounds, and was only approximated by ad hoc contact damping. “Hair-
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line” fractures may not fully separate the object, and can affect vibration-based

sounds. In general, modal vibrations should also be coupled with frictional

contact mechanics, and pose collision detection challenges [JP04].

Thin objects require special care for fracture simulation [BHTF07], as well as

for sound modeling. For example, our wine glass involved both thin shell-like

regions, and volumetric regions which proved difficult to mesh using tetrahe-

dra. Thin-shell models also require special treatment for multipole radiation

evaluation. Thin objects, such as glass panes, might also exhibit nonlinear vi-

brations during violent fracture processes [CAJ09]. Our fracture pattern gen-

eration does not produce fine debris and dust [IJN09], however precomputed

soundbanks could be used to model their sounds.

We have modeled debris radiation using a linear superposition of non-

interacting rigid-body sources, but real simulations can involve significant inter-

object scattering effects. Our frequency-domain radiation model simplifies the

time-domain nature of fracture. For example, far-field sound involves signif-

icant time-delay effects, and is also more complicated for large and also fast-

moving and spinning objects [MI86].

Our rigid-body soundbank is based on homogeneous ellipsoidal primitives

for simplicity and convenience, but audible differences can occur for noncon-

vex geometry (see video). However, it remains to be seen if other geometric

primitives, e.g., fracture shards, provide more realistic results. In general, un-

derstanding the perceptible shape space for sound proxies, and the extent to

which precomputed soundbanks can be used to replace general geometry are

open problems. Finally, far more agressive speed-accuracy trade-offs can be

made for interactive applications.
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CHAPTER 4

MODAL CONTACT SOUND

As introduced in previous chapters, sounds from solid object contacts can be

efficiently generated based on linear modal analysis (See Chapter 2) with rigid

body dynamics: rigid body simulations resolve contact events, and estimate re-

sulting impulses, which then drive the linear modal vibrations of the associated

objects; these vibrations then produce sound waves propagating in the environ-

ments.

Unfortunately, treating vibrating objects as “rigid” during collision and con-

tact processing fundamentally limits the range of sounds that can be computed,

and contact solvers for rigid body animation can be ill-suited for modal con-

tact sound synthesis, producing various sound artifacts. In this chapter, we re-

solve modal vibrations in both collision and frictional contact processing stages,

thereby enabling non-rigid sound phenomena such as micro-collisions, vibra-

tional energy exchange, and chattering. We propose a frictional multibody con-

tact formulation and modified Staggered Projections solver [KSJP08] which is

well-suited to sound rendering and avoids noise artifacts associated with spa-

tial and temporal contact-force fluctuations which plague prior methods. To

enable practical animation and sound synthesis of numerous bodies with many

coupled modes, we propose a novel asynchronous integrator with model-level

adaptivity built into the frictional contact solver. Finally, vibrational contact

damping is modeled to approximate contact-dependent sound dissipation.
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Figure 4.1: A Rube-Goldberg contraption that demonstrates many chal-
lenging multibody contact sounds. A noisy block feeder (Left)
with flexible tubes ejects marbles into a double helix of plas-
tic chutes (Middle), which causes a cup to fill up, lifting a
lever that drops a bunny into a runaway shopping cart (Right)
producing familiar clattering and clanging sounds due to de-
formable micro-collisions. Our approach can accurately re-
solve modal vibrations and contact sounds using an asyn-
chronous, adaptive, frictional contact solver.

4.1 Introduction

Sound models based on linear modal vibrations are widely used to efficiently

synthesize plausible contact sounds for so-called rigid bodies in computer an-

imation and interactive virtual environments. For speed and simplicity, linear

modal vibrations are usually just excited by using contact force impulses from

rigid body contact solvers. However, in reality, there is no such thing as a “rigid”

object, and the same small vibrations that produce sound also play an impor-

tant role in producing rich contact events: micro-collisions, chattering, squeak-

ing, coupled vibrations, contact damping, etc. Ignoring contact-level vibrations

is the source of many sound-related deficiencies, as these small vibrations can

be visually inconsequential but aurally significant. For example, pounding on

a seemingly “rigid” dinner table can shake dishes—and may also upset your

friends (see Figure 4.2). Frictional contact and deformation coupling is also im-

portant for sound; for instance, slip-stick phenomena is responsible for many

familiar squeaking and scraping sounds, e.g., fingernails scraping on a chalk-
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Figure 4.2: Vibrational coupling makes a racket! A rigid bunny dropped
onto a table causes the table to deform rapidly, which in turn
causes the resting dishes to receive contact impulses and go
flying—with noticeable sound. In contrast, a traditional rigid
body simulation (not shown) bounces the bunny off the per-
fectly rigid table without disturbing any dishes or causing
much sound.

board. Resolving these vibrational contact effects is challenging due to the need

to resolve deformable collisions and contact at high temporal rates.

Even in seemingly rigid scenarios, such as an object resting on a plane, cur-

rent contact solver implementations can generate temporally incoherent contact

impulses which lead to sound artifacts, such as resting objects that strangely

humm or buzz when integrated at near-audio rates. These artifacts are a con-

sequence of the fundamental non-uniqueness of rigid body contact forces (e.g.,

static indeterminacy) which can lead to point-like and nonphysical contact force

(traction) distributions. Additionally, rigid-body contact impulses can exhibit

nonphysical temporal fluctuations, which lead to noise-related sound artifacts

(especially with iterative contact solution techniques) that must be dissipated

artificially.

Moreover, the sound of a resting object should also depend on its contact

state, and how contacts oppose surface vibrations. As an example, a coffee mug

exhibits distinctive vibrational damping when placed in different orientations
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Animation

Sound

Contact Data: Impulses & Motions

Asynchronous Adaptive Contact Solver

Impulse Redistribution Contact-Dependent
Damping

Contact Simulation

Sound Synthesis

Figure 4.3: Overview: Multibody simulation is performed using an asyn-
chronous adaptive contact solver (Top). This simulation yields
animation data as well as impulses and object motion data
which are fed to the sound synthesis algorithm running in a
separated pass (Bottom). When synthesizing modal sound,
input impulses are redistributed to enhance temporal coher-
ence and eliminate noise, and contact-dependent damping is
applied.

on surfaces (see Figure 4.4). This contact damping phenomena involves com-

plex vibrational and contact coupling effects, and is ignored in current sound

models or handled in ad hoc ways, e.g., “increase damping when in contact.”

This chapter introduces an approach we developed to address all of these

concerns and enable richer contact sounds (see Figure 4.3). We adopt a flex-

ible multibody dynamics formulation, wherein each seemingly rigid object is

allowed to deform with linear modal vibrations. Deformable collision process-

ing at near audio rates is used to generate frictional contact problems to re-

solve perceptually important coupling and micro-collisions (see Figures 4.1 &

4.2). We use a modified Staggered Projections algorithm to solve the frictional

contact problems [KSJP08], with modifications to avoid solver noise due to spa-

tial and temporal incoherence in both the generation of contact points and the

computation of contact forces. Vibrational contact damping phenomena are ap-

proximated using a time-varying lumped contact damping matrix to attenuate
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Figure 4.4: Contact-dependent vibrational damping is readily apparent
by tapping a coffee mug at the same location while in differ-
ent contact configurations. Our contact sounds differ because
contact damping opposes modal vibrations differently.

vibrations during sound synthesis.

Since multibody frictional contact solves with thousands of coupled modes

at near-audio rates are computationally intractable for sound synthesis, in this

chapter, we propose a novel mode-adaptive asynchronous integrator which is

capable of identifying and integrating low-frequency vibration modes in the

contact solver (see Figure 4.8). We will describe methods for adding and remov-

ing modes from the contact-level simulation, as well as noise-free methods for

simulating all audible modes during subsequent sound synthesis. Our imple-

mentation is able to handle dozens of bodies with thousands of audible modes

in a practical manner for high-quality offline sound synthesis.

4.2 Low-Noise Contact Resolution

In this section we briefly review multibody contact and the Staggered Pro-

jections (SP) solver [KSJP08], then discuss its noise-related limitations for

sound synthesis (in §4.2.2), and propose a modified SP solver which pro-
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(a) (b)

Figure 4.5: Contact geometry and friction cone sampling

duces low-noise contact impulses efficiently (in §4.2.3). We refer the reader

to [Bro99, KSJP08] for more details.

4.2.1 Background on Contact Problems

Following the notation of Kaufman et al. [KSJP08], we consider a multibody

contacting system represented by the generalized position coordinate q, gener-

alized velocity q̇, and mass matrix M. The world-frame position of point i on

some object is given by the mapping xi(q) which describes rigid body motion

and linear modal deformations. Contacts in the system are described by the set

C. Given a contact k ∈ C between two points i and j with a normal direction

nk (Figure 4.5(a)), the corresponding generalized normal direction is given by

nk = ΓT
knk where Γk is the relative velocity Jacobian defined as Γk =∇xi−∇x j. The

generalized normal contact impulses can be represented by the vector c = Nα,

where N = [n1n2 . . . n|C|] and α is the vector of magnitudes of normal contact

impulses.

The isotropic Coulomb friction on the tangential plane can be linearized us-

ing fk = Tkβk, where Tk is the matrix whose column vectors uniformly sam-

ple the friction disk (Figure 4.5(b)), and βk is the vector of impulse magnitudes
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along each of the sampled directions. This polyhedral friction cone simplifies

the Coulomb friction inequality into

eTβk ≤ µkαk, s.t. βk ≥ 0, (4.1)

where µk is the coefficient of friction, and αk is the normal contact impulse

magnitude at k and e = [1 . . . 1]T [ST96]. The generalized friction impulses on

all of the contacts can be written as f = Dβ, where D = [ΓT
1T1 . . . ΓT

|C|
T|C|] and

β = [βT
1 . . . β

T
|C|

]T . Using this notation, we can discretize the Euler-Lagrange equa-

tion (with timestep size h) as follows,

M
(
q̇t+1 − q̇t

)
= hg(qt, q̇t) + hftext + Nαt+1 + Dβt+1 , (4.2)

where g, the quadratic velocity vector function, provides the Coriolis and centrifu-

gal forces, and fext describes the external forces. The SP method solves this equa-

tion using a predictor-corrector method. First, it computes a velocity prediction

q̇p by solving

M
(
q̇p − q̇t) = hg(qt, q̇t) + hftext. (4.3)

Next, it solves

M
(
q̇t+1 − q̇p

)
= Nαt+1 + Dβt+1 (4.4)

to correct the velocity, which involves estimating q̇t+1 by simultaneously solving

the following two quadratic programming problems iteratively,

q̇t+1 = arg min
v

(
1
2

vT Mv − vT (Mq̇p + Dβt+1)
)
,

s.t. NT v ≥ 0

(4.5a)

βt+1 = arg min
β

(
1
2
βT DT M−1Dβ + βT DT (q̇p + M−1Nαt+1)

)
,

s.t. ETβ < diag(µ)αt+1, β ≥ 0,

(4.5b)

where (4.5a) is the contact problem for determining the normal impulse, and

(4.5b) is the friction problem that determines the frictional impulse. Here E is
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Figure 4.6: Non-unique contact impulses can produce noise since fluc-
tuations in resting contact forces, while causing no motions,
produce changing modal forces which can produce noise, e.g.,
resting objects that “hum.”

the matrix form of all the vectors e in (4.1) such that each column k has ones

in rows corresponding to entries in the subvector βk ∈ β and zeros in all other

elements; αt+1 in the second problem (4.5b) is a vector of normal contact impulse

magnitudes, which is the Lagrange multipliers of the constraints of the first

problem (4.5a). These QP problems are essentially the dual form of the LCP

formulation modeling the contacting systems. We discuss methods for solving

these large sparse QP problems later (§4.5).

4.2.2 Non-unique Contact Impulses and Noise

When solving (4.5) [Bro99], fundamental difficulties exist for sound synthesis:

1. First, given a fixed βt+1, it can be proved that equation (4.5a) has a unique

solution, since the mass matrix M is positive definite 1. However, the La-

grange multipliers of the constraints, i.e., the contact impulses, are not

necessarily unique because, according to the Karush-Kuhn-Tucker (KKT)

1Cottle et al. [CPS92] proved that the LCP form of (4.5a) has a unique solution if M is a P-
matrix—a matrix where all principal minors have positive determinants. A positive definite
matrix is a P-matrix, however, P-matrices are not necessarily positive definite.
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condition of (4.5a), the Lagrange multipliers should satisfy

Nαt+1 = M(q̇t+1 − q̇p) − Dβt+1. (4.6)

This equation could have non-unique solutions when N is rank deficient,

and rank-deficient N is almost inevitable when the number of contacts is

large enough. As a result of this non-uniqueness, the contact impulses can

be temporally incoherent, and using them to excite the sound model can

lead to audible noise artifacts (see Figure 4.6).

2. The second difficulty comes from the friction problem (4.5b), in which the

Hessian matrix DT M−1D tends to be singular when the number of contacts

is large—note that the size of the problem is proportional to the number of

contacts. Solving such large rank-deficient quadratic programming prob-

lems will quickly slow down the simulation.

We therefore seek to estimate a temporally coherent set of active contacts of

minimal size.

4.2.3 Estimating Temporally Coherent Active Contacts

Contact Generation: In standard multi-body simulation, a contact is gener-

ated when (i) collision between two objects is detected and (ii) their relative nor-

mal velocity at the collision point is negative. These criteria can produce plau-

sible motion effects; however, they tend to also generate noisy contact forces

which is problematic for sound synthesis. For example, consider the curved

slab resting on the ground with multiple contact points (Figure 4.7). The tradi-

tional contact generation produces non-zero forces which cycle among multiple

contact points as the simulation proceeds: contact forces generated to satisfy
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timestep t timestep t+1 timestep t+2

time (s)

time (s)

(a) Velocity-based Contact Sounds

time (s)

time (s)

(b) Our Position-based Contact
Sounds

Figure 4.7: Noisy contact forces on a static curved slab: (Top) At timestep
t, the non-zero contact forces appear at the left end of the slab;
at timestep t + 1, they are at the right end of the slab; at the next
time step, the non-zero forces come back to the left end, and
so on so forth. This microscopic contact cycling leads to noise
(a) generated rather than pure silence (b) as we expected in this
case.

constraints at the current contact points at the current timestep can cause other

contact constraints to be violated at subsequent timesteps.

To avoid contact generation noise, we propose to generate contacts when-

ever intersections are detected, irrespective of the relative contact velocity. This

criteria can generate more contacts than the standard one, leading to more ex-

pensive contact problems. In particular, the friction solve (4.5b) becomes harder

since the problem size is proportional to the number of contacts. We therefore

propose the following contact filtering scheme to reduce the number of contacts

and maintain temporal coherence.
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Contact Reduction: We maintain active contacts by applying the active set

method [GMW81] when solving the contact problem (4.5a). When solutions are

found, the active set method also identifies the active constraints for that prob-

lem. The resulting constraint Lagrange multipliers, which correspond to contact

forces, become quite sparse. Since zero contact force always leads to zero friction

force, we can turn off all inactive contacts to reduce the size of any subsequent

friction problem (4.5b). To ensure temporally coherent active-contact selection

(as well as faster SP convergence), we “warm start” the SP solver with the so-

lution from the previous timestep [KSJP08]. To initialize the contact filtration

process, we can first solve (4.5a) using an interior point method, then use that

as an initial guess for the active set method. On average, we observe about one

order of magnitude speed up over the simulation without contact reduction.

4.3 Asynchronous Adaptive Contact Solver

By simulating flexible objects we can resolve more interesting dynamic behav-

iors, such as contact coupling and chattering. These behaviors can enable more

realistic visual effects and richer sounds. However, deformable simulation is

much more expensive than purely rigid simulation. Furthermore, the simula-

tion timestep size is restricted by the highest modal vibration frequency due to

the stability condition—the higher frequency, the smaller the timestep has to

be. For high-quality sound synthesis where all audible modes are desired, this

simulation cost can be prohibitive.

Fortunately higher frequency vibrations tend to damp more quickly, and are

often perceptually important for only a short time (see inset time-series). Af-
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Figure 4.8: Mode-adaptive contact simulation (ruler example)

terwards, simulating only lower frequency modes (or even rigid objects) can

Time (s)

suffice to capture perceptually important dynamics. We pro-

pose to exploit this transient nature of higher frequency vibra-

tions by adaptively selecting the simulated modes and asyn-

chronously integrating the system using the largest timestep

possible (see Figure 4.8). To avoid diminishing returns, we can

also limit the maximum mode frequency used in contact sim-

ulation, leaving higher frequency modes to be considered only

during a subsequent sound synthesis phase (§4.4). An overview

of our asynchronous adaptive integration scheme is outlined in

Algorithm 2. Next we will describe each of its steps.

Asynchronous Integration: First, consider a simulation without contacting

bodies. To evolve the objects independently, each of them has a private times-

tamp indicating its local simulated time. This timestamp is similar to the con-

cept of local virtual time in the rigid timewarp method [Mir00]; it is used to sched-
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ule the objects in a priority queue. At each simulation step, the object at the top

of the queue has the earliest timestamp and is popped to advance to its next

timestep. If it is not in contact, we simply reschedule it into the priority queue

after advancing its state and increasing its timestamp. Otherwise, we need to

resolve collisions before rescheduling it.

Collision Detection: Let us refer the object currently popped from the priority

queue the active object. To detect collisions, all the other objects need to synchro-

nize to it. These objects are all advanced no less than the active object, since

they are deeper in the priority queue. We therefore synchronize them by lin-

early interpolating their states at the time of the active object. While requiring

a little extra memory since each object now needs to maintain two states from

last two consecutive timesteps, linear interpolation introduces almost no per-

formance overhead in the simulation. Next the standard discrete-time collision

detection is performed using oriented bounding box (OBB) hierarchies for rigid

objects [GLM96]; for modal deformation, we use Bounded Deformation Tree

ideas to quickly update the OBB hierarchy (with fixed bounding-box orienta-

tion) [JP04].

Contact Groups: Based on the detected intersections, objects are grouped into

contact groups [Mir00]; the component objects of a contact group intersect with

each other and are separated from other contact groups. Therefore they must be

integrated as a unit. We identify these contact groups by detecting independent

connected sets in the contact graph [GBF03].

State Rollback: For any object that is more advanced than the active object, if

it is not in contact at all its interpolated state is simply discarded, and it remains

at its current advancement; otherwise, it must belong to some contact group and
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Algorithm 2: Overview of asynchronous adaptive integration
begin

while simulation is not over do
ao← queue.pop()
foreach obj , ao do

interpolate state(obj, ao.timestamp)
end
detect collision()
identify contact groups()
foreach contact group cg do

advance to next step(cg); // Algorithm 3

end
foreach contacting object obj do

increase timestamp(obj)
reschedule(obj)

end
end

end

has to be integrated within that group. Therefore, we roll back its current state

by replacing it with its interpolated state (see Figure 4.9 for an illustration). Then

each contact group is integrated independently using an adapted timestep size

according to the algorithm described in the rest of the section (See Algorithm 3).

4.3.1 Contact Group Advancement

We solve the contact-friction problem described in section 4.2.1 to advance a

contact group. In particular, for velocity prediction (Equation 4.3), we use ex-

plicit forward Euler method and the Newmark integrator [Wri06] to integrate

rigid motion and modal deformation respectively; velocities are then corrected

using the SP iterations. The simulated vibration modes, i.e. the simulated de-

gree of freedom (DOF), are determined based on the current modal vibrating

state–a mode that is largely damped can be safely ignored from simulation.
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Figure 4.9: Asynchronous Advancement of Objects: (a) At time t1, object
A is selected as the current active object. It is in contact with a
more advanced object C. Then C synchronizes with A using its
interpolated state at t1, and advance from there together with
A; (b) Next D is at the top of the queue, and is in contact with
B at t2. B rolls its state back to t2, and advances its state with
D; (c) Then E is processed, which is in contact with A and C.
Therefore E, A and C advance together to the next timestep.

However, the current vibrating state of a mode cannot be determined without

solving the contract-friction problem. Therefore, we first estimate the current

normal contact impulses (line 2 of Algorithm 3), then use the estimated im-

pulses to determine the simulated DOF (line 3), and finally solve the adapted

problem (line 5-6).

Normal Contact Impulse Estimation: The normal contact impulses are esti-

mated by solving a single QP problem (4.5a), wherein we use the friction im-

pulses from the last timestep assuming temporal coherence. This leads to one

extra QP solve at each timestep. Fortunately, this QP is well-posed and is much

cheaper to solve compared to the full SP algorithm. The timestep size used in

the solve is determined as follows.

Timestep Determination: Due to the integration stability condition, the

timestep size of integrating a contact group is restricted by the highest simu-
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Algorithm 3: Adaptive timestep for contact group C :
advance to next step(contactgroup)

begin
ts←determine timestep size(C)1

fc ←contact solve(C, ts)2

adapt dof(C, fc)3

ts←determine timestep size(C)4

if cull friction solve(C) then
frictionless contact solve(C, ts)5

else
staggered projections(C, ts)6

end
end

lated vibration frequency fh of its component objects. In practice, we found that

a timestep size ∆t = 1/(6.5fh) produces stable modal deformation. In addition,

a default timestep size ∆tmax is used for rigid bodies, giving us the timestep size

of a contact group as ∆t = min(1/(6.5fh),∆tmax). For contact impulse estimation

mentioned above, we use the fh value from last timestep (line 1). To finally

advance the contact group, fh is updated (line 4) after the simulated DOF is

adapted.

Adaptation (DOF Increase): In the following description, we denote the max-

imum number of simulated modes of an object as Nm. Assume these modes are

labeled from 1 to Nm, ordered from lower to higher frequencies; and let s denote

the current number of simulated modes (modes 1 . . . s). To adapt the simulated

DOF of an object, we first check if s should be increased. Large external im-

pulses can excite high-frequency modes, thus activating them in the simulation.

We measure the excitement of modes by considering the time derivative of the

modal vibration equation, i.e.

v̈ + Cv̇ + Kv = UT ḟ .
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The impulse response of this equation measures the velocity excitement of

modes due to external impulses, and has the magnitude proportional to UT ḟ .

The time derivative ḟ is estimated using ( fc− f n−1)/∆t, where fc is the estimation

of normal contact impulse described above, and f n−1 is the normal contact im-

pulse from last timestep. Then we approximate the velocity excitement vector

using

v̂ = UT fc − f n−1

∆t
, (4.7)

and find the highest mode j such that v̂ j ≥ δu, where δu is a parameter to con-

trol the upgrade criterion. In practice, we use δu = 1E − 5 for all the adaptive

simulations. We increase the simulated modes up to j if j > s.

Adaptation (DOF Decrease): If s is not increased, we further check if it could

be decreased to enable faster simulation. A mode could be deactivated if its

modal vibration energy has been largely dissipated. The modal energy of mode

i is computed using

Ei =
1
2

(q̇2
i + kiq2

i ) , (4.8)

where q and q̇ are its modal vibrational displacement and velocity, and ki is its

mass-normalized modal stiffness. We then find the highest mode j such that

E j ≥ δd, where δd is a parameter to control the downgrade criterion. δd = 1E − 7

is used in our examples. We decrease the simulated modes down to j if j < s. If

none of the modes has modal energy larger than δd, then the modal deformation

is deactivated, and only rigid motion is considered.

Culling Friction Solves: We note that the contact-friction problem gets largely

simplified for frictionless contacts. Not only is this because the friction problem

(4.5b) is fundamentally harder to solve than the contact problem (4.5a) but also

no iteration is needed at all in this case. When objects are resting without any
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static friction, ignoring friction introduces no error. In simulations, this tends to

happen frequently, since objects always tend to become static due to energy dis-

sipation. We detect such frictionless contact groups by applying the following

heuristics: given a contact group possessing a set of contacts denoted by C and

a set of objects denoted by O, its friction solve can be turned off if it simultane-

ously satisfies two conditions:

∑
i∈C

|v(t)
i | < δt, (4.9)

where v(t)
i is the predicted relative tangential velocity (after integrating using

(4.3)) at contact i, and δt is a positive value close to zero (1E-8 in practice); and

∑
j∈O

‖f(n−1)
j ‖ < δ f , (4.10)

where f(n−1)
j is the generalized friction impulse of object j from last timestep,

and δ f is also a small value (1E-10 in practice). Note that these heuristics are

conservative: (4.9) guarantees no relative movement in the contact group, while

(4.10) ensures no friction force applied in the last timestep. In our experiments,

we observe 6%-24% additional performance improvement.

4.4 Sound Synthesis

This section describes (i) how the contact simulation fits into our two-pass

sound synthesis pipeline (§4.4.1), (ii) how impulses generated during con-

tact resolution are spatially redistributed prior to exciting all-frequency modal

sounds (§4.4.2), and then (iii) how the redistributed impulses are used to param-

eterize our modal contact damping model (§4.4.3).
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4.4.1 Sound Synthesis Pipeline

Aside from the sound-aware contact resolution approach, our sound synthe-

sis pipeline is similar to the approach used in [ZJ10]. Specifically, solid objects

are represented using tetrahedral meshes; modal vibration models are precom-

puted using the finite element method; the modal sound model is excited by

contact impulses obtained from dynamic simulation; sound radiation is approx-

imated using Helmholtz acoustic transfer models represented via precomputed

multipole expansions, and used with head related transfer functions (HRTF) for

sound rendering.

While our method could generate sound as the simulation advances, in prac-

tice we use a two-pass implementation. The first pass simulates the dynamics

while recording the time series of contact impulses to disk. The second pass

synthesizes sound by integrating the modal vibration equations of excited ob-

jects. Each object’s recorded contact impulses are first spatially redistributed

(§4.4.2) before determining modal excitations, and then used to determine each

mode’s contact damping (§4.4.3). To support integration of numerous modes,

mode-level parallelism is exploited. Overall the second pass is much faster than

the first dynamics pass (See Table 4.2). Once the expensive dynamics is com-

puted, we can quickly resynthesize the sound, e.g., to efficiently tune sound-

related damping parameters, such as α, β and γ in (4.18) which are perceptually

important [KPK00].
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(a) Without refinement (b) With refinement

Figure 4.10: Impulse Refinement: A curved slab is sitting on the ground.
The orange arrow bars indicate contact force distribution with
their length proportional to the magnitude of the forces. (a)
The quadratic programming solve somewhat arbitrarily se-
lects only a few contacts to be active; (b) our impulse refine-
ment algorithm produces more uniformly distributed forces
among all the contacts.

4.4.2 Impulse Redistribution

The algorithms of §4.2 and §4.3 described how to generate temporally coherent

low-noise force impulses; however, for efficiency, these impulses are applied

only at a minimal number of active contacts selected by the active set method

(see Figure 4.10(a)). Applying these nonphysically sparse impulses to the modal

sound model leads to increased noise in the synthesized sound which we would

like to avoid. Fortunately we can again exploit the non-uniqueness of the im-

pulse solution to redistribute contact impulses after each simulation timestep

to obtain a more uniform spatial distribution (see Figure 4.10). We emphasize

that these redistributed impulses are only used for sound synthesis, and do not

affect the simulated motion–which uses sparse contact impulses for speed.

At the end of each timestep, let ᾱ and β̄ denote the normal contact and fric-

tion impulse magnitudes, respectively, as a result of solving (4.5); the associated
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Figure 4.11: Clearer sounds with impulse refinement: Contact-impulse
noise can result in muddier spectral responses (Top), whereas
the spectrogram of sound generated using impulse refine-
ment (Bottom) exhibits less noise, e.g., compare modal fre-
quency lines in highlighted region (See smooth rocking ex-
ample from Figure 4.10).

contact and friction impulses are

c = Nᾱ and f = Dβ̄. (4.11)

Our adjusted impulse distribution can be written as

α = ᾱ +NNkα and β = β̄ +NDkβ (4.12)

where NN and ND are the orthonormal matrices spanning the null space of N

and D, respectively; we obtain these matrices using the LAPACK [ABB+99] rou-

tine geqp3. Since both NNN = 0 and DND = 0, the impulse redistribution does

not change the total impulses c and f, and thus does not affect the simulated

dynamics. To make these more uniformly distributed, we solve a QP problem
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Figure 4.12: Modified viscous contact dampers are used to approximate
mode-dependent contact-damping phenomenon.

for kα and kβ:

arg min
kα,kβ

1
2

(
‖ᾱ +NNkα − αt−1‖2 + ‖β̄ +NDkβ − βt−1‖2

)

s.t.

ᾱ +NNkα ≥ 0

β̄ +NDkβ ≥ 0

E
(
β̄ +NDkβ

)
≤ diag(µ) (ᾱ +NNkα)

(4.13)

where αt−1 and βt−1 are the contact and friction impulse magnitudes from the

previous timestep. Note that this QP problem is defined for a single object, and

therefore each can be solved independently. The problem size is much smaller

than in (4.5), and these solves add only a little overhead to the overall simula-

tion, e.g., only 2%-10% extra cost is observed. However, it results in computed

sounds with much less noise (see Figure 4.11).

4.4.3 Contact-dependent Modal Damping

Given the distributed contact forces for sound synthesis (from §4.4.2), we now

proceed to efficiently approximate contact-dependent damping forces (recall
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Figure 4.4). Prior sound synthesis methods typically use a velocity-proportional

Rayleigh damping model where the damping matrix is a linear combination of

the mass and stiffness matrices, αM + βK, and α and β are material-dependent

positive scalars [Sha91]. Our contact damping model begins by considering

simple viscous dampers at each contact point (see Figure 4.12) where the vis-

cous coefficient is proportional to the contact force magnitude estimated from

dynamic simulation. Specifically, given point contact k with normal directionnk

and contact force magnitude ck, its vibrational velocity along both normal and

tangential directions are

v(n)
k = nkn

T
k Ukq̇; v(t)

k = (I − nkn
T
k )Ukq̇ (4.14)

respectively, where Uk ∈ R
3×r is the r-mode displacement submatrix correspond-

ing to point k. The viscous contact damping force can be modeled as

dk = γck(v
(n)
k + µv(t)

k ) = γck

(
µI + (1 − µ)nkn

T
k

)
Ukq̇ , (4.15)

where µ is the coefficient of friction, and the positive scalar γ is a material-

dependent parameter controlling the strength of damping forces. With this

model, the generalized damping force for contact k can be written as

UT
k dk = γckUT

k

(
µI + (1 − µ)nkn

T
k

)
Ukq̇ ∈ Rr. (4.16)

To express in matrix form, we define

G ≡
∑
k∈C

ckUT
k

(
µI + (1 − µ)nkn

T
k

)
Uk . (4.17)

where C denotes the set of point contacts at the current simulation step. Then

the total effective modal damping of the vibration is

C = UT (αM + βK)U + γG. (4.18)
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Material Density Young’s Poisson’s Damping
(kg/m3) modulus(GPa) ratio α β γ

Ceramic 2700 7.4E+10 0.19 6 1E-7 3E-2
Polystyrene 1050 3.5E+9 0.34 30 8E-7 4E-4

Steel 7850 2E+11 0.29 5 3E-8 3E-1
MDF 615 4E+9 0.32 35 5E-6 9E-3
Wood 750 1.1E+10 0.25 60 2E-6 5E-4

Table 4.1: Material Parameters: The table was made with medium density
fiberboard (MDF).

Here α, β and γ are all material dependent constants (see Table 4.1 for values

used in the examples). Note that the contact damping term above is also sym-

metric positive definite, which guarantees it will dissipate energy.

Unfortunately, due to G this damping matrix is non-diagonal, and couples

all vibration modes together thereby leading to vastly more expensive modal

dynamics integration costs for sound synthesis, e.g., O(r2) versus O(r) costs for

r modes. Fortunately, we observe that we can still obtain phenomenologically

similar results by simply ignoring off-diagonal elements of G, and thus preserve

a linear-time modal sound synthesis phase. Therefore the contact damping of

mode m is simply γGmmq̇m, where the diagonal matrix coefficient is

Gmm = γ
∑
k∈C

ckUT
k,m

(
µI + (1 − µ)nkn

T
k

)
Uk,m, (4.19)

where Uk,m ∈ R
3 is the displacement at contact k of mode m. Note that this

damping term depends on the current contact force ck and modal displacement

Uk,m, and therefore captures spatial and temporal dependencies. In practice, we

compute the contact damping coefficient Gmm at each simulation timestep, and

cubically interpolate them for use in an IIR filter for modal sound synthesis.
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Figure 4.13: Ruler and tuning fork examples

Example Surface tetrahe-
DOF

Time Dynamics Sound Sound
Vertices dra (s) Cost (hr) Cost (s) Modes

Ruler 5760 18860 108 2.0 0.08 7.2 305
Table 362550 2836215 132 2.2 4.8 22.2 1005
Mug 29718 161543 6 3.0 0.12 5.3 64

Tuning Fork 6601 44076 6 2.0 0.08 4.3 30
Pipes 185912 910765 138 12.2 6.3 15.7 842

Marble Tracks 188864 310844 426 35 9.6 32.4 3822
Shopping Cart 215150 992355 186 4.0 4.7 14.2 2060

Table 4.2: Example Statistics: Maximum degrees of freedom (DOF) for
rigid and modal dynamics. Adaptive dynamics simulations
used a highest simulated vibration frequency of fh = 5000 Hz.
Consequently the minimum timestep size is around 3.07E-5s,
except for the two purely rigid examples (mug and tuning fork)
which used a timestep size of 0.001s. Sound synthesis uses all
modes below a 20 kHz cutoff, except for the shopping cart where
12 kHz was used.

4.5 Results

We list all material related parameters used in our examples in Table 4.1. Sim-

ulation statistics are given in Table 4.2. All reported timings are based on our

implementation on a Linux system with an 8-core Intel Xeon X5570 CPU. Please

see our video for all sound and animation results, and related comparisons.

Ruler Twang: We simulated a comedic ruler “twang” sound. We fixed one

end of a ruler near the edge of a table (see Figure 4.13). When excited by a

single impulse, the ruler starts chattering against the table, producing a distinc-
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tive “twang” sound. Next we move the ruler as it vibrates, changing its contact

positions against the table. The changing contact configuration and movement

cause varying contact coupling between the modes which leads to a characteris-

tic (and funny) rising-pitch ruler twang. This example highlights the strength of

our simulation, since these sound effects could not be synthesized without re-

solving micro-collision events accurately. Despite the short timescale and rapid

collisions, the method is still able to make use of mode adaptation (see Fig-

ure 4.8).

Table: We dropped a heavy rigid body bunny onto a table (fixed to the

ground) which had a stack of dinner plates and bowls on it. This example

demonstrates the perceptual importance of resolving vibrational coupling for

both visual and sound realism (see Figure 4.2). Using a traditional rigid-body

simulation, the table does not deform and thus the kitchenware stays static since

no elastic energy can be transmitted by the rigid-body model. In our simulation,

however, the stiff table deforms a tiny amount, and consequently all the kitchen-

ware on the table is excited, and even bounced into the air when a heavy bunny

is dropped on the table. The audible difference is clear and dramatic. Despite

our asynchronous adaptive simulator often only simulating a small number of

total modes, it can still resolve these rich vibrational coupling effects (see Fig-

ure 4.15); comparing to our non-adaptive simulation, we observed about 2.6X

speedup. This example also illustrates the low-noise sound generation of our

method and contact filtering (see Figure 4.14)

Coffee mug: To demonstrate our contact damping model, we simulated a cof-

fee mug being tapped at a fixed position with different contact orientations (see

Figure 4.4). For validation, we compared our synthesized sounds with record-
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Figure 4.14: Contact filtering for fast low-noise contact sound: The stack
of plates and other objects generate a large number of con-
tacts at each timestep. Our contact filtering method (§4.2.3)
can effectively cull most contacts, producing fewer and more
temporally coherent contacts.

Figure 4.15: Mode-adaptive contact simulation of a table (72 modes max)
and 10 rigid objects (dishes and bunny) greatly reduces the
number of active table modes (max 72) except for impact
events.

ings of a real mug experiment to demonstrate qualitatively similar damping

effects.

Tuning fork: We also demonstrate contact damping using a tuning fork

dropped on the ground (see Figure 4.13). The tuning fork can ring for a long
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time when excited by an impulse and not in contact. However, the ringing

rapidly dissipates when the tuning fork is in contact with the ground.

Rube-Goldberg Contraption: This example (see Figure 4.1) demonstrates the

ability of our simulator to handle more complicated animations. It consists of

three parts: (i) a block feeder with flexible marble-loaded tubes that eject mar-

bles; (ii) a myriad of plastic marble tracks that guide marbles to fall into a wood

cup, which is attached to a raised lever, which will eventually lift a bunny and

let it fall into a shopping cart; (iii) the shopping cart then descends a bumpy in-

cline and hits a curb. To aid in timing and construction, we simulated the three

parts separately, using ending conditions from the previous stage as initial con-

ditions for the next stage.

The flexible tubes barely touch the block feeder. Because of the friction

forces, the tubes are deformed as the feeder moves. When the tubes deform

sufficiently, the friction forces cannot maintain the deformation, and interest-

ing squeaking sounds are produced. To model the friction sounds of the block

feeder against the table, we perturb the normal directions on the bottom of the

feeder using Gaussian noise, analogous to the normal maps used in [RYL10].

The double-helix marble runs illustrate the efficiency of our adaptive simula-

tion: we observed a 6.8× speedup over non-adaptive simulation due to the

fewer active modes (see Figure 4.16 and 4.17). The small metal balls have lowest

modal frequencies well above 20 kHz, so all ball impact sounds (“clicks”) were

approximated using a recorded metal-ball sound.

Solving large-scale sparse QP problems: We use third-party QP solvers in

our implementation. Unlike [KSJP08], we can not use the robust QP solver

referred to as “QL” [Sch05] since it only supports dense QP which become im-
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Figure 4.16: Histogram of timestep size (“Rube-Goldberg” example)
demonstrates that very small timesteps are used rarely, e.g.,
to resolve transient high-frequency modes.

Figure 4.17: Mode-adaptive contact simulation

practical for larger problems involving numerous modes. Unfortunately, in

our experience, none of the large-scale sparse QP solvers are robust enough

to successfully solve all of the problems generated by our contact simulations:

they can fail to find optimal solutions on feasible problems. Since their fail-

ure cases are often rare and different, our practical solution was to use two

solvers: the GALAHAD package’s QPC routine (galahad.rl.ac.uk), and

KNITRO (www.ziena.com/knitro.htm). Both of them implement the ac-
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tive set method and the interior point method. In our implementation, we first

try to solve using the QPC routine, then, if it fails, we switch to the active set

method in KNITRO. In very rare cases, the second try also fails, then we change

to the interior point method implemented in the QPB routine in GALAHAD.

Using this scheme, we could find optimal (or occasionally only near optimal)

solutions to all contact problems.

4.6 Limitations and Future Work

In this chapter, we have proposed a detailed approach for contact resolution

which is able to synthesize a new range of challenging sound phenomena, such

as vibration-induced chattering and contact damping, as well as to avoid defi-

ciencies in current practice, such as contact-solver-induced noise. We have also

proposed an adaptive asynchronous contact solver which makes it possible to

efficiently simulate coupling of rigid and modal objects via frictional contact. As

a result, we have enabled high-quality sound synthesis for a range of previously

unexplored sound phenomena.

Our approach and implementation are not without limitations, and there

are many opportunities for future work. While it is clear that speed-accuracy

trade-offs can always be made, we are interested in faster methods which retain

accuracy. Robustness of the frictional contact solver is dependent on our ability

to solve large-scale sparse quadratic programs robustly, and current QP solvers

need improvement2. Our post-dynamics impulse refinement step generates

friction impulses for the sound phase which are not guaranteed to satisfy the

2In order to spur algorithmic developments in the QP solver community, a range of challeng-
ing QP test problems arising from our simulations will be made available on our website.
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maximum dissipation optimality conditions. Our method involves several user-

specific parameters, such as for adaptivity, which although straightforward to

set in our examples, may be difficult to tune in more complex cases. Further

studies are needed into the simulation of squeaking and other high-frequency

coupling phenomena. Modal analysis provides only a partial theory for contact

sounds, since very small objects, such as marbles, have vibration frequencies

which can far exceed our hearing limits, yet they still produce audible contact

“clicks.” Generalizing contact, sound and radiation models to support larger

deformation scenarios is a major unsolved problem for modal sound synthesis.

Our current implementation exhibits triangle faceting artifacts, which can be a

problem for rolling phenomena [vdDKP01]. Finally there is more to computing

multibody contact sounds than just simulating vibrations: multibody radiation

effects can also play a significant role in the resulting sound. For example, the

sound of a spoon falling into a mug is strongly affected by the mug’s cavity res-

onance, but current single-body acoustic transfer models [JBP06, CAJ09, ZJ10]

and large-scale room acoustics techniques [RSM+10] do not entirely suffice.
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CHAPTER 5

FLUID SOUND

In previous chapters, we present the physics-based algorithms for synthesiz-

ing solid object sounds. In addition to those sound phenamena, another class

of sound sources which are ubiquitous in our physical world is liquids: splash,

splatter, babble, sploosh, drip, drop, bloop and ploop! Liquids are everywhere

and noisy. This chapter presents a practical method for automatic procedural

synthesis of synchronized harmonic bubble-based sounds from 3D fluid ani-

mations. First, to avoid audio-rate time-stepping of compressible fluids, we

acoustically augment existing incompressible fluid solvers with particle-based

models for bubble creation, vibration, advection, and radiation. Next, sound ra-

diation from harmonic fluid vibrations is modeled using a time-varying linear

superposition of bubble oscillators. We weight each oscillator by its bubble-to-

ear acoustic transfer function, which is modeled as a discrete Green’s function

of the Helmholtz equation. To solve potentially millions of 3D Helmholtz prob-

lems, we propose a fast dual-domain multipole boundary-integral solver, with

cost linear in the complexity of the fluid domain’s boundary. We demonstrate

this method by synthesizing different fluid sound phenomena, including water

drops, pouring, babbling and splashing.

5.1 Introduction

Computer graphics have seen enormous success of physically based fluid sim-

ulation; however, these simulations remain inherently silient movies. For most

fluid applications, sound is an afterthought, added using stock recordings.

While replaying “canned fluid sounds” is cheap and sometimes plausible, it can
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5.0 mm (1.3 kHz) −→ m
2.0 mm (3.3 kHz) −→ e
1.0 mm (6.6 kHz) −→ b
0.5 mm (13. kHz) −→ `

Figure 5.1: Tiny bubbles (drawn to scale) are responsible for produc-
ing the characteristic high-frequency sounds produced by har-
monic fluids. Bubble diameters and vibration frequencies (ωd)
are given.

lack synchronization and physical consistency with observed dynamics, and

may appear repetitive and perhaps irritating. Furthermore, while offline appli-

cations can rely on talented foley artists to “cook up” plausible sounds at their

leisure, future interactive applications and virtual environments will demand

algorithms for automatic procedural sound synthesis. Realistic physically based

sound methods have appeared for vortex-based fluid sounds [DYN03] and solid

bodies [OCE01, JBP06], but we still do not know how to simulate synchronized

physics-based sounds for familiar splashes and splatters.

What causes fluid sounds? Perhaps surprisingly, the majority of sound from

a splashing droplet of water arises from harmonic vibrations resulting from the

entrainment (creation) of millimeter-scale air bubbles (see Figure 5.1). Basically,

the bubble oscillator stores potential energy as compressed air and surface ten-

sion, and kinetic energy as surrounding fluid vibrations. The important role of

these tiny “acoustic bubbles” in water sound generation has been recognized

for nearly a century since pioneering work by Minnaert [Min33], and large texts

have since been written about them [Lei94]. Recently, van den Doel [vdD05]

proposed bubbles as primitives for fluid sound synthesis, and synthesized com-

pelling sounds using stochastically excited modal sound banks.
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Figure 5.2: Synthesizing the sound of pouring water via the linear su-
perposition of acoustic radiation from 7900 vibrating acoustic
bubbles.

Exploiting multiple timescales: Ironically, the complex visible motion of the

air-fluid interface causes relatively little sound, in part because visible surface

motions are inefficient radiators of sound waves at audible frequencies [Bra20].

Instead, the fluid shape vibrates harmonically at audio frequencies due to the

microscopic oscillations induced by internal air bubbles, and acts like a shape-

changing 3D loudspeaker. For example, consider visible fluid movements oc-
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Sound Radiation
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Surface Vibration

Figure 5.3: Overview: (1) We first simulate an incompressible fluid flow
with bubbles. For each vibrating bubble we (2) estimate the
induced fluid-air surface vibration and (3) resulting air-domain
sound pressure. (4) Finally, the linear superposition of bubble
sound fields are rendered to the listener.

curring at graphics rates: a water splash on a 15cm-sized domain might occur

over a 10−1 second timescale, i.e., a few frames, whereas enormous water sound

speeds (cwater ≈ 1450m/s) allow water sound waves to cross the 15cm domain

in only 10−4 seconds. This thousand-fold difference in animation and sound

wave timescales is why sound waves can propagate through small fluid bod-

ies almost as if they were standing still. Therefore, we choose to model sound

wave propagation and radiation in fluids by assuming they are a sequence of

static problems. Given the harmonic nature of bubbles, we can efficiently model

sound waves in the frequency-domain using the Helmholtz wave equation.

Our approach: We propose the first practical physically based method for syn-

thesizing synchronized harmonic fluid sounds for computer animation (see Fig-

ure 5.2 for a preview). We model the creation of bubbles by air entrainment at

the fluid surface; the advection of these bubbles with the fluid flow; the sur-

face vibrations induced by the bubbles’ vibrations; and the radiation of these

vibrations into the air, producing sound (see Figure 5.3). Our method augments

an existing incompressible fluid flow solver with a particle-based acoustic bub-

ble model that models bubble entrainment, advection, vibration, and radiation.

By avoiding audio-rate time-stepping of 3D compressible fluid sound waves

(which are expensive, and difficult to parallelize), we can extend existing graph-

ics fluid simulators with a pleasantly parallel sound model.
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Figure 5.4: Observed transfer magnitudes |P| illustrate the com-
plex bubble-dependent temporal structure, and significant
hundred-fold variations in magnitude. Frequency colors illus-
trate that transfer magnitude is not just a function of frequency,
but rather has other complex spatial and temporal dependen-
cies. (Data: “water step” example.)

Our main contribution is a parallel algorithm for estimating sound radia-

tion. Spherical bubble vibrations induce harmonic vibrations of the fluid-air

interface, which leads to acoustic radiation1 which we approximate by a time-

varying linear superposition of harmonic bubble contributions. The amplitude

of each bubble oscillation is effectively multiplied by the bubble-to-ear acous-

tic transfer function, which we model in the frequency domain as the bubble-

located Green’s function of the Helmholtz wave equation for the instantaneous

fluid geometry. These transfer functions can exhibit complex hundredfold vari-

ations which we believe are key to capturing the tonal character of harmonic

fluids (see Figure 5.4). Enabling inexpensive Helmholtz Green’s function evalu-

ations is achieved by a novel dual-domain multipole approximation based on a

two-stage fast linear-time boundary-integral solver. In the first stage, we solve a

fluid-domain problem to estimate the normal velocity of the vibrating air-fluid

interface. In the second stage, we estimate a multipole approximation of the air-

1A graphics analogy: a point light source of specific frequency (the acoustic bubble) radiates
light out of a tiny air-filled void (the water) into a highly refractive solid (the air) where it is
observed (by the listener). Interestingly, because of the large difference in the speed of sound in
water (1497m/s) and air (343m/s), the effective index of refraction is η = 4.4!
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domain acoustic radiation for sound rendering. Key benefits are that the trans-

fer functions need only be updated at fluid simulation rates (or slower), and the

only audio rate calculation required is the cheap integration of nonlinear bub-

ble vibrations—thus subsequent sound synthesis can be achieved potentially

in real time. We demonstrate harmonic fluid animations involving thousands

of acoustic bubble sound sources, with parallelized sound computation times

comparable to fluid simulation.

5.2 Background: Incompressible Fluid Solver

Our acoustic bubble simulation is designed to augment existing incompressible

liquid solvers familiar to the graphics community [FM96, Sta99, FF01, EMF02].

In this paper, we employ the Euler equations governing inviscid flow [OF03],

0 =
∂u

∂t
+ u · ∇u +

1
ρ
∇p subject to 0 = ∇ · u, (5.1)

which relate the liquid’s velocity (u), pressure (p) and density (ρ). Our approach

does not depend critically on any particular fluid simulation method. However,

in our implementation we use the FLIP/PIC method [ZB05], since its fluid par-

ticles are convenient markers to track bubble creation. We compute the level set

function, φ(x) (negative in fluid, and positive in air), using the method proposed

in Adams et al. [APKG07], with redistancing performed at each time step using

a fast marching method [OF03]. We update the particle-based bubble simulation

after each fluid time step using a one-way coupling approximation.
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Figure 5.5: Life of an acoustic bubble

5.3 Modeling Acoustic Bubbles

Acoustic bubbles have received significant attention, and we refer the reader to

the text by Leighton [Lei94] for a comprehensive introduction. Unfortunately

their integration into 3D fluid simulators leads to a number of modeling details

which need to be addressed (see Figure 5.5). We now summarize the acoustic

bubble model used to implement Harmonic Fluids.

5.3.1 The Spherical Acoustic Bubble

Bubbles that generate audible sounds are typically quite small (≈ 1 mm), and in

that limit, surface tension forces are strong enough to make the bubble essen-

tially spherical. The spherical air bubble is an excellent oscillator, pulsating af-

ter an initial entrainment-related impulse. The simplest linear vibration model

assumes an ideal, spherically pulsating, mono-frequency bubble, and was pro-

posed originally by Minnaert [Min33]. It models a spring-bob system where

the restoring “spring” force is due to air pressure and surface tension, and iner-

tia is due to the effective mass of the surrounding liquid. Consider a pulsating
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spherical bubble with radius

r(t) = r0 + q(t), (5.2)

where r0 is the static radius (which may change slowly), and q(t) is a small fluc-

tuation (|q|� r0) due to rapid spherical pulsations. An established linear model

of the harmonic pulsations is the simple harmonic oscillator [Lei94]:

q̈ + 2βq̇ + ω2
0q =

Fb

mrad
b

, (5.3)

where ω0 is the bubble’s resonant frequency (in radians/sec); β is the damping

rate; Fb is the external forcing due to liquid pressure fluctuations and entrain-

ment; and mrad
b = 4πr3

0ρ is the bubble’s effective radiative mass. In practice, we

hear the damped natural frequency ωd =

√
ω2

0−β
2; sample values were given in

Figure 5.1. Formulae for ω0 and β=β(ω0, r0) are provided in Appendix B.1.

5.3.2 Exciting Bubble Vibrations

At the moment of bubble entrainment, the fluid-

trapped air is subjected to an additional pressure:

pressure jumps from just air pressure, p0, to one also

involving surface tension, p0 + pσ, where pσ = 2σ
r0

is

the extra surface tension (“Laplace”) pressure [Lei94]. For tiny acoustic bub-

bles, the surface tension pressure jump can be enormous. We model bubble

vibration forcing using an initial pressure-jump impulse, and ignore later forc-

ing. This corresponds to forcing the bubble vibration equation (5.3) with the

right-hand side given by 2σ
r0mrad

b
δ(t) (for t = 0 entrainment), and would yield the

oscillator response,

q(t)=
2σ

r0mrad
b ωd

e−βt sinωdt.
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Figure 5.6: Comparison of bubble excitations: (Left) Three recorded bub-
ble sounds (in blue) illustrating typical bubble excitation re-
sponses and variations; and (Right) the response of our bub-
ble model. Recordings were obtained from individual droplets
falling 0.5m from a faucet (at ≈ 2 droplets/sec) into a water-
filled container (roughly 30cm × 30cm × 15cm).

Since the frequency and damping coefficients of (5.3) are time dependent, in

practice we integrate the vibrations numerically using the mid-point method.

To soften the attack (c.f. [vdDKP01]), we smoothly blend the sound in over a

∆t= C
β

window. We use C = ln(0.85) to blend until the amplitude decays to 0.85 of

its initial amplitude; our blending function is given by (B.4) in Appendix B.1. By

tuning these parameters via comparisons to recordings, our vibration responses

appear plausible (see Figure 5.6).

5.3.3 Particle-based Bubble Advection

Identical to previous works, we model bubbles as buoyant particles advected

in the incompressible flow [GH04, CPPK07]. Each tiny bubble is advected inde-

pendently, ignoring complex bubble-bubble interactions. We model the bubble

motion as a particle of effective mass mb = 4
3πr3

0ρ (of the liquid hole), with applied

pressure, gravity and drag forces,

fp = −KpVb∇pi + mbg (5.4)

fd =
1
2

CdρAb(u − vb)‖u − vb‖ (5.5)
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Figure 5.7: Water drop spectra: (Left) A recording of a single-bubble wa-
ter drop experiment; (Right) the spectra of a single-bubble fluid
sound synthesized from a digital mockup. Each water droplet
fell from a height of ≈0.5 meters into a pool of water. Both spec-
tra exhibit qualitatively similar structures, with clear evidence
of rising pitch.

where µ f is fluid viscosity, u=u(xb) is the fluid velocity at bubble’s location, xb,

the drag coefficient is Cd = 0.2, the bubble surface area is Ab = 4πr2
0, its volume

is Vb = 4
3πr3

0, and Kp = 0.8 in our examples. The drag force model is suitable

for tiny acoustic bubbles which have Reynolds number, Re=2ρ‖u−vb‖r0/µ f�1.

After each fluid time step, we integrate the particle’s motion using the mid-point

method.

5.3.4 Time-dependent Bubble Frequency

The simple acoustic bubble model (5.3) uses a fixed frequency ω0 (and damping

β). However, a perceptually important feature of moving bubbles is that their

frequency can vary significantly over time, with bubble sounds often having

a characteristic rising pitch, e.g., the familiar “bloooop?” of a water drop (see

Figure 5.7). Phenomenologically speaking, as the bubble approaches the fluid

surface, the effective vibrational mass mrad
b of the surrounding fluid decreases

(since there is less of it to move), whereas the stiffness kb (due to surface tension

and air compression) is relatively unchanged, thus producing an increase in
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the resonant frequency, ω2
0 = kb/mrad

b . Models exist for rising bubble pitch as

a function of distance to a planar liquid surface [Str53], but can only provide

about a
√

2 frequency multiplier—in our experiments, we often observed 2–

3 times frequency multipliers likely due to complex local fluid geometry (see

Figure 5.7).

To support nonplanar interface geometry and larger pitch shifts2 we propose

an ad hoc model based on the bubble’s level set values, φ. Our frequency-change

model captures two behaviors: (i) the bubble frequency does not change until it

approaches the surface, and (ii) the faster the bubble travels to the surface, the

faster its pitch changes. At each sound synthesis time step we increment the

natural frequency, ω0, by

∆ω = K∆ ωd e−η
(
φ
φ0
−1

)
∆φ, (5.6)

where ∆φ is the distance change since the last timestep, φ = φ(t) is the (neg-

ative) distance to the fluid surface (from the fluid simulator); φ0 is a distance

parameter controlling how close to the interface the bubble must be to undergo

pitch shift, and η controls the spatial rapidity of change; and K∆ controls the

magnitude of frequency changes. Following ω0 modification, we update de-

pendent parameters (such as ωd and β). In our results, we always use K∆ =72.95

and η = 1.24, but adjust φ0 (between −0.008 and −0.025 meters). Our parame-

ters (K∆ and η) were tuned manually by performing numerous comparisons to

real-world experiments. Qualitatively similar results can be obtained (see Fig-

ure 5.7). Finally, since φ is only evaluated at fluid time-stepping rates, for sound

synthesis we temporally interpolate φ values to audio rates using a cubic spline;

a low-pass filter is also used to remove temporal noise artifacts introduced by

2and to avoid estimating the bubble frequency as an eigenvalue of a fluid-bubble interaction
problem [Oha04]
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the fluid discretization.

5.3.5 Modeling Acoustic Bubble Entrainment

To compute plausible fluid sounds, the entrainment of bubbles by estimated

fluid-air mixing must be done so as to produce bubbles with appropriate distri-

butions of radii (frequencies), amplitudes, and spatial and temporal structure.

Once a bubble is created and an initial impulse applied, it can be simulated

and sonified. Unfortunately, the bubble entrainment process is terribly com-

plex [Lei94] and computationally difficult to resolve spatially and temporally.

Therefore we propose a simplified model of the acoustic bubble creation pro-

cess. Similar to prior work [GH04], we use marker particles to track where bub-

bles should be created, and our spherical acoustic bubbles are driven by one-

way coupling to the fluid simulator. Primary differences in our work (“bubble

seeds,” bubble creation rates, and modeling of radii and spectra) result from

our attempts to make the bubbles sound more plausible. We defer the inter-

ested reader to Appendix B.2 for the details of our acoustic bubble entrainment

model, and now proceed with sound radiation modeling.

5.4 Modeling Fluid Sounds

Sound radiation is modeled as a superposition of individual bubble sounds. For

each harmonic bubble, we first estimate the induced fluid-air interface vibra-

tion, then next estimate the radiated air-domain sound waves that travel to the

listener. Our multiple timescale approximation models these waves in the fre-
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quency domain. We now describe how to estimate the time-harmonic acoustic

pressure field, P(x, t)= P(x)e+iωt, where P(x) is the (slowly time varying) spatial

part satisfying the Helmholtz equation, and ω is the frequency of an acoustic

bubble.

Listening to Helmholtz Green’s functions: Given a bubble of frequency ω

at position xb in the fluid domain Ω f , we use the harmonic Green’s function

P(x;xb) ∈ C of the Helmholtz wave equation on the unbounded region com-

prised of both fluid and air domains, Ω=Ω f
⋃

Ωa:

(∇2 + k2(x)) P(x;xb) = S b δ(x − xb), x∈Ω, (5.7)

where the spatially varying wavenumber is

k(x) =


ω/c f , x∈Ω f

ω/ca, x∈Ωa

(5.8)

and c is the speed of sound (see Table 5.1). The Green’s function is subject to an

homogeneous Neumann boundary condition on the solid interface,

∂nP ≡
∂P
∂n

= 0, x∈Γs (5.9)

which corresponds to a “no vibration” boundary condition of zero surface nor-

mal velocity, vn = n · v(x), since ∂nP ≡ −iωρ vn; and the Sommerfeld radiation

condition at infinity [How98]. The bubble’s source strength S b (for unit vibra-

tion amplitude) is

S b = −4πρω2r2
0 (5.10)

(see derivation in Appendix B.3). We will often refer to P as the bubble-to-ear

acoustic transfer function, or simply “transfer.” With this definition, we could

approximate the sound contribution at the listening position, x ∈ Ωa, due to a
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single bubble via

|P(x;xb)| q(t), x∈Ωa (5.11)

(or more sophisticated auralizations (see §5.6)). Unfortunately, in practice we

desire to solve the Helmholtz PDE (5.7) for every bubble in the scene at each fluid

time step. To make matters worse, since Ω is the unbounded region, efficient

computation and evaluation of this function (for audio rendering) is a practical

concern.

5.5 Dual-domain Multipole Radiation Solver

We now describe a novel Helmholtz boundary integral solver for rapid evalua-

tion of the acoustic pressure P(x;xb) to enable sound synthesis from harmonic

fluids. We use an efficient two-stage approximation to any bubble’s Helmholtz

Green’s function that exploits the common case wherein fluid vibrations are

affected by the surrounding air only weakly. The solver is summarized in Fig-

ure 5.8. Readers wishing to skip this section’s heavier mathematical details can

proceed to §5.6 “Sound Synthesis Pipeline.”

5.5.1 Dual-domain Helmholtz Approximation

Let us now consider how to break the computation of the fluid-air Helmholtz

Green’s function G(x;xb) into two Helmholtz problems with one-way coupling.

Pass #1: First, we compute a fluid-domain Green’s function, P( f ) = P( f )(x;xb),

(∇2 + k2
f ) P( f ) = S bδ(x − xb), x∈Ω f , (5.12)
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Fluid pressure P( f ) problem Air pressure P(a) problem

Figure 5.8: Overview of dual-domain Helmholtz formulation: (Left) Pass
#1 solves the fluid-domain problem to estimate the fluid’s
acoustic pressure P( f ) assuming that fluid on the solid bound-
ary Γs can not vibrate (∂nP( f ) =0), and that fluid at the air inter-
face is free to move (P( f ) = 0). In addition to the singular bub-
ble source at xb, numerous advected regular sources also con-
tribute to P( f ); their expansion coefficients c f are least-squares
estimated to match the boundary conditions. (Right) Pass #2
solves the air-domain problem to estimate the air’s acoustic
pressure P(a) assuming that air on the solid boundary Γs can
not vibrate (∂nP(a) = 0), but that vibrations on the air interface
Γa match the computed fluid vibrations (∂nP(a) = ∂nP( f )). The
air pressure P(a) is described by a larger number of advected
singular multipole sources, whose expansion coefficients ca are
least-squares estimated to match the Neumann boundary con-
ditions.

subject to the homogeneous boundary conditions on the fluid-air boundary, Γa,

and the solid-air boundary, Γs,

P( f ) = 0, x ∈ Γa, (5.13)

∂nP( f ) = 0, x ∈ Γs. (5.14)

Pass #2: Second, given an approximation of the fluid-domain Green’s function

pressure, P( f ), we can evaluate its normal derivative on the fluid-air interface

(which specifies the surface normal velocity, vn), and use that as an input to es-

timate the radiation into the surrounding air. The resulting air-domain Green’s

function, P(a)(x;xb) satisfies the unforced Helmholtz equation in air,

(∇2 + k2
a) P(a)(x;xb) = 0, x∈Ωa, (5.15)
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subject to the Sommerfeld radiation condition at infinity, and

∂nP(a) = ∂nP( f ), x∈Γa, (5.16)

∂nP(a) = 0, x∈Γs, (5.17)

which are derivative (velocity) boundary conditions, with the all important

nonzero values on the vibrating fluid interface, Γa, and just zero values on any

supporting rigid interface, Γs. Finally, our P(a) model is used to evaluate P(x;xb)

in Ωa for sound rendering.

5.5.2 Pass #1: Interior Fluid-domain Solver

We approximate the Helmholtz problems using Trefftz-style equivalent source

methods [KK95, Och95, JBP06]. In each pass, the domain PDE is satisfied using

a series expansion of fundamental solutions to the Helmholtz equation, and

the boundary conditions are approximated in a least-squares sense to estimate

expansion coefficients.

Pressure Expansion: To satisfy (5.12) for the fluid-domain Helmholtz Green’s

function, we introduce the pressure expansion

P( f )(x;xb) = s(x;xb) + U( f )(x) c f , (5.18)

where s is the singular free-space Helmholtz Green’s function,

s(x;xb) = −
e−ik f R

4πR
S b, (R=‖x − xb‖) (5.19)

satisfying the fluid Helmholtz equation

(∇2 + k2
f ) s(x;xb) = S bδ(x − xb), (5.20)
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and the Sommerfeld radiation condition; the second part of (5.18) is a weighted

combination of nf nonsingular functions,

U( f )(x) c f =
[
ψ

( f )
1 ψ

( f )
2 . . . ψ( f )

nf

]
c f (5.21)

where c f ∈C
nf are weights, and U( f ) is a row matrix of functions, ψ( f ), each satis-

fying the fluid Helmholtz equation (without regard for Γ boundary conditions)

(∇2 + k2
f )ψ

( f )
j (x) = 0, x∈Ω f . (5.22)

Since the P( f ) expansion (5.18) satisfies the Green’s function PDE in (5.12), it re-

mains only to select a sufficiently complete basis, U( f ), then find coefficients, c f ,

to satisfy the homogeneous boundary conditions (5.13-5.14). We propose using

the regular spherical Helmholtz solutions [GD05] (other choices are possible),

ψ
( f )
j (x;x( f )

j ) = j`(k f R) Ym
` (θ, φ), (5.23)

where ψ( f )
j is positioned atx( f )

j (we describe point-source selection later in §5.5.4),

R = ‖x−x( f )
j ‖2, Ym

` ∈C are the spherical harmonics, and j`(k f R) are spherical Bessel

functions of the 1st kind, e.g., j0(z)= sin z
z , j1(z)= sin z

z2 −
cos z

z , j2(z)= ( 3
z2−1) sin z

z −
3 cos z

z2 . In

our implementation, we use basis functions up to and including quadrupoles

(`=0, 1, 2), so our n-point multipole expansions have nf =9n unknown complex-

valued coefficients.

Collocated Least-Squares Estimation: Given the homogeneous boundary

conditions on P( f ) (5.13-5.14), we collocate the boundary condition equations

at N boundary points to obtain N equations involving the c f ∈ C
nf unknowns,

then estimate c f using weighted least squares. Collocation points are chosen as

mesh vertices (discussed in §5.5.5), and each sample point, xi, has normal, ni,
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Bubble

5 quadrupoles 10 quadrupoles 20 quadrupoles

Figure 5.9: Estimated surface velocity (vn ∝ ∂nP( f )) computed from the
fluid-domain solver (pass #1). Approximations are shown for
differing numbers of regular quadrupole sources, and degrees
of convergence.

and an effective area, ∆ai. The relevant equations for vertex point i are

U( f )(xi) c f = −s(xi), when xi ∈ Γa (5.24)

∂niU
( f )(xi) c f = −∂ni s(xi), when xi ∈ Γs (5.25)

for i = 1 . . .N. Each equation is weighted by
√

∆ai, to assemble the N-by-nf linear

least-squares problem,

A c f = b ⇔

 Aa

αAs

 c f =

 ba

αbs

 . (5.26)

The relative scaling parameter, α, balances the importance of pressure versus

pressure derivative constraints; in our examples (with approximately unit-sized

computational domains), we use the ratio of interfacial area, α = Areas/Areaa.

After robust construction and least-squares solution of (5.26) for c f ∈ C
nf (dis-

cussed in §5.5.6), we can estimate the harmonic fluid-surface vibrations (see

Figure 5.9).

Discussion: The boundary integral equation associated with the least-squares

problem (5.26) is related to their normal equations, and can be written as[∫
Γa

UHU dΓ + α2
∫

Γs

UH
n Un dΓ

]
c f = −

∫
Γa

UH s dΓ − α2
∫

Γs

UH
n sn dΓ
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Bubble

40 quadrupoles 60 quadrupoles 80 quadrupoles

Figure 5.10: Volume-rendered sound pressure, |P| estimated using the
dual-domain solver. Varying quadrupole source counts for
the air-domain solver help illustrate visual convergence of the
method.

(where U = U( f ), Un = ∂nU( f ), sn = ∂ns). For reasons of solution efficiency

and accuracy, we choose to work with the over-determined least-squares prob-

lem (5.26) instead of forming the normal equations associated with the matrix

boundary integrals.

5.5.3 Pass #2: Exterior Air-domain Solver

The air-domain solver mirrors the fluid domain solver with a couple excep-

tions. Once we have c f , we can evaluate the ∂nP( f ) boundary condition on Γa

(describing the surface velocity; see Figure 5.9), and then solve to get P(a) in the

surrounding air (see Figure 5.10). We approximate the exterior radiation solu-

tion P(a) to (5.15) by a set of singular multipole sources, whose coefficients are

estimated by fitting pressure derivative (normal velocity) data, which is zero

except for fluid surface vibrations, ∂nP( f )|Γa .
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Pressure Expansion: We again introduce a pressure expansion, but now use

fundamental solutions of the air Helmholtz equation:

P(a)(x;xb) = U(a)(x)ca, (5.27)

where U(a) represents na singular multipole basis functions,

U(a)(x)ca =
[
ψ(a)

1 ψ(a)
2 . . . ψ(a)

na

]
ca (5.28)

the ca ∈ C
na are weights, and each basis function ψ(a)

j satisfies the air Helmholtz

equation (and Sommerfeld radiation condition),

(∇2 + k2
a)ψ(a)

j (x) = 0, x ∈ Ωa. (5.29)

Since the P(a) expansion (5.27) satisfies the Green’s function PDE in (5.15), it

only remains to select U(a) then find coefficients, ca, to satisfy the ∂nP boundary

conditions. The appropriate basis functions here are singular multipole solutions

to the free-space air Helmholtz equation (as in [JBP06]),

ψ(a)
j (x;x(a)

j ) = h(2)
` (kaR) Ym

` (θ, φ), (5.30)

where the source is positioned at x(a)
j , R = ‖x−x(a)

j ‖2, and where h(2)
` are spherical

Hankel functions of the 2nd kind; h(2)
` (z) = j`(z)−iy`(z) ∈ C, where j` and y` are real-

valued spherical Bessel functions of the 1st and 2nd kind [AS64]. Again we use

quadrupole-order multipoles at each point, so an n-point multipole expansion

will have na = 9n unknown coefficients.

Collocated Least-Squares Estimation: We estimate the coefficients ca by

matching the boundary conditions (5.16-5.17) using weighted least squares. The

equation for collocation sample i is

∂niU
(a)(xi) ca = −∂ni P

( f )(xi), when xi ∈ Γa (5.31)

∂niU
(a)(xi) ca = 0, when xi ∈ Γs (5.32)
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which we then weight by
√

∆ai to obtain the over-determined N-by-na linear

least-squares problem,

Ã ca = b̃ ⇔

Ãa

Ãs

 ca =

b̃a

0

 . (5.33)

Note that no relative Neumann-vs-Dirichlet scaling parameter (α) is needed

here, since only Neumann ∂nP constraints exist. Finally, we estimate ca ∈ C
na

using the robust least-squares solver (§5.5.6).

5.5.4 Source Position Selection

Multipole placement affects the quality of the basis functions used in the solver.

Traditional equivalent source methods often optimize source placement to in-

crease accuracy [Och95, JBP06], however temporally incoherent source po-

sitions can ruin frame-to-frame coherence and lead to noise in synthesized

sounds. Our numerical experiments indicate that a sufficient number of ran-

domly selected point sources can achieve a plausible sound. To avoid discon-

tinuities, we randomly select fluid particles as point-source locations when the

bubble is created. To ensure both (i) temporally coherent basis functions ((5.23)

and (5.30)) and (ii) source positions (and singularities) that remain inside the

complex splashing fluid, we advect source positions after each fluid time step.

5.5.5 Sampling Fluid Geometry

After each fluid time step, we extract an N-vertex triangle mesh of the fluid

boundary using marching tetrahedra [CP98]; in our examples, mesh resolutions
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match that of the fluid grid. Each mesh vertex is used as fluid boundary sam-

ple at which to impose boundary condition constraints; for vertex i = 1 . . .N

we evaluate and cache the position xi, normal ni, and effective area ∆ai. Sam-

pling fluid geometry can also introduce temporal artifacts in estimated transfer,

but these are addressed by temporal filtering/interpolation during the sound

rendering process.

One computational difficulty arises when bubbles (or ψ(a)) are very close to

the fluid boundary, since this can lead to singularities in (5.19) and (5.30). Note

that singularities are intrinsic to the problem formulation, since bubbles will

always rise to the water surface. In practice we choose to expand the fluid sur-

face slightly to regularize such singularities. In our examples, the boundary

isosurface is expanded by one fluid-voxel width by extrapolating the level-set

isosurface using the fast marching algorithm. While the accuracy is sacrificed

slightly, it is more robust numerically, and we found the sound changes imper-

ceptible. The latter point is perhaps unsurprising since vibrations often decay

significantly by the time bubbles reach the surface.

5.5.6 Temporally Coherent Least-Squares Estimation

The under-determined linear systems (5.26) and (5.33) can be nearly singu-

lar, and must be solved using a robust least-squares solver. However, com-

mon solvers based on the Truncated Singular Value Decomposition (TSVD)

should not be used since they can introduce temporal coherence problems:

small changes in rank between two time-steps can lead to large magnitude dif-

ferences in the solution, c (since the problem is ill-posed). Instead, we use a
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ridge regression technique with a QR solver (see §12.1 of Golub and Van Loan

[GVL96b]). For example, given our N-by-m linear system, Ac = b, the normal

equations solution is c = (AHA)−1Ab but AHA may be near rank deficient. The

ridge-regression solution is obtained as c = (AHA + ε2I)−1Ab for a small ε > 0.

Unfortunately explicitly forming AHA can lead to a loss of accuracy (c.f. §5.5.2

Discussion). We instead compute c by solving the related (N + m)-by-m least-

squares problem, AεI

 c =

b0
 , (5.34)

using LAPACK’s double-precision QR-based least-squares solver (zgels). The

resulting c values (and thus the acoustic transfer pressure values) are more

temporally coherent, provided that the same ε value is used; we always use

ε = 10−8‖A‖F .

Linear-time Cost: Since the least-squares solver has complexity O(m2N), the

total dual-domain multipole solver cost is O(n2
f N + n2

aN), which is linear in the

number of boundary samples, N. In our examples, n f < na � N, and the dual-

domain solves required only 1–4 sec/bubble.

5.5.7 Optimizations and Extensions

Parallelization: Evaluating independent bubble sound sources is a pleasantly

parallel computation. In our fluid preprocess, we implemented the dual-

domain multipole radiation solver as a service running on an 80-core Xeon clus-

ter. After each fluid time step, the fluid geometry is updated, the cluster com-

putes every active bubble’s transfer function coefficients, ca, using the radiation

solver. Since the simulation of fluids and bubbles are not dependent on radia-
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tion calculations, the fluid simulator can advance to the next time step while the

acoustic transfer is evaluated.

Adaptive Transfer Evaluation: Evaluating transfer coefficients for each bub-

ble at every time step can be a bottleneck when thousands of bubbles exist.

Some simple observations can reduce these bottlenecks without compromising

accuracy:

1. Avoid transfer computations for inaudible bubbles: Our entrainment-forced

acoustic bubble exhibits exponentially decaying vibrations which quickly

become inaudible especially in the presence of other bubble entrainment

events. In practice, we stop the radiation solve for a bubble after its am-

plitude decays to 1/1000 of its initial amplitude, e.g., after approximately

T =− ln 0.001/β.

2. Temporally adaptive transfer evaluation avoids computing transfer for bub-

bles at every timestep. When a bubble’s amplitude decays (roughly as

e−βt), we also decrease transfer sampling rates. In our implementation, we

use a frequency-dependent sampling rate which roughly gives the sample

step size as ∆tsample = ∆t f luid eβt, where ∆t f luid is the average fluid time-step

size. See Figure 5.11.

Triple-Domain Problem: We have considered a dual-

domain fluid-air problem where solid objects are ab-

stracted as a thin mathematical interface, Γs. However,

the sound radiation model could also include nontrivial solid objects, e.g., for

splashing objects (see “Splash” example) or a container of finite thickness. In

such cases, the interior fluid-domain solve is identical except for the modified
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Figure 5.11: Adaptive transfer evaluation for three bubbles of different
frequency. Bubble lifetimes reflect whether they reached
the surface, or became inaudible. We extract a conserva-
tive 3× speedup; however, coarser samplings result in greater
speedups.

fluid-solid boundary Γs. The exterior air-domain problem must be modified to

use the larger air-(fluid/solid) interface, and rigid-object scattering can be mod-

eled by adding fixed singular sources ψ(a)
j in the solid region.

5.6 Sound Synthesis Pipeline

We use a two-pass implementation with (i) a fluid and transfer preprocess fol-

lowed by (ii) a sound synthesis phase.

Fluid Preprocess: Algorithm 4 summarizes the main Harmonic Fluids prepro-

cess. After each fluid timestep (line 4), we advect existing bubbles,B (line 5) and

any multipole-solver source points P for ψ( f ) and ψ(a) (line 6). In line 7 we cre-

ate new bubbles (updating marker positions, bubble seeds, etc., as described in
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Algorithm 4: FluidPreprocess()
begin

while simulating do
t ← t + ∆t;
timestep fluid ();
advect bubbles (B);
advect source points (P);
CreateBubbles (B,M, S, t); // (see Appendix B.2)
create new source points (P);
record bubble φ values (B);
if bubbles exist then

mesh← mesh fluid boundary ();
(x,n, a)← pointsNormalsAreas (mesh);
for bub ∈ bubblesNeedingTransfer(B) do

eval transfer (bub, Pbub, (x,n, a));
end

end
end

end

Appendix B.2), then (line 8) randomly sample new multipole source points for

any new bubbles. Level set values φ are recorded (line 9) to model frequency

variations (§5.3.4) during sound synthesis.

Parallel transfer computations are then initiated, but only when jobs from

the last timestep have completed (line 10). We first mesh the fluid’s slightly

expanded boundary using marching tetrahedra (§5.5.5), then extract the vec-

tor of mesh vertex positions, normals and effective areas, (x,n, a). After ini-

tializing the remote-procedure-call (RPC) service (line 13), we launch transfer

computation jobs on the remote compute nodes using RPC, and send (line 15)

each bubble’s parameters (ωd, ξ, . . .), multipole-solver source points (Pbub), and

surface samples (x,n, a). Each bubble’s transfer job invokes the dual-domain

multipole solver (§5.5), first solving for c f using (5.26), then solving for ca us-

ing (5.33); however, only the small vector ca of multipole expansion coefficients
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Parameter Value Description
g 9.8 m/s2 gravitational acceleration
ρ 1000 kg/m3 water density
p0 101.325 kPa atmospheric pressure
γ 1.4 specific heat ratio of air
σ 0.0726 N/m surface tension coefficient of water
Dg 2.122e-5 m2/s thermal diffusivity of gas
c f 1497 m/s sound speed in water
ca 343 m/s sound speed in air
µ f 8.9e-4 Pa · s shear viscosity of water
Gth 1.60 ×106 s/m thermal damping constant

Table 5.1: Physical constants used in our simulations

are recorded. Adaptive transfer computation (§5.5.7) allows processing only a

subset of bubbles (line 14). Finally, once all bubbles have been scheduled for

parallel computation, we proceed with the next fluid time step. In our imple-

mentation, bubble vibrations and frequency shift (§5.3.4) are not evaluated in

the fluid/transfer preprocess.

Sound Synthesis: The sound synthesis stage is much simpler and faster than

the fluid preprocess. First, serialized time-series data from the fluid preprocess

is loaded, which includes each bubble’s trajectory, sampled level-set φ values,

and multipole expansion coefficients ca, etc. Given the ear trajectory, the bubble-

to-ear transfer functions can be quickly evaluated (in parallel) at the listening

position for times when ca are available. At each audio-rate time step (of size

δt = 1/44100 seconds), the active set of created/deleted bubbles is updated us-

ing loaded data, bubble vibrations are time-stepped (including frequency shifts

(§5.3.4)), and the ear position determined. Each bubble’s sound contribution

is accumulated, which involves interpolating/filtering its bubble-to-ear trans-

fer function (to the current time), multiplying by its complex-valued oscillator

value q̃(t) (such that q is the real part of q̃), and applying any head-related trans-
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fer function (HRTF) [Vor07]. In our implementation, amplitude filters are used

to smoothly blend bubble sound contributions in and out of the sound track

since small artifacts can contribute to noise artifacts, especially when thousands

of bubbles are present. We synthesize stereo sounds, and use an HRTF model

[BD98] (instead of the using the transfer modulus as in (5.11)) to exploit the

bubble-to-ear transfer function phase for stereo sound:

sound(t) =
∑
b∈B

HRTF(P(t)
b q̃(t)

b ; x(t)
b −x

(t)
ear, ω

(t)
b ) (5.35)

where the bubble position and frequency parameterize the HRTF.

5.7 Results

We describe results for four different water sounds: (i) falling water drops, (ii)

water pouring from a faucet, (iii) water splashing from a falling rigid object, and

(iv) a babbling water step. Please see our accompanying video for all animation

and sound results. Statistics are in Table 5.2, timings in Table 5.3, and constants

in Table 5.1.

Parallel Implementation: For all our examples, fluid and bubble simulations

run on a 16-core 2.4 GHz Xeon node using C++ code. The sound radiation

code is compiled into an independent RPC service, and is run on eight 8-core

2.66 GHz Xeon and one 16-core 2.4 GHz Xeon Linux machine. These two parts

run in a parallel producer-consumer mode. The fluid simulation generates bub-

bles and samples surface boundaries as it advances, and launches parallel dual-

domain radiation solves using RPC. In our examples, parallel radiation solves

complete in less time than each fluid time step, so that parallel sound synthesis

adds no additional wall-clock time to fluid simulation. As shown in Table 5.3,

108



Ex
am

pl
e

Fl
ui

d
&

Bu
bb

le
Si

m
ul

at
io

n
D

ua
l-

do
m

ai
n

R
ad

ia
ti

on
So

lv
e

ti
m

e
Sc

al
e

(c
m

)
Vo

xe
ls

#
of

Fl
ui

d
#

of
#

of
Fr

eq
ue

nc
y

m
in

–m
ax

#s
ou

rc
es

<
Fi

tE
rr

or
>

m
ax

kL
Pa

rt
ic

le
s

Bu
bb

le
s

So
lv

es
ra

ng
e

(H
z)

Fl
ui

d
A

ir
Fl

ui
d

/
A

ir
Fl

ui
d

/
A

ir
D

ro
pl

et
6.

4s
14
×

18
×

14
70
×

90
×

70
19

65
88

6
14

22
80

50
0–

4K
30

–6
0

80
–1

20
0.

06
/

0.
18

0.
5

/
2.

1
Sp

la
sh

1.
5s

45
×

50
×

45
90
×

10
0×

90
37

17
12

0
12

7
25

47
2

30
0–

6K
30

–6
0

80
–1

20
0.

08
/

0.
24

1.
9

/
8.

4
Po

ur
in

g
5.

0s
25
×

40
×

25
50
×

80
×

50
66

86
40

78
96

36
34

57
30

0–
6K

30
–6

0
50

–8
0

0.
10

/
0.

32
1.

2
/

5.
3

W
at

er
St

ep
8.

6s
12

0×
36
×

72
10

0×
30
×

60
39

33
76

26
65

7
61

68
46

30
0–

5K
25

–6
0

40
–8

0
0.

08
/

0.
22

2.
0

/
8.

7

Ta
bl

e
5.

2:
Ex

am
pl

e
St

at
is

ti
cs

in
cl

ud
in

g
te

m
po

ra
l

du
ra

ti
on

,
gr

id
di

m
en

-
si

on
s,

vo
xe

lr
es

ol
ut

io
ns

,t
he

nu
m

be
r

of
FL

IP
flu

id
pa

rt
ic

le
s

an
d

bu
bb

le
s.

Ir
on

ic
al

ly
“W

at
er

St
ep

”
ha

s
th

e
fe

w
es

t
flu

id
pa

rt
ic

le
s

bu
t

th
e

lo
ng

es
t

flu
id

si
m

ul
at

io
n

ti
m

e
(s

ee
Ta

bl
e

5.
3)

;
no

te
th

at
pa

rt
ic

le
s

ar
e

“r
ec

yc
le

d”
at

th
e

in
le

tw
he

n
th

ey
ex

it
th

e
co

m
pu

ta
-

ti
on

al
ce

ll.
“P

ou
ri

ng
”

an
d

“W
at

er
St

ep
”

ha
ve

th
e

m
os

t
bu

bb
le

s
an

d
tr

an
sf

er
so

lv
es

.
Fr

eq
ue

nc
ie

s
ra

ng
e

fr
om

ab
ou

t
30

0
H

z
to

60
00

H
z.

Th
e

hi
gh

es
t

fr
eq

ue
nc

y
ra

di
at

io
n

pr
ob

le
m

s
ar

e
ha

rd
er

to
ap

pr
ox

im
at

e,
si

nc
e

fo
r

th
e

sa
m

e
do

m
ai

n
le

ng
th

sc
al

e,
L,

th
ey

sp
an

m
or

e
w

av
el

en
gt

hs
pe

r
do

m
ai

n,
i.e

.,
ha

ve
hi

gh
er

kL
va

l-
ue

s.
W

e
us

e
ro

ug
hl

y
tw

ic
e

as
m

an
y

qu
ad

ru
po

le
so

ur
ce

s
fo

r
th

e
hi

gh
es

t
fr

eq
ue

nc
y

th
an

th
e

lo
w

es
t

(a
nd

lin
ea

rl
y

in
te

rp
ol

at
e

th
e

re
st

).
Si

m
ila

rl
y,

th
e

ai
r-

do
m

ai
n

pr
ob

le
m

’s
sm

al
le

r
w

av
el

en
gt

hs
m

ak
e

it
ha

rd
er

to
ap

pr
ox

im
at

e
th

an
th

e
flu

id
-d

om
ai

n
pr

ob
le

m
,

i.e
.,

k a
L
≈

4.
4k

fL
,

an
d

th
er

ef
or

e
w

e
us

e
m

or
e

so
ur

ce
s

fo
r

th
e

ai
r

do
m

ai
n

th
an

th
e

flu
id

do
m

ai
n.

N
ev

er
th

el
es

s,
fit

ti
ng

er
ro

rs
fo

r
th

e
le

as
t-

sq
ua

re
s

pr
ob

le
m

(a
ve

ra
ge

re
la

ti
ve

re
si

du
al

er
ro

r,
‖A

c
−
b
‖ 2
/‖
b
‖ 2

)
w

er
e

al
w

ay
s

la
rg

er
in

th
e

ai
r

do
m

ai
n.

M
ax

i-
m

um
kL

va
lu

es
qu

an
ti

fy
th

e
di

ffi
cu

lt
y

of
th

e
hi

gh
es

t-
fr

eq
ue

nc
y

H
el

m
ho

lt
z

ap
pr

ox
im

at
io

n
pr

ob
le

m
s.

109



Example Computation Time (in hours)
Fluid φ Update Radiation Synthesis

Droplet 0.53 (32%) 1.08 (65%) 0.05 (3%) 0.004 (0.2%)
Splash 0.91 (26%) 2.38 (68%) 0.12 (6%) 0.009 (0.3%)
Pouring 2.57 (29%) 4.34 (49%) 1.86 (21%) 0.044 (0.5%)
Water Step 2.85 (21%) 6.38 (47%) 4.21 (31%) 0.054 (0.4%)

Table 5.3: Performance Timings: The parallelized fluid solver (Fluid) and
non-parallelized level-set update (φ Update) are always the bot-
tleneck in our implementation. Parallelized dual-domain radi-
ation solves (Radiation) are less expensive. Sound synthesis is
relatively trivial, and (Synthesis) timings consist primarily of
nonoptimized gigabyte file I/O. Overall, transient few-bubble
sounds (“Droplet” and “Splash”) are significantly less expensive
than continuous many-bubble sounds (“Pouring” and “Water
Step”).

Drop Splash |vn|
2 Sound pressure

Figure 5.12: Falling water droplet splashing and entraining bubbles. The
estimated surface normal velocity (|vn|

2) is shown at the time
of impact. Resulting pressure waves are volume rendered for
illustrative purposes only.

even for simulations with tens of thousands of bubbles, the bottleneck is our

fluid simulation.

EXAMPLE (Falling Water Drops): We simulated three large droplets falling

from a faucet into a small tank of water (see Figure 5.12). As in all our examples,

transfer is computed for an isolated fluid source; here we ignore surrounding

faucet and floor geometry. Since only 14 bubbles were generated, computing

costs are dominated by fluid simulation (see Table 5.3). For convenience, we
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Figure 5.13: Dual-domain approximation results for (Left) a single bubble
inside a fluid volume deformed after droplet impact: (Mid-
dle) fluid-domain and (Right) air-domain convergence rates
(with error bars for 95% confidence interval) for randomly
distributed quadrupole sources, but fixed geometry and xb.
Both curves indicate quick decay to a nominal accuracy suit-
able for plausible sound rendering.

also provide a “wet” sound using a simple reverberation filter. Recordings of

individual bubble sounds were used to originally tune our bubble entrainment

model’s parameters. See Figure 5.7 for qualitatively similar spectrograms of

a recorded droplet sound and our digital mockup. A convergence analysis is

provided in Figure 5.13 for the fluid-domain and air-domain solvers.

EXAMPLE (Pouring Water): This example (see Figure 5.2) is geometrically

similar to “water drops,” but generated 7896 bubbles (564×more) and required

363,457 transfer solves. Characteristic bubble “chirps” can be heard here and in

“water drops.”

EXAMPLE (Splashing Water): We simulated a small rigid sphere splashing

into a water tank (see Figure 5.14) using a technique similar to [CMT04]. This

example is an instance of the “Triple-Domain Problem” (§5.5.7), and we place

a quadrupole sound source inside the rigid sphere in the air-domain radiation

solver. The radiation computation was relatively cheap for this short transient
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Figure 5.14: Splash example

Figure 5.15: Water “babbles” as it flows over a small step

sound.

EXAMPLE (Babbling Water Step): Our most computationally intensive ex-

ample is water flowing over an horizontal surface with a small downward step

(see Figure 5.15). The example produces characteristic babbling and chirping

sounds.

Fixed sources: Unlike other examples where multipole sources are advected,

in this example we fix sources within the water domain to avoid them enter-

ing/leaving the domain. Bubbles that reach the interface (or otherwise exit)

have their transfer function value frozen at the last computed value.

COMPARISON (constant vs. changing bubble frequency): We synthesized

pouring and “water step” sounds with and without bubble frequency changes
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(§5.3.4) to demonstrate their subtle but perceptually important effect. Transfer

functions were unchanged. The constant-frequency sounds tend to sound more

like computer-generated noise, whereas the nonconstant-frequency sounds

have richer variations and exhibit more chirping and babbling sounds.

COMPARISON (to real-world splashing): To compare against an actual

splashing sound with constant visual stimulus, we replaced the sound track

with recordings of real-world splash mock-ups. We provide a single compari-

son, with mono-phonic sound. Although the sounds are qualitatively similar,

the real sound has more complex tonal variations during the latter splashing

phase.

COMPARISON (different radiation solver errors): A strength of our radia-

tion solver is that it can exploit the relatively low boundary-condition accuracy

(recall Figure 5.13) needed to produce plausible fluid sounds in the listener’s

far-field location. To evaluate the impact of larger radiation solver errors, the

video compares “water step” animations with different boundary-condition er-

rors in the fluid/air domain radiation solvers (18%/40%, 12%/35%, 8%/22%).

Although the sounds are qualitatively similar, the low-accuracy radiation coeffi-

cients tend to exhibit greater temporal variations (likely due to the ill-posedness

of the least-squares approximation) resulting in greater noise in the synthesized

sound. Some listeners also perceived localization errors in low-frequency bub-

bles, possibly due to left/right-ear transfer errors in phase and/or amplitude.

We recommend using higher-accuracy approximations when possible to mini-

mize artifacts.
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5.8 Limitations and Future Work

Physics-based fluid sound synthesis is a new area, and significant challenges

remain. Our proposed model enables sound rendering for harmonic fluid phe-

nomena, however its physical simplifications and limitations provide many av-

enues for future work.

The mono-frequency acoustic bubble provides a good starting point for

modeling sound radiation, but is rather simplistic. It neglects higher-order lin-

ear vibration modes, which is often justified by the fact that higher-order linear

modes radiate less well than monopoles. However more complex nonlinear vi-

bration modes also exist, and can contribute to far-field radiation [Lei94]. Both

linear and nonlinear bubble vibrations can also lead to significant inter-bubble

coupling effects; dense bubble concentrations, such as in foam or plumes, pose

particular nonlinear challenges, especially for radiation modeling [Dea97]. Very

large bubbles can be important, and demand special attention given the com-

plexities of nonlinear vibrations and acoustic radiation. Bubbles approaching

the interface can lead to singularities in our boundary integral solver, and a

better model of nonspherical acoustic bubbles at the interface is needed. Bub-

ble popping and merging are missing interfacial phenomena, as are boiling and

fizzing.

Bubble forcing could be improved. We only considered an initial

entrainment-related pressure impulse, but later pressure forces can be impor-

tant, especially for larger bubbles [Lei94], e.g., consider large bubbles rising

from a scuba diver. Unfortunately audio-rate pressure forcing can be expensive

to evaluate accurately.
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Our bubble entrainment model is stochastic, but actual entrainment statistics

are more complex [Lei94]. Our model also lacks dependence on pressure, which

can be important for impact and splashing, especially at high velocities [Fra59].

Future models should reduce parameter tuning needed to achieve realistic bub-

ble distributions and spectra.

Our dual-domain multipole solver can be a good approximation for compact

sound sources (with modest kL values), however it is less well-suited to larger

sources, such as a swimming pool. Similarly, we have not considered underwa-

ter listeners, which could avoid air-domain solves but would be complicated by

large fluid domains. We have modeled harmonic fluid sound sources, but it still

remains to integrate these sound models into larger acoustic environments. In-

cluding scattering effects of surrounding geometry, especially for larger sound

sources, remains a challenge. Low-error approximations may necessitate more

sophisticated frequency-domain solvers [GD05]. However, reviewers pointed

out that analytical solutions for simplified planar fluid-interface geometry may

suffice for some applications.

Splashing sounds produced by an impacting elastic object can also include

significant elastic object sound contributions [Fra59]. In general, fluid-solid-air

coupling methods are needed to capture the effects of vibrating solid objects,

e.g., when pouring water into a plastic cup or metal sink.

Opportunities exist for accelerating sound synthesis, and real-time Har-

monic Fluid sound sources appears feasible. The frequency-domain radiation

preprocess is pleasantly parallel, but numerous bubble sound sources may be-

come a bottleneck. Opportunities clearly exist for perceptually based sound

rendering by using degraded sound quality and exploiting perceptual mask-
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ing, etc. Time-domain solvers for the wave equation may also be a viable meth-

ods for integrating the contributions of many bubbles. Finally, physically based

sound rendering might be combined with data-driven and stochastic methods

to exploit complementary advantages for more complex and noise-like phenom-

ena, e.g., Niagara Falls.
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CHAPTER 6

RELATED WORK

In computer graphics, there have been previous work on physics-based sound

synthesis for a few simple sound phenomena. On the other hand, much of pre-

vious research on animating detailed motions—from rigid and deformable sim-

ulation to fluid and bubble simulation—has been addressed. These techniques

provide useful physical information about the dynamics for sound synthesis.

This chapter first summarizes the previous work on physics-based sound ren-

dering followed by an outline of the previous work on related physically based

simulation methods.

6.1 Solid Object Sound

Rigid Modal Sound: Sound synthesis from physically based animations has

a long history in graphics [TH92, Gav93]. And linear modal vibration has been

used in animation [PW89] and in physically informed sonic modeling of com-

plex multi-impact, percussive, and stochastic sound sources [Coo97]. Modal

sound synthesis methods generate plausible rigid body contact sounds effi-

ciently, and were popularized by van den Doel and Pai [vdDP96] who proposed

using analytical models of linear modal vibration to produce point-contact

sounds in interactive virtual environments. Modal sound models can be con-

veniently estimated from recorded sounds and measurements [vdDKP01], or

estimated using numerical techniques for linear modal analysis [Sha91, OSG02].

For animation, simply running dynamics simulations at graphics rates can

greatly limit the range of sounds achievable. Van den Doel et al. [vdDKP01]

realized the perceptual importance of resolving micro-collision forces sampled
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at (near) audio rates, and explicitly distinguished them from the so-called “dy-

namics force” sampled at graphics rate, but the range of resolvable contact phe-

nomena was limited by a point like contact model. O’Brien et al. [OSG02] used

tetrahedral finite element simulations to synthesize modal sounds for rigid bod-

ies excited by contact forces from graphics simulations; however the rigid model

cannot capture deformable contact events.

Numerous simplified (modal) sound models have been proposed for rigid

body contact. Hahn et al. [HFGL98] introduced timbre trees to model pa-

rameterized sound models. Other developments in modal contact sound

synthesis include speed-accuracy trade-offs for sound in interactive applica-

tions [DKP04, RL06, BDT+08, RYL10], and acoustic transfer models to improve

realism of spatialized sounds [JBP06], in which acoustic transfer functions are

precomputed and efficiently represented using multi-point multipole expan-

sion [Och95]. Chadwick et al. [CAJ09] considered subspace integration tech-

niques to resolve nonlinear mode-coupling effects in thin shells, but treated ob-

jects as rigid for collision processing.

Contact-dependent damping for sound synthesis is not well addressed.

Previous works often used a static parametric model for vibration damp-

ing [OSG02], and so does our work in [ZJ10], or apply some additional ad hoc

damping when objects are in contact (e.g., with the ground in [CAJ09]). Our

work in [ZJ10] also introduced additional contact damping for objects at rest to

mask noise introduced by the iterative contact solver. Our work [ZJ11], in con-

trast, resolves frictional contact, and proposes a viscous model to approximate

spatially and temporally dependent contact damping.
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Non-Modal Sound: Non-modal sound synthesis for computer animation was

explored in [OCE01] using an explicitly time-stepped large-deformation finite

element model to simulate the surface response of an object due to external

forces, potentially being able to resolve more detailed contact events. However,

explicitly time-stepped detailed models at audio rates is expensive, and the stiff

materials (e.g., steel) can result in onerous timestep restrictions. In contrast, in

our work [ZJ11] we resolve small modal deformations in multibody contact,

but only simulate a subset of vibration modes by using an efficient adaptive,

asynchronous contact algorithm.

Fracture Sound: To the best of our knowledge, no prior work has addressed

physically based sound synthesis directly from 3D brittle fracture animations.

Most fracture sounds in games or computer-animated movies used data-driven

approaches based on pre-recorded fracture sound effects (e.g., see [PO09]),

with fracture events being natural candidates for event-based sound render-

ing [TH92]. Unfortunately, such approaches have the usual limitations of lack-

ing synchronization, physical correctness, variability and/or requiring large

sound file databases. To improve the effectiveness of recorded sounds, Picard et

al. [PTF09] recorded, analyzed, and resynthesized impact and breaking sounds

using granular synthesis techniques. Plausible contact sound clips were gener-

ated for a rigid-body simulator, however no visual or acoustic simulations of

3D fracture processes were considered. The physical characteristics of breaking

sounds are discussed briefly by Rath and Fontana [RF03]. In early psychophys-

ical experiments, Warren and Verbrugge [WV84] explored bouncing and break-

ing sounds of a glass bottle, and the ability of listeners to correctly identify be-

tween the two stimuli. The also manually synthesized plausible sound clips by

identifying and editing impact/fracture sound events. Fracture sound record-
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ings can exploit the inability of listeners to tell which fracture sound came from

which fracture event, but lack variability and synchronization for more complex

scenarios.

6.2 Fluid Sound

Fluid sounds can arise via numerous mechanisms [Bla86] including har-

monic bubble-based fluid sounds [Lei94], vortex based sounds (e.g.,

whistling) [How02], shock waves (e.g., from explosions), and through fluid-

solid coupling with vibrating solids [How98]. Perhaps the least familiar but

most common, harmonic bubble-based fluid sounds come with almost all kinds

of fluid movement: splashing or pouring water [Fra59], rain drops [LH90], bab-

bling brooks [Min33], etc. Bubbles have received enormous attention due to

vibration-based sound radiation and other exotic behaviors, such as cavitation

(which can pit propellors) and even their ability to give off light via sonolumi-

nescence! Bubble-related sounds have been studied for about a century, and

people understand, albeit not entirely, the basic mechanisms for sound emis-

sion. It was realized nearly a century ago that it is hard for water to make

any sound by itself [Bra20], and Minnaert [Min33] described the important role

of harmonic acoustic bubbles. Continued work has revealed that most of the

sound arises not from the initial impact of fluid but from small bubbles en-

trained from the resulting surface cavity [PCB89, LH90, OP90]. The acoustics

community has studied acoustic bubbles extensively because of their wide im-

portance, e.g., in computational ocean acoustics [Jen94], in estimating rainfall

rates for climate models [Uri75], and understanding sounds from complex bub-

ble plumes in breaking waves and surf [Dea97]. However, we still lack practical
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algorithms for synthesizing harmonic fluid sounds.

6.3 Sound Auralization

Realistic sound rendering in computer graphics has addressed auralization of

sound sources in virtual environments [Beg94, KDS93, Vor07] especially for

interactive virtual environment acoustics [FMC99, TFNC01, TGD04, RSM+10],

however, less work has addressed the physically based modeling of realistic

sound sources.

6.4 Related Simulation Methods

Rigid and Deformable Simulation: Resolving frictional contact with rigid

bodies has long been recognized as a challenging problem in graphics and en-

gineering, in part due to the inherent difficulty of contact discontinuities, non-

linear Coulomb friction, and solution non-uniqueness [Bro99, Ste00]. For flex-

ible multibody simulations, e.g., where modal vibrations are included, addi-

tional difficulties arise, especially for high-frequency vibrations [WN03]. Early

methods for visual simulation of rigid and deformable objects explored penalty-

based methods [Hah88, MW88]. While penalty contact methods can generate

low-noise contact impulses for rigid body dynamics ( [JBP06]), these methods

can suffer from stability issues that necessitate extremely small timesteps, and

challenges exist for practical modeling of frictional contact and modal chat-

tering. More accurate models of rigid body contact resolution have tradition-

ally motivated Linear Complementarity Programming (LCP) formulations. Un-

fortunately solving LCP contact problems can be hard computationally, and
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for certain problems solutions may not exist or be unique when friction is

considered [L8̈2]. Developments in graphics tackled rigid body contact us-

ing acceleration-level LCP formulations [Bar90, Bar91], however solution exis-

tence could not always be guaranteed [Bar93]. Velocity-level LCP formulations

were later proposed which can always find a solution [ST96, AP97]. More re-

cently the iterative velocity-level LCP methods have seen greater use in practice

due to increased performance in exchange for degraded accuracy and stabil-

ity [GBF03, Erl07]. Alternate quadratic program (QP) formulations of the LCP

are also possible [Mor66] (but are often non-convex and not easy to solve), and

have been exploited by some works in graphics [MS01, KSJP08]. Unfortunately,

rigid body and flexible multibody contact methods devised for computer graph-

ics and engineering were never designed for physically based sound synthesis

in mind, and their straightforward application leads to problems with noise, ac-

curacy, and efficiency (discussed further in §4.2). While low-noise contact sim-

ulation has been demonstrated in certain scenarios, e.g., for continuous single-

point contact simulation involving smooth surfaces [vdDKP01, KP03], we ad-

dress the need for sound-aware contact resolution methods for practical sound

synthesis involving rigid and flexible multibody systems. Our method lever-

ages prior work on the Staggered Projections (SP) method [KSJP08]; however,

simply running SP at audio rates—despite being prohibitively expensive—is

unsatisfactory for sound synthesis since the method suffers from accuracy is-

sues which introduce noise in the final sound.

Asynchronous and Adaptive Simulation: Only a few methods for simulating

rigid and/or deformable objects provide temporal adaptivity or asynchronous

integration. Mirtich [Mir00] introduced Jefferson’s timewarp algorithm [Jef85]

into graphics, and enabled asynchronous rigid body simulation whose timestep
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size is adapted based on accuracy requirements. In comparison, our method

can asynchronously evolve both rigid and deformable objects, and can adap-

tively switch between rigid and deformable simulations. Mode-culling tech-

niques avoid synthesizing sounds for inaudible modes, but are different from

adaptive modal contact resolution. Kim and James [KJ09] adapt the modes of

a nonlinear subspace deformation model but do not consider contact. For non-

modal deformable simulation, hierarchical multi-resolution methods accelerate

simulations using spatial [GKS02, CGC+02] and temporal adaptation [DDCB01],

whereas we exploit the transient nature of high-frequency modes to provide

temporal adaptivity. Harmon et al. [HVS+09] consider the more complex case

of asynchronous contact mechanics wherein numerous deformable elements are

integrated asynchronously with timesteps dependent on element type, proxim-

ity, and contact attributes. In contrast, in our work [ZJ11], we only consider

body-level asynchrony wherein each deformable model is synchronized with

its contact group, and the timestep size is determined by its highest frequency

mode.

Fracture Simulation: The visual simulation of fracture has a long history in

computer animation [TF88, NTB+91]. O’Brien and Hodgins [OH99] animated

brittle fracture, avoiding mesh aliasing artifacts with tetrahedral remeshing of

crack propagation through an explicitly integrated finite element model. To

avoid time-step restrictions associated with fast acoustic waves in stiff brittle

materials, Smith et al.[SWB00] proposed a constraint-based fracture approach,

but lacked sub-element fracture. To address remeshing challenges and time-

step restrictions due to sliver elements, the virtual node algorithm [MBF04] and

meshless methods have been proposed [PKA+05]. None of these approaches

address brittle fracture sounds, however most of these time-domain methods
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could, in principle, be modified to apply contact and fracture impulses to our

rigid-body sound models.

Fluid Simulation: On the other hand, the computer graphics community has

developed a sophisticated array of computational methods for simulating fluids

in computer animation [FM96, Sta99, EMF02, OF03]. Because of their visual im-

portance, numerous methods for animating bubbles and foam have appeared

[FM96, GH04, SSK05, ZYP06, CPPK07, TSSMM07, KLL+07, KC07, HLYK08].

However, no methods have addressed fluid sound generation.
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CHAPTER 7

FAST SELF-COLLISION DETECTION

In this chapter, we switch gear from sound synthesis and present a fast self-

collision detection method. We consider the problem of accelerating self-

collision tests for arbitrarily deforming triangle meshes. This method can im-

prove the performance of general deformable simulations, such as cloth, thin

shell, and elastic volumes, where self-collision detection can be computation-

ally expensive, and lead to a performance bottleneck. Self-collisions often pro-

duce force impulses and generate sounds. Therefore, fast self-collision detection

can also significantly improve the performance of physics-based sound render-

ing. This is because high-performance self-collision tests can largely improve

the simulations which must run at small time-steps to resolve audible collision

events.

7.1 Introduction

Self-collision detection (SCD) methods are widely used in computer graphics

and engineering to enable realistic simulation of self contact for highly de-

formable objects. Various methods have been devised to accelerate the nu-

merous triangle-triangle overlap tests, however few methods exist that can en-

tirely avoid SCD tests over large mesh regions. Recently Subspace Self-Collision

Culling (SSCC) was proposed [BJ10], wherein precomputed certificates are used

to cull SCD tests for large mesh regions within bounding volume (BV) nodes–

sometimes even the entire model. Unfortunately, the use of SSCC is restricted to

a very special class of low-dimensional subspace deformations, such as modal
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Figure 7.1: A squishy ball with 820 tentacles and over 1 million triangles,
squishes and bounces on the ground, inducing numerous small
interpenetrations. Our Energy-based Self-Collision Culling
(ESCC) method accelerates self-collision detection (SCD) for
arbitrarily deforming triangle meshes, such as this mesh ani-
mated using Oriented Particles [Müller and Chentanez 2011].
We observe an 11.5× speedup over an optimized AABB-Tree
SCD implementation on this challenging example.

deformations, which prevents its use with the majority of deformable models in

use.

In the paper [ZJ12], we propose Energy-based Self-Collision Culling (ESCC),

a generalization of certificate-based self-collision culling to arbitrary mesh de-

formations. We use a deformation energy E(u) to measure “how much” a mesh

patch deforms due to vertex displacements u. We precompute the minimum

energy E required for that mesh patch to self collide, then use this self-collision

certificate to cull SCD tests at runtime: after a mesh deforms we compute E(u),

then if E(u) < E we are guaranteed that no self collision can occur. Our ESCC

certificates works seamlessly with the traditional BVH-based self-collision de-

tection methods and can accelerate them significantly. We first precompute cer-

tificates of surface patches contained in BV nodes. Given a node at runtime, be-

fore the standard BVH traversal to test for self collisions, we compute the node’s

deformation energy to evaluate its certificate. If the certificate is valid, the sub-

sequent BVH traversal can be completely culled. Consequently, ESCC can rule

out regions with little deformation, resulting in faster self-collision processing.
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While many deformation energy models are possible, we propose an affine-

invariant Laplacian energy model that measures nonsmooth deformation, and

has several speed advantages. Our major contributions of this method are the

algorithms for fast runtime energy evaluation, and fast certificate precomputa-

tion for BV nodes. Leveraging the BVH structure, runtime energy computation

can be done hierarchically in O(N) flops, and much faster than traditional SCD.

As a result, significant speedups in SCD can be achieved (see Figure 7.1 for a

preview of our results). To enable a very fast triangle-triangle certificate prepro-

cess, we propose several techniques (detailed in our supplemental appendices)

that enable the underlying QCQP optimization problems to be solved exactly,

and at low cost.

7.2 Self-Collision Detection Using Certificates

The most common approach to detect self-collisions of a triangle mesh is to

build a bounding volume hierarchy (BVH) for the mesh and query the BVH

against itself (see Algorithm 5 without the blue-colored code blocks). Each BV

node contains a subset of the triangle mesh. To find collisions between mesh

regions contained by two BV nodes, the algorithm first checks if their bounding

boxes are intersected. If they are separated, it is guaranteed to have no colli-

sions between the two nodes, and is sufficient to go no deeper on the BVH for

collision detection. If the two BV nodes overlap, then the algorithm has to check

collisions over all pairs of their children. Fast collision detection algorithm re-

lies on culling expensive triangle-triangle intersection tests at high levels of BVH

traversal. However, this is usually hopeless for self-collision detection, because,

even for undeformed meshes, the algorithm always has to test triangle-triangle
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Algorithm 5: Energy-based self-collision detection
procedure: BVH Self Traversal (r)
input : BVH root node r
begin

stack.put (r, r);
while not stack.empty () do

n,n′ ← stack.pop ();
if n = n′ then

if has certificate (n) and
deformation energy (n) <certificate (n) then

continue;
if is leaf(n) then

triangle-triangle intersection tests for all non-neighboring triangle pairs
of n;

else
L1 foreach distinct children pairs c, c′ of n do
L2 stack.put(c, c′);

end
L3 foreach child c of n do stack.put(c, c);

end
else

if has certificate (n ∪ n′) and
deformation energy (n ∪ n′) <
certificate (n ∪ n′) then continue;

if not is BV intersected(n, n′) then continue;
if is leaf(n) and is leaf(n′) then

triangle-triangle intersection tests for all non-neighboring triangle pairs
from n and n′;

else
t1 ←higher non-leaf node in n and n′ ;
t2 ←lower or leaf node in n and n′ ;
foreach child c of t1 do stack.put(c, t2);

end
end

end
end

intersections for non-adjacent but geometrically close triangle pairs, which are

contained in either the same BV nodes or overlapping BV nodes.

The ESCC algorithm integrates certificate validation into the BVH traversal

(see Algorithm 5) to achieve more efficient self-collision culling. It works for

certificates defined by any surface deformation energy model, E(u). Given an

energy model, we precompute certificate values E for surface patches of indi-

vidual BV nodes as well as the combined patches of some pairs of connected
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BVH Level-n

BVH Level-n+1

Parent Node

Child Node 1 Child Node 2

Figure 7.2: Intra-node and inter-node certificates: (Top) We compute
intra-node certificates for the submesh associated with a BV
node, here shown as a level-n node in a binary AABB-Tree.
(Bottom) We also compute inter-node certificates between sib-
ling nodes on level n + 1, as well as (and unlike [Barbič and
James 2010]) all same-level nodes with adjacent submeshes.

BV nodes (see Figure 7.2). We call these intra-node and inter-node certificates,

respectively. Certificate computation is described in §7.5. At runtime, to detect

self-collisions of a node n, we first compute its deformation energy En. If En is

less than the intra-node certificate En, there is no need to traverse its subtree be-

cause we are guaranteed that it is self-collision free. Similarly, to detect collisions

between node i and j, if the inter-node certificate Ei j has been precomputed, we

evaluate the current deformation energy Ei j of the joint surface patch of nodes

i and j, and compare it to Ei j. If Ei j <Ei j, the traversal of the two subtrees from

i and j can be culled, otherwise subtree traversal is needed. In practice, we ob-
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Figure 7.3: Culling performance increases at finer scales: Certificates
tend to become stronger for smaller nodes as more deformation
energy (per triangle) is required to deform smaller submeshes
to self collide. (Data for flag example.)

serve that certificates have increase culling performance as one traverses deeper

on the BVH, so that even for a mesh undergoing large deformation, many BV

nodes at fine geometric scales can still be culled (see Figure 7.3). Also, the use

of inter-node and intra-node certificates ensures that for SCD on a nearly unde-

formed model, ESCC can cull essentially all triangle-triangle overlap tests.

Selective use of certificates on BV nodes: Computing all possible certificates

on a BVH requires quite expensive precomputation effort, and storing them for

runtime validation consumes a large amount of memory since there are O(N2)

possible inter-node certificates for N BV nodes. For inter-node self-collision de-

tection, if the sub-meshes of two nodes are not directly connected, we can rely

on the traditional BV-intersection tests to cull collision-free nodes because these

tests can often offer efficient culling between two distinct tree nodes. However,

if two nodes are geometrically connected on the mesh, their BVs always inter-

sect, and we can use inter-node certificates for collision culling. In practice,

we only compute inter-node certificates for connected nodes if they are on the
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Algorithm 6: Precompute certificates for BV nodes
procedure: precompute intranode certificate (n)
begin

if number of triangles (n) < Tc and is connected(n) then
return intranode certificate (n) // see §7.5

else return null
end
————————————————————————————
procedure: precompute internode certificate (n, n′)
begin

if number of triangles(n)+
number of triangles(n′) < Tc and
is connected(n) and is connected(n′) and
is connected(n, n′) and
BVH level(n) = BVH level(n′) then

return internode certificate (n, n′) // see §7.5
else return null

end

same BVH level and their joint sub-mesh are connected and have less than Tc

triangles (see Algorithm 6). Consequently, both the computation and storage

of certificates require O(N) complexity. For the nodes without certificates, the

algorithm simply returns to the traditional BVH traversal scheme.

The order of BV node traversal: While our certificate-accelerated self-collision

detection simply adds certificate comparison before subtree traversal and re-

quires no change on the other parts, further performance improvement can be

achieved by adjusting the order of node traversal. Notice that the satisfaction

of inter-node certificate Ei j guarantees the absence of self-collisions on the entire

joint sub-mesh of nodes i and j. In other words, the certificates Ei and E j are

both guaranteed to be satisfied as well. Therefore, when pushing node pairs

into stack to traverse, we push the cross-node test on first (see line L1 and L2 of

Algorithm 5) and the self-node tests on last (see line L3 of Algorithm 5). If the

inter-node certificate Ei j is satisfied, the subsequent self-node traversals on both

node i and j can be immediately skipped. In our implementation, we notice

about 2% to 6% performance improvement over the BVH traversal without this
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optimization.

7.3 Geometrically Based Deformation Energy

Laplacian Energy: Our energy-based certificate framework can be used with

arbitrary surface deformation energy models. However, for practical reasons,

we propose a parameter-free geometrically based energy model which is fast

for both certificate precomputation and runtime energy evaluation. We use a

Laplacian-based mesh deformation energy based on the simple quadratic form,

E = ‖Lu‖22 = uT LT Lu = uT Ku (7.1)

where L is the discrete Laplace-Beltrami operator on a surface mesh patch

[MDSB02], u are its vertex displacements, and K = LT L is the effective stiff-

ness matrix of this potential energy functional. This E will essentially minimize

the squared mean curvature of the displacement field (See Figure 7.4).

An important property of K is its particular 3×3 block matrix structure: each

(i, j) block is a scalar ki j times a 3×3 identity matrix, such that E = uT Ku =∑
i j ki ju

T
i u j.We will exploit this structure to devise a faster certificate preprocess,

and to accelerate runtime energy computation, by exploiting various properties,

e.g., L commutes with affine transforms.

Affine Pull-Back: The Laplace-Beltrami operator L is rank-3 deficient, leading

to a translation invariant energy measure (7.1). Unfortunately, this measure is

not rotation invariant, and so mere rigid-body displacements will add fictitious

deformation energies that reduce culling. It turns out that if we approximate the

vertex displacement field with a smooth spatial deformer φ : X → x we can use

φ−1 to “pull back” the deformed geometry to a less deformed state while still
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Figure 7.4: Minimum-energy deformation for self contact: (Left) A hand
model is globally and smoothly deformed (Right) to bring
two fingertips into contact as per the minimum displace-
ment Laplacian energy defined in (7.1). The smoothness of
minimum-energy deformation enables meaningful certificates
on BV nodes.

preserving any intersections that exist. For affine deformers, the pulled-back

triangle geometry will also preserve triangle planarity, thereby leading to effi-

cient algorithms. Motivated by these observations, we estimate displacements

in a local affine frame via

x = F(X + u) + t ⇔ u = F−1(x − t) −X , (7.2)

where x are current vertex positions and X are their rest positions, F and t

denote linear and translation components, and u is the displacement field de-

forming the sub-mesh. Note that while affine deformation cannot induce self-

collisions, how we estimate F will affect E(u). Estimating an F which minimizes

E is preferable since it will improve culling, but it is not necessary. In prac-

tice, we estimate (F−1, t) using an hierarchical least-squares computation (§7.4).

Using this affine pull-back we obtain an affine-invariant measure, and can sig-

nificantly reduce deformation energy (see Figure 7.5).
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Sub-mesh Energy: Given a BV node, we detach its sub-mesh from the rest

of the entire mesh and compute the L matrix based on the isolated sub-mesh.

Similarly, for a pair of connected BV nodes, we combine their sub-meshes as a

single triangle patch isolated from the rest of the original mesh, and compute

the L matrix. All these L matrices can be precomputed and stored with the BVH

together. Later, the related certificates and energy values are evaluated based

on their corresponding sub-meshes detached from the original mesh.

7.4 Hierarchical Energy Computation

We now present a fast hierarchical method for runtime evaluation of deforma-

tion energy on BVH sub-meshes. This method consists of two steps: (i) estimate

the affine transform; and (ii) compute the quadratic energy using (7.1).

7.4.1 Hierarchical estimation of sub-mesh transforms

We use least squares to estimate sub-mesh affine transforms similar to “shape

matching” [MHTG05], and exploit the hierarchical and overlapping nature of

sub-meshes for fast summation of intermediate quantities analogous to [RJ07,

SOG08]. Given a set of BV-node vertices deforming from the rest positions Xi

to the current positions xi, we estimate the affine matrix A and rigid translation

vector t to minimize ∑
i

mi‖A(xi − t) − (Xi − t0)‖2 (7.3)

where mi is the vertex weights, and t0 is the center of mass of the initial shape.

Setting its derivative with respect to A and t to zero yields the solution: t is
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(a) Undeformed (E=0)

(b) Deformed (E=2512.2)

(c) Rigid frame (E=1564.1) (d) Affine frame (E=197.47)

Figure 7.5: Reducing affine deformation: Smaller deformation energies
can be obtained by using a suitable affine transformation to re-
duce mesh deformation. Shown are (a) the undeformed mesh,
and (b) the deformed mesh. While deformation energies in
a tracked rigidbody frame (c) are smaller, they cannot undo
stretching. In contrast, pulling back to an affine frame (d) can
further reduce deformation energy while still preserving inter-
section properties. Affine frames are also cheaper to estimate
than rigidbody frames.

the center of mass of the deformed shape, i.e., t =
∑

i mixi/
∑

i mi, and A can be

computed by

A =

∑
i

mi(Xi − t0)(xi − t)T

 ∑
i

mi(xi − t)(xi − t)T

−1

≡ A1A−1
2

Both A1 and A2 can be computed quickly. Computing A1 of a BV node n requires

two summations,

sx =
∑

vertex i∈n

mixi and SA1 =
∑

vertex i∈n

miXix
T
i , (7.4)

and then A1 =SA1 − t0s
T
x . Computing A2 requires two more summations,

mc =
∑

vertex i∈n

mi and SA2 =
∑

vertex i∈n

mixix
T
i , (7.5)
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and A2 =SA2 − sxs
T
x /mc. These four summations are computed hierarchically on

the BVH. For example, to compute SA1 of node n, we sum up the SA1 matrices

of all its children, and remove the repeated counting on the children’s shared

boundary vertices. Proceeding recursively, the summations on node n and all

its descendants can be computed by going through the subtree of n from bottom

up. Shape matching of joint sub-meshes of node i and j can be computed sim-

ilarly by computing the summations on i and j individually and adding them

together without repeating boundary vertices. Furthermore, on multi-core pro-

cessors, the summations on different subtrees can be computed in parallel, and

hence are even faster. In practice, we implement the recursive parallel computa-

tion using Intel’s Thread Building Block [Rei07]. Note that by using affine instead

of rigid transforms, we avoid the need for polar decompositions to estimate ro-

tations, achieving both cheaper computation and better culling efficiency (see

Figure 7.5).

7.4.2 Hierarchical evaluation of deformation energy

Given a sub-mesh’s x and A at runtime, its energy is given by

E = ‖Lu‖22 = ‖L(A(x − t) − (X − t0))‖22

= ‖LAx − LAt − LX + Lt0‖
2
2

= ‖LAx − LX‖22 = ‖ALx − LX‖22

(7.6)

where LX is the mean curvature normal vector of the vertices on the unde-

formed mesh (which is precomputed), Lx evaluates the mean curvature nor-

mals of the vertices at the current configuration, and ALx are node-transformed

versions. Here we have used the fact that A and L commute. Note that the
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energy is independent of the rigid-body translation, t. The mean-curvature nor-

mal (Lx)i of vertex vi is completely determined by the positions of vi and its

direct neighbors, as seen from the sparsity structure of L, which enables us to

reuse Lx hierarchically. In particular, consider a vertex vi contained in a BV node

n and its child node nc. If vi is not on the boundary of the sub-mesh contained

by nc, then vi has the same local connectivity on both n and nc. Therefore, if the

mean-curvature normal of vi on node n has been computed, there is no need to

re-compute the normal of vi on nc. This observation is particularly helpful for

BVH traversal. If the certificate checking fails on node n, we need to traverse

to its child nodes to evaluate the deformation energy. For most of the vertices

on the children, we can reuse the normals Lx computed at node n and only

need to recompute the normals for boundary vertices. Finally, normals are then

multiplied by A to construct ALx for a specific BV node.

7.5 Certificate Precomputation

We now show how to efficiently precompute certificates for a triangle sub-mesh

T , such as one associated with a BV node. The precomputation for intra-node

and inter-node certificates is identical, since both minimize the energy in (7.1)

for a self-colliding sub-mesh T detached from the original mesh. For an intra-

node certificate, T is the sub-mesh contained by the BV node. For an inter-node

certificate, T is the joint sub-mesh of both nodes.

7.5.1 Certificate for triangle-triangle collision
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Here we show how to compute the minimum energy re-

quired to intersect two nonadjacent triangles, ti and t j. Let

X i
k ∈ R

3, k = 1, 2, 3 denote the rest positions of the three

vertices of ti, and, similarly, use X j
k , k = 1, 2, 3 for t j. Let

ui
k,u

j
k ∈ R

3, k = 1, 2, 3 indicate the vertex displacements of ti

and t j, respectively. If a point on ti is in contact with a point on t j, denote the

barycentric coordinates of the two points by αk and βk, k = 1, 2, 3, respectively.

Then the minimum energy Ei j required to intersect ti with t j is given by the

following non-convex quadratically constrained quadratic program (QCQP),

minimize uT Ku

subject to α1 + α2 + α3 = 1, αi ≥ 0, i = 1, 2, 3

β1 + β2 + β3 = 1, βi ≥ 0, i = 1, 2, 3

α1(ui
1 +X i

1) + α2(ui
2 +X i

2) + α3(ui
3 +X i

3) =

β1(u j
1 +X j

1) + β2(u j
2 +X j

2) + α3(u j
3 +X j

3),

(7.7)

where K = LT L is a positive semidefinite matrix. While non-convex QCQP is

considered to be NP-hard in general, we notice that this problem can be solved

exactly.

Reduction to Rayleigh quotient form: If we assume the two points in colli-

sion (α and β) are known a priori, then the QCQP (7.7) simplifies to a linearly

constrained quadratic program (LCQP),

minimize uT Ku

subject to α1(ui
1 +X i

1) + α2(ui
2 +X i

2) + α3(ui
3 +X i

3) =

β1(u j
1 +X j

1) + β2(u j
2 +X j

2) + α3(u j
3 +X j

3).

(7.8)

This problem can be easily solved analytically using Lagrange multipliers. We

defer the details of the LCQP solver to Appendix C.1, and only present the result
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here. In particular, the achieved minimum energy value uT Ku can be expressed

as a generalized Rayleigh quotient,

Êi j =
aT Ma
aTGa

, (7.9)

where a is a 6 × 1 vector, a = [ α1 α2 α3 −β1 −β2 −β3 ]T ; M = BT B ∈ R6×6 is a rank-

3 symmetric positive semidefinite matrix, where B = [ X i
1 X i

2 X i
3 X

j
1 X

j
2 X

j
3 ]; and

G= K̃†s ∈ R6×6 is a sub-matrix of the pseudo-inverse of a related matrix K̃, where

the elements of K̃†s correspond to the 6 vertices of ti and t j. Following the conven-

tion of elastostatic mechanics, we call this K pseudo-inverse the Green’s function

matrix. Appendix C.2 details a fast computation of the Green’s function matrix

that exploits the block structure and null space of K. Now (7.7) is equivalent to

the following problem:

minimize
aT Ma
aTGa

subject to α1 + α2 + α3 = 1, αi ≥ 0, i = 1, 2, 3

β1 + β2 + β3 = 1, βi ≥ 0, i = 1, 2, 3.

(7.10)

Case (1)

Case (2)

Its optimum is achieved only at one of the two cases: (i) a ver-

tex of one triangle touches the other triangle; or (ii) an edge of

one triangle touches an edge of the other triangle. Intuitively,

if a collision does not satisfy either cases, one can relax the ver-

tex displacements to shrink the deformation energy while still

remaining the two triangles in collision until either case (i) or

(ii) is achieved. In the remainder of this subsection, we consider

both cases.

Vertex-triangle collision: There are 6 vertex-triangle collision

cases. Without loss of generality, we consider the first vertexX j
1 of t j in collision

with ti. Then, for problem (7.10), a3 = 1 − a1 − a2, β1 = 1, β2 = β3 = 0, and we
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can simplify the problem using reduced parameters. Let a = Dã + b, where

ã = [ α1 α2 ]T ,

D =

1 0 −1 0 0 0

0 1 −1 0 0 0


T

and b =

[
0 0 1 −1 0 0

]T

.

Substitution into (7.10), yields the reduced problem,

minimize
ãT DT MDã + 2bT MDã + bT Mb
ãT DTGDã + 2bTGDã + bTGb

subject to α1 ≥ 0, α2 ≥ 0, α1 + α2 ≤ 1.
(7.11)

0 1

1

In the supplemental Appendix C.3, we show that the

optimum of this problem is achieved in the interior of the

domain only at certain situations which can be verified by

solving 3 1-D quadratic equations. If the optimum hap-

pens in the interior of the domain, computing the opti-

mum value requires solving two cubic equations, one of which has only a single

real root. For most cases in practice, the optimum is on the boundary defined

by three segments. A boundary point corresponds to a case where a vertex

touches an edge. The optimum on each boundary segment can be computed

by solving a 1-D quadratic equation. Please see the detailed derivation of these

equations in Appendix C.3. For all 6 vertex-triangle collisions, we need to solve

36 quadratic equations and in very rare cases solve cubic equations.

Edge-edge collision: There are 9 edge-edge collision cases. Again, without

loss of generality, we consider the edge connecting X i
1 and X i

2 on ti in collision

with the edge connecting X j
1 and X j

2 on t j. This corresponds to a2 = 1 − a1,

a3 = 0, β2 = 1 − β1 and β3 = 0 in (7.10), and we can construct a reduced problem
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using a = Dã + b, where ã = [ α1 β1 ]T ,

D =

1 −1 0 0 0 0

0 0 0 1 −1 0


T

and b =

[
0 1 0 0 −1 0

]T

.

Problem (7.10) now becomes

minimize
ãT DT MDã + 2bT MDã + bT Mb
ãT DTGDã + 2bTGDã + bTGb

subject to 0 ≤ α1 ≤ 1, 0 ≤ β1 ≤ 1.
(7.12)

0 1

1

Similar to problem (7.11), the optimum of this problem

happens in the interior of the domain very rarely. Check-

ing such situations involves 4 quadratic equation solves.

For most cases, the optimum is on the boundary where

a vertex touches an edge. Note that all these boundary

cases has been considered when we solve the boundary optimum values for

vertex-triangle collisions (7.11), therefore we can safely ignore all of them. For

all 9 edge-edge collisions, we need to solve 36 1-D quadratic equations and

very infrequently solve cubic equations. See the supplemental Appendix C.3

for derivations.

7.5.2 Certificate for an entire sub-mesh

The certificate E for an entire triangle sub-mesh T simply takes the minimum

of Ei j over all possible pairs of triangles, i.e., E=minti,t j∈T Ei j. However, process-

ing through all triangle pairs on a large sub-mesh can be impractical. Instead,

we use a two-pass algorithm. At the first pass, we quickly compute a cheap

lower bound Ẽi j of Ei j for all triangle pairs, i.e., Ẽi j ≤ Ei j. At the second pass,
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we process the triangle pairs in order of ascending Ẽi j. The computation of Ei j

can be immediately skipped if the so-far encountered smallest E value is less

than Ẽi j of the current triangle pair. Similar ideas have been used in [BJ10].

We first compute a lower bound vi j and an upper bound wi j for

the numerator and denominator of the generalized Rayleigh quo-

tient (7.9). Then we have Ẽi j =vi j/wi j≤Ei j. Note that the numerator

of (7.9) measures the squared Euclidean distance between the two

touching points in undeformed mesh configuration. We compute

the circumcenter pi and the circumradius Ri of each triangle. The

Euclidean distance of any two points on triangle pair i, j must be

no less than ‖pi −p j‖2 −Ri −R j. An upper bound of the denomina-

tor of (7.9) can be derived by noticing that G is symmetric positive

semidefinite and a satisfies the constraints in (7.10):

aTGa ≤ max
k=1..3
Gkk + max

k=4..6
Gkk −

∑
k,t,Gkt<0

Gkt.

and so a lower bound for Ei j is

Ẽi j =
(‖pi − p j‖2 − Ri − R j)2

max
k=1..3
Gkk + max

k=4..6
Gkk −

∑
k,t,Gkt<0

Gkt

. (7.13)

Discussion: Note that if T has disconnected components, one of the mesh

components can collide with the other component under rigid translation. Con-

sequently, certificates on such sub-meshes are always zero and provide no

culling capability at runtime. Therefore, we ignore disconnected BV nodes or

node pairs in Algorithm 6 and leave them to be handled by traditional BVH

intersection tests. A pathological case comes with a mesh whose BV nodes are

almost all disconnected, e.g., the squishy ball in Figure 7.1, preventing from

meaningful certificates at most of its BV nodes. We discuss BVH optimizations

to improve connectivity in §7.6.
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(a) (b)
Figure 7.6: Separating weakly coupled sub-meshes with a separation

plane

Certificates for weakly connected BV nodes: To achieve further performance,

we take special care of pairs of weakly connected BV nodes (see Figure 7.6(a)).

Due to the weak connectivity, these node pairs can yield pretty low certificate

values which can easily fail with small deformations at runtime. However, we

note that a weakly connected pair of nodes can often be easily separated by a

separation plane ax+by+cz+1 = 0 (see Figure 7.6(b)). Formally, let us define the

vertex sets of the weakly connected nodes n1 and n2 as V1 and V2 respectively,

and a plane equation f (x) = ax + by + cz + 1. Then following the separating

plane theorem, the absence of intersections between n1 and n2 is guaranteed if

the following condition is satisfied (for a suitably oriented plane),
f (v) < 0, ∀v ∈ V1 − V1 ∩ V2

f (v) > 0, ∀v ∈ V2 − V1 ∩ V2

(7.14)

Finding the optimal separation plane f (x) = 0 is a classical problem of finding

the maximum-margin hyperplane in linear Support Vector Machines [Bur98]. Es-

sentially we are classifying two sets of nodes, V1 − V1 ∩ V2 and V2 − V1 ∩ V2,

with a separation plane in 3D space. For each pair of weakly connected nodes,

we compute a maximum-margin separation plane based on their undeformed

positions. At runtime, for each vertex in V1 − V1 ∩ V2 and V2 − V1 ∩ V2, we

first transform it to the node’s initial frame using the already-computed affine

shape matching (recall section 7.4.1), and then check whether (7.14) is satisfied if
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the corresponding certificates fail. In practice, we only apply separation-plane

checks at low-level BV nodes (leaf nodes and their parents), and observe up to

11% speedup over the implementation without separation planes.

7.6 Extensions

Optimizing mesh connectivity of BV nodes: While ESCC certificates can be

applied to any BVH, sub-meshes with disconnected or weakly connected tri-

angles will degrade culling performance. We therefore propose a method to

construct an AABB-based BVH whose nodes have well-connected sub-meshes.

To split a BV node into child nodes, n1 and n2, we randomly sample two trian-

gles, and perform region growing using a cost based on the Euclidean distance

between the centroids of two triangles [CSAD04]. We compute a cost C(n1, n2)

for the split, and repeat the samples T times and use the one with least cost to

create child nodes; we use T =60000 in our examples. Our cost function tries to

minimize both the difference in submesh areas, A1 and A2, and the bounding-

box surface areas, B1 and B2:

C(n1, n2) = |A1 − A2| + 0.1 (B1 + B2).

This metric is similar to the “surface area heuristics” used in previous BV opti-

mization methods [GS87].

Continuous Self-Collision Culling: Our method can also be used in continu-

ous self-collision detection, such as for cloth simulation [BFA02]. For example,

consider a piecewise-linear deformation of a sub-mesh from displacement u(0)

at t = 0 to u(1) at t = 1, such that u(t) = (1 − t)u(0) + tu(1), t ∈ [0, 1]. Now the energy

function E(t) = E(u(t))=‖Lu(t)‖22 might not be convex in u, therefore we cannot cull
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SCD tests by simply validating certificates at t = 0 and t = 1. The problem comes

from a continuously changing affine pull-back, however, we can circumvent it

by fixing the affine pull-back. For example, we estimate the affine pull-back

based on u(0.5) computed by interpolating u(0) and u(1). We then use the result-

ing affine transformation to pull back the mesh at both t = 0 and t = 1, and

evaluate corresponding energy values Ē(0) and Ē(1). With this fixed affine pull-

back, the deformation energy change from Ē(0) to Ē(1) is convex in t. It follows

that Ē(t) ≤max(Ē(0), Ē(1)), t ∈ [0, 1]. Thus if the certificate indicates a collision-free

state at both endpoints, then no collision can occur along the piecewise linear

trajectory. If at least one endpoint’s certificate fails, then we must recurse and

perform additional checks. In this way, the ESCC certificates can be used to

augment traditional BVH-based continuous SCD queries as in [BJ10].

7.7 Results

Numerous results and statistics are shown in Table 7.1 for a range of animated

mesh examples, including ones made by us and from prior works [BSM+03,

JT05, BJ10, SGPO10, CTM08]. Please see the supplemental video in our pa-

per [ZJ12] for animations and detailed performance information. All reported

timings were measured on a dual Intel Xeon X5570 (2.93 GHz) processor ma-

chine with 8 physical cores. Due diligence has been taken to exploit multi-core

parallelization for accelerating both the AABB-Tree updates and queries, and

ESCC certificate precomputation and runtime energy evaluation. We also pro-

filed the performance of single-core computation and observed that our parallel

ESCC implementation using Intel’s TBB achieved 2.1x-3.4x speedups over the

single-core computation, depending on the mesh size. Culling effectiveness ver-
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Figure 7.7: Timing breakdown of post-deformation update
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Figure 7.8: Benefits of ESCC optimizations for runtime SCD

sus BVH levels is illustrated in Figure 7.3. Detailed runtime timing breakdowns

for post-deformation tree updates are shown in Figure 7.7. The impact of vari-

ous optimizations on runtime SCD are shown in Figure 7.8.

Performance versus certificate coverage: As presented in §7.2 and Algo-

rithm 6, we use certificate-based culling only when the number of triangles on

a node is less than a threshold Tc; in our implementation, we use Tc = 2500

for all examples, except the giant squishy ball where we only used Tc = 128.

One natural question is how Tc will affect the culling performance. To indi-

cate the fraction of nodes where certificates are applied, we use a cover ratio,

r, defined as the ratio of the number of computed intra-node certificates to the
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Figure 7.9: SCD performance vs cover ratio, r

total number of BV nodes. Table 7.1 shows the r values used for all the exam-

ples. Furthermore, Figure 7.9 shows the SCD cost with different cover ratio. For

smooth small deformations (e.g., Figure 7.9(a)), the SCD cost decreases as we

use more certificates. However, for fairly large deformations (e.g., Figure 7.9(b)),

the certificates on high-level BV nodes fail more frequently. Consequently, the

payoff of using certificates on high-level BV nodes is smaller than the overhead

of evaluating deformation energy, since higher nodes usually have many trian-

gles. Thus too many high-level certificates can hurt the performance slightly

(see Figure 7.9(b)).

Conservativeness: We designed a metric to reflect the conservativeness of the

certificates. Validating certificates at each node can be a waste of computation if

it can not cull SCD tests for collision-free nodes. Therefore, we count the num-

ber, A, of succeed certificate validations which cull the SCD tests as expected,

as well as the number, B, of false positive leaf-node intersection tests for which

there is no self collision, but certificate validations cannot cull the tests. We use

the ratio B/A as a conservativeness metric. Figure 7.10 shows how it changes

for different examples. This metric varies a lot for different test cases. In the
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Figure 7.10: Conservativeness

examples with lots of self collisions (e.g., the collapsing horse), many triangles

that are geodesically far on the mesh are close to each other under the mesh de-

formation. On the BVH, those triangles are in a single BV node or connected BV

nodes only when the nodes are at high levels of the BVH. Certificates on those

high-level nodes are less conservative, and are easier to be violated with small

deformations. This metric is also generally consistent with our culling difficulty

measure in Table 7.1 to reflect the effectiveness of self-collision culling.

Memory overhead: At runtime, we load the precomputed certificates, the

sparse Laplace-Beltrami matrices and the coefficients of separating planes into

memory. In practice, all the certificates, the Laplace-Beltrami matrices, and sep-

arating plane coefficients are stored in single precision (32-bit float number). We

counted how much memory required to store these data for the use of ESCC in

different examples. They are: squishy ball (354.8M), monkeys (83.2M), flow-

ing cloth (24.9M), dragon (37.5M), dance(8.3M), low-resolution bunny (7.9M),

high-resolution bunny (34.8M), and cloth sphere(9.5M),

Difficult Cases: As reported in Table 7.1, there are certain cases where ESCC

produces little speedup. Those are the examples involving large deformations
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and self-collisions in many parts of the mesh (such as the “collapsing horse”

in [SGPO10]). For those examples, our conservative certificate-based culling is

ineffective, and the method has to travel on the BVH until the leaf level to de-

tect triangle-triangle collisions. In the last column of Table 7.1, we use a metric

defined as the ratio of the number of inter-node overlap tests between discon-

nected leaf nodes to the total number of leaf nodes to indicate the culling diffi-

culty. For the examples where this ratio is large, ESCC method could not offer

good speedups.

The techniques proposed in this paper focuses on fast self-collision detection.

In practice, inter-object collision detection is another expensive part for resolv-

ing collisions. For the simulations where many objects close each other are in-

volved (such as the “flamenco dancer” in [CTM08]), inter-object collision tests

can dominate collision processing timings, especially as self-collision tests are

reduced greatly. In such cases, the overall speedup would be low. However,

our method is complementary to other types of intra-object and inter-object col-

lision detection techniques. One can combine ESCC with other collision detec-

tion methods to achieve higher performance.

7.8 Related work

Self-collision detection (SCD) methods for deformable models have a long his-

tory in computer graphics, and we optimize the common practice of using

a bounding volume hierarchy (BVH) for triangle-based SCD [TKH+05]. Our

ESCC certificates represent a geometric property of the sub-mesh inside any

BV node (or nodes), and can therefore be used with any flavor of bound-
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ing volume, including spheres [Hub95], axis-aligned bounding boxes (AABBs)

[vdB97], oriented bounding boxes (OBBs) [GLM96], and discrete oriented poly-

topes (k-DOPs) [KHM+98]. In our implementation, we use AABB-based binary

trees [vdB97]. Our ESCC certificates are complementary to many existing SCD

acceleration approaches for BVHs, and can provide yet another way to cull

triangle-overlap tests. Our ESCC certificates support continuous SCD needed

for simulating thin objects [BFA02].

The most closely related work to ours is subspace self-collision culling

(SSCC) [BJ10]. It assumes object-frame subspace deformations of the form

u= Uq, and used certificates that measure minimal deformation essentially us-

ing ‖q‖2 = ‖u‖2. The effectiveness of the certificates relied upon the ability of

the modal basis U to produce smooth deformations which tend to avoid local-

ized self collisions. For the arbitrary deformations we consider, one cannot use

‖u‖2 as a certificate measure since its certificates degenerate into measuring in-

dividual vertex displacements. In contrast, we use an energy-based measure

E(u) of arbitrary patch deformations, and exploit the sparse structure of the

arbitrary-deformation problem to derive an exact ESCC certificate preprocess

and runtime that is mathematically different and highly efficient.

Barbič and James [BJ10] accelerated BVH-based SCD by reducing both (i) the

cost of post-deformation BVH updates, CUpdate , and (ii) the cost of recursively

testing the BVH against itself to identify overlapping triangle pairs, CQuery . For

arbitrary deformations, our method is stuck with inherently Ω(N) CUpdate and

CQuery costs for an N triangle mesh patch. Our method adds additional O(N)

overhead to update patch-specific certificate energies E(u), and cannot exploit

subspace certificates or BV updates [JP04] to avoid looking at the triangles en-
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tirely. Nevertheless, the BVH-based SCD bottleneck for arbitrary deformations

remains the CQuery cost, and our ESCC certificates measure localized patch de-

formations, as opposed to global deformation amplitude, and can thus cull lo-

calized deformations more effectively—ESCC can even be faster than SSCC on

subspace deformations (see §7.7).

For arbitrary deformations, many prior works have attempted to reduce

the CQuery cost bottleneck. For example, methods based on chromatic decom-

positions [GKJ+05] and representative triangles [CTM08] can effectively reduce

the number of redundant low-level triangle overlap tests. Curvature tests

[VMT94, SGPO10] and normal bounds [Pro97, GS01, TCYM09, SGO09] can

also cull overlap tests in potentially large regions, however, unlike ESCC, these

methods can only cull effectively in regions with smooth geometry and smooth

deformations. In contrast, our certificates can efficiently cull self-collision tests

even in areas of non-smooth geometry (like [BJ10]), and, furthermore, we can

cull patches with nonsmooth deformations. Curvature-based culling also re-

quires a potentially expensive “contour test” for correctness, but recently it

was shown how this could be performed efficiently using “Star Contours”

[SGPO10]. In comparisons provided earlier (§7.7), we observe larger speedups

using ESCC on the same examples. Nevertheless, many of these narrow-phase

triangle-triangle optimizations are complementary to patch-based ESSC, and

could be used simultaneously.

Our use of ESCC certificates for BVH-based SCD is an instance of a kinetic

data structure (KDS) [Gui04] for reasoning about self collisions of dynamic

meshes. In contrast to other geometric KDS techniques for SCD [GNRZ02,

GGN06], we propose energy-based certificates for triangle meshes.
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Our energy-based certificates are complementary to GPU-based methods

that use brute force to accelerate triangle-level SCD computations, but less so

for rasterization-based methods [HTG04]. In addition to improving the speed

of triangle overlap tests, GPU-based methods also try to reduce the number of

needed overlap tests [GLM05, SGG+06]. Our current implementation exploits

multi-core optimizations, but GPU parallelization is a logical extension.

7.9 Conclusion and Future Work

We have introduced energy-based self-collision culling (ESCC), a new technique

for accelerating self-collision detection (SCD) for triangle meshes undergoing

arbitrary deformations. Using bounding volume hierarchies augmented with

ESCC certificates enables significant speedups, as demonstrated on numerous

examples. Our certificate preprocess enables rapid computation of certificates

by exploiting numerous algorithmic and mathematical insights.

ESCC certificates are complementary to many existing SCD approaches, and

future work should investigate combining ESCC culling with other methods for

narrow-phase culling, such as [CTM08, SGPO10]. Our precomputed sub-mesh

certificates require a fixed BVH topology, and so one cannot adapt the BVH at

runtime, which may reduce speedups for highly deformable models such as

cloth. Our ESCC method can be further accelerated if some runtime energy

computations can be shared with other code, e.g., a physics simulator which

already computes, Lx. Future work should investigate the possibility of other

energy models. Our affine-invariant Laplacian-based energy model enables fast

runtime evaluation, material parameter independence, and a fast certificate pre-
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process, however, one could use more sophisticated deformation energy models

provided that the runtime and precomputation costs were fast enough. For ex-

ample, a user simulating cloth with a hyperelastic potential energy model might

also use that model for ESCC, thereby benefitting from embedded energy com-

putations. Finally, while we believe that BVHs are ideal for exploiting ESCC cer-

tificates, it may be possible to use ESCC certificates with other SCD approaches,

e.g., spatial partitionings [TKH+05].
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CHAPTER 8

CONCLUSION

8.1 Summary and Conclusions

Computer-simulated realities, although capable of producing realistic and con-

vincing visual effects nowadays, are still inherently silent. The lack of realis-

tic sound rendering counterpart will fundamentally limit our endeavor toward

generating highly immersive virtual realities.

This thesis is an attempt to change that. The key contribution is a series of

algorithms that capture unprecedented motion details in simulations and ren-

der realistic sounds from them. We have demonstrated these algorithms for a

number of major classes of sound phenomena in computer animation, includ-

ing the sound models for brittle fracture (chapter 3), modal contacts (chapter 4)

and liquids (chapter 5). Our sound synthesis approaches are based on physical

principles, capturing object vibrations for sound sources and simulating sound

propagations. We exploit inherent features in sound simulations and build algo-

rithms leveraging reasonable physical simplification, mathematical approxima-

tion, possible pre-computation, parallelism, and psychoacoustic insights. Our

methods thereby are practical and capable of dealing with general and complex

computer graphics scenarios.

In addition, we have introduced a fast self-collision detection methods

(chapter 7) for deforming triangle meshes. While this method has been demon-

strated for accelerating general deformable simulations, we believe simulations

for deformable sound synthesis can enjoy it as well, and expect to use this
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method in future deformable sound synthesis work.

8.2 Future Work

Physics-based sound rendering is a new direction, and there are a number of

promising directions for future research. Perhaps a direct extension of this the-

sis is to exploit other sound phenomena common in computer graphics appli-

cations, such as deformable sounds and multi-physics interaction sounds. In-

teractions among different types of physical systems can producing noticeable

sounds, and are particularly challenging to simulate. Addressing more complex

sound phenomena also requires development of related physics-based simula-

tions which by themselves can be a large area for future work. Fast sound syn-

thesis should incorporate the understanding of human perception of sounds.

Psychoacoustic study can provide clues about what sound properties or details

are important to capture in sound synthesis, and lead to methods which might

be numerically less accurate but perceptually plausible and fast. Therefore how

to integrate psychoacoustic considerations into an efficient sound simulation al-

gorithm becomes very interesting for future work. Finally, while physics-based

sound rendering promises automatic generation of fully synchronized sounds,

it suffers from expensive computation in many situations. On the other hand, it

is not the only way for realistic sound synthesis. Traditional methods based on

signal-processing or granular synthesis as well as data-driven sound synthesis

approaches are less flexible, hard to be synchronized, but are relatively cheap

to compute. How to combine the advantages of different approaches for fully

synchronized multi-sensory virtual realities can be an interesting research topic.
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APPENDIX A

APPENDIX FOR CHAPTER 3

A.1 Sparse least-squares Ku=f solver details

Constructing P: The null space of K is spanned by rigid-body modes, which

we project out using P. Given tetrahedral node, i, with position (xi, yi, zi), its

translation and linearized rotation are columns of Ti,

Ti =


1 0 0 0 zi −yi

0 1 0 −zi 0 xi

0 0 1 yi −xi 0

 ⇒ T =


T1

...

TN

 , (A.1)

so that the rank-6 matrix T spans null(K). We compute the QR factorization,

T=QR, and cache the 3N-by-6 orthogonal matrix, Q. At runtime, we implement

force/displacement projections Pv using Pv=v − QQT v at O(N) cost.

Constructing V: We interpret V as a vertex displacement basis with translation

and linearized rotation eliminated in a particularly convenient way; V has 3N−6

columns corresponding to deformation degrees of freedom. While any orthog-

onal matrix V with size 3N × (3N − 6) which eliminates the rigid-body modes

is applicable to (3.2), in practice, sparser V can lead to sparser factorizations of

VT KV. So that VT KV construction has O(nnz(K)) cost, our V matrix, with only 3N
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nonzero elements, has the following form:

0

0

}
}
}

where t1, t2 and t3 are any three non-collinear tetrahedral vertices upon which V

applies the following six constraints: (1-3) we fix t1 by imposing zero translation;

then (4) to eliminate the rotation (c.f. [BHTF07]) we constrain t2 to move along a

fixed direction, a= (a1, a2, a3)=normalize(xt2−xt1); then (5-6) we constrain t3 to lie

on an perpendicular plane by letting (b1, b2, b3) = normalize([a × (xt3−xt1)] × a).

All other rows match the identity matrix. By construction V is orthogonal.

A.2 Proof of least-residual solution to (3.2)

Given the solution r of (3.2), we show that u= Vr is the least-residual solution

of the compatible system Ku =Pf . Since K is a 3N × 3N symmetric and rank-

deficient matrix, we write it as K = USUT using thin SVD, where U is the 3N ×

(3N − 6) orthogonal basis matrix spanning range(K), and S is an invertible (3N −

6) × (3N − 6) diagonal matrix of singular values. By compatibility, we can write
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Pf =Uf̃ . Substituting these expressions into (3.2), we see that r satisfies

VT USUT Vr = VT Uf̃ . (A.2)

Since VT U is nonsingular (both U and V are orthogonal), we have UT Vr = S−1f̃ .

Therefore Vr is a least-residual solution:

KVr = (USUT )Vr = US(UT Vr) = USS−1f̃ = Pf . (A.3)

A.3 Derivation of Proxy Scaling Relations

The scalings (3.8) follow from x→γx as follows. Since the object’s volume and

mass scale as γ3, the mass matrix scales as

M→γ3M.

Since the modes are mass orthogonal, UT MU=I, it follows that

U→ γ−3/2U.

Stiffness matrix scaling,

K→ γK,

follows from the fact that matrix elements are integrals of energy Hessians (with

γ−2 scaling) over volumes (with γ3 scaling). It follows that the eigenvalues scale

as

ω2 → ω2 scaling(K)
scaling(M)

= ω2/γ2,

so that ω→ω/γ, k→k/γ, and kx→kx. Multipole Mm
n scaling follows from (2.21),

where it suffices to consider the term,

ik R−m
n (y − x0)

∂p
∂n

(y)dΓy :
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k gives a γ−1 factor; R−m
n is scale invariant since it depends on kr; the dΓ area

introduces a γ2 factor; ∂np is the Neumann BC, which scales with ω2un as

γ−2γ−3/2 =γ−7/2. Multiplying γ−1 · γ2 · γ−7/2 we obtain

Mm
n → γ−5/2Mm

n .

A.4 Estimation of Proxy Contact Point

Given a force fp applied to the elliptical sound proxy, we apply it to the surface

position where the surface normal direction n is opposite to the force direction,

n=−fp/‖fp‖. Let the implicit surface for the ellipsoid be

g(x, y, z) =
x2

a2 +
y2

b2 +
z2

c2 − 1, (A.4)

then the surface normal direction is coincident with its gradient

∇g = (
2x
a2 ,

2y
b2 ,

2z
c2 )T .

The surface position with matching normal direction n satisfies the equation

∇g
‖∇g‖

= n ≡ (nx, ny, nz)T .

Letting X = x2/a2, Y =y2/b2 and Z =z2/c2, we obtain a 3 × 3 linear equation,
(n2

x − 1)/a2 n2
x/b

2 n2
x/c

2

n2
y/a

2 (n2
y − 1)/b2 n2

y/c
2

1 1 1




X

Y

Z

 =


0

0

1

 (A.5)

whose solution yields the proxy’s surface contact point,

pscp =
(
sgn(nx)

√
a2X, sgn(ny)

√
b2Y , sgn(nz)

√
c2Z

)
. (A.6)
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APPENDIX B

APPENDIX FOR CHAPTER 5

B.1 Acoustic Bubble Formulae

The bubble’s undamped natural frequency is [Lei94]

ω0 =
√

3γp0 − 2σ/r0/
(
r0
√
ρ
)
, (B.1)

and its damping rate is given by

β = ω0δ/
√
δ2 + 4 (B.2)

where δ = δ(ω0, r0) = δrad + δvis + δth is a dimensionless damping value describing

damping due to wave radiation (rad), fluid viscosity (vis), and thermal conduc-

tivity (th):

δrad =
ω0r0

c f
, δvis =

4µ f

ρω0r2
0

, δth = 2

√
ψ − 3 − 3γ−1

3(γ−1)

ψ − 4
, (B.3)

with ψ = 16
9(γ−1)2

Gthg
ω0

. The numerous parameters are as follows (values given in

Table 5.1): c f is the fluid’s speed of sound; p0 is the hydrostatic pressure of the

liquid (which we always approximate as 1 atm in our simulations); γ is the gas’s

heat capacity ratio (or adiabatic index); µ f is the liquid’s shear viscosity; σ is the

fluid surface tension coefficient; Gth =
3γp0

4πρDg
is the thermal damping constant at

resonance; and Dg is the gas’s thermal diffusivity.

Our ad hoc entrainment-related blending function is:

qblend(t) =


q(t)e−

(e−βt−0.85)2
0.0028125 , e−βt ≥ 0.85

q(t), e−βt < 0.85
(B.4)
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Marker Particles

Bubble Seeds New Bubble

Figure B.1: Bubble entrainment by a falling water drop (cut-away view)

B.2 A Stochastic Model of Bubble Entrainment

Complex multi-scale interfacial mixing processes are responsible for bubble for-

mation, but we desire a simplified computational model. We track mixing via

the rapid movement of interfacial fluid material into the fluid volume by mon-

itoring rapid changes in φ values of fluid material from a value near zero, to a

value revealing it is now deep in the fluid. We place markers on a layer of par-

ticles near the surface: fluid particle i gets a marker if φε < φi < 0, where φε is

a constant specifying the thickness of the marker layer (we use φε = −2h). At

each time step, we track each marker’s isosurface value. Dramatic decreases in

marker φi values indicate the potential for bubble creation at the marker’s po-

sition. When a sufficient φi decrease is detected, we call that marker a bubble

seed—we use these in our bubble creation process. Markers and bubble seeds

are illustrated in Figure B.1.

Unfortunately, the reconstructed isosurface field can be noisy, so that simply

detecting rapid decreases in φi values is not robust. Therefore, we use linear

regression to estimate the slope, dφi
dt , by maintaining a sliding window (of width

between 0.006sec and 0.01sec) for each marker’s φi values. The moment the

slope exceeds a threshold (between −0.9m/s and −2.2m/s), the marker becomes

a bubble seed.
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Bubble seed TTL and strength: Each bubble seed has (a) a creation time, t0,

(b) a time-to-live (TTL) value, Tttl, after which the seed dies, and (c) a “bubble

creation strength” value, ws(t), which is 1 initially and decays thereafter. Given a

seed created at time t0, we model the bubble seed’s strength by the cubic spline:

ws(t) =


1 − 4τ3, 0 ≤ τ ≤ 0.5

4(1 − τ)3, 0.5 < τ ≤ 1
where τ=

t − t0

Tttl
.

This distribution of strength-weighted bubble seeds provides clues for creating

bubbles at seed positions. We model the number of bubble creation attempts

(per time step) as proportional to the sum total of seed strengths:

Nbub = κh2∆t
∑

s is seed

ws(t), (B.5)

where κ is a parameter controlling the bubbliness of the flow; and to try to make

the bubble generation rate independent of spatial and temporal discretizations

we scale by the interface fluid-grid resolution, h2, and the time step size, ∆t.

Bubble radius and spectra: The radii of created bubbles strongly affects the

spectrum of the generated sound. In order to approximate the spectra of real

fluid sounds, we use a probability distribution function to randomly sample

bubble radii. In principle, by selecting a proper bubble radius distribution, we

can match the sound spectrum to real sound cases—although not a sufficient

condition for realistic sounds. Similar to [GH04], we use a Gaussian distribu-

tion: mean and deviation were calibrated by matching the characteristic pitch

to typical recorded sounds.

Radius rejection sampling: For each bubble created at a time step, we ran-

domly select a seed as the bubble’s initial position. This provides a density-

based sampling, so that well-seeded regions are more likely to create bubbles.
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Algorithm 7: CreateBubbles(B,M, S, t)
Data: The set of current bubbles B, seeds S, current markersM, and

current time t
begin

update markers(M);
sample isosurface value(M);
create seeds(M, S);
update seed strengths(S);
Nbub ←num bubble creation attempts(S);
for i = 1 . . .Nbub do

seed ←random select seed(S);
r ←random select radius;
if not reject bubble(seed, r, S) then

create bubble(seed.pos, r);
remove seeds(seed, r, S);

end
end

end

Given a randomly sampled bubble radius and position, to avoid placing unre-

alistically large bubbles in small regions, our check to determine if enough local

seeds s are inside the bubble is:

r2
par

∑
xs∈Bubble

ws(t) < τre j r2
0 (B.6)

where rpar is the fluid particle radius (0.22h in our simulations), and τre j controls

bubble sizes (our examples use τre f values between 0.9 and 2). Otherwise we

create a bubble, and the seeds inside a sphere of radius 1.5r0 are removed.

Algorithm: Our bubble creation method is summarized in Algorithm 7. In

reality, bubbles are generated at very high rates, so that sounds from splashing

or pouring appear continuous. To avoid discretization artifacts here, bubble

creation times are uniformly distributed during the time step. The bubbles’

initial positions and velocities are interpolated from bubble seeds.
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Drop Splash Pour WStep Description Eqn
κ 3.2 1.3 1.0 1.8 bubbliness (B.5)
τre j 2.0 0.9 1.4 1.5 radius limiter (B.6)

Table B.1: User-specified entrainment parameters are roughly of unit size.

Parameter Tuning: Model parameters can be tuned manually for best results.

We first adjust the bubbly flow to get a plausible number of bubbles by tuning

κ in (B.5) and τre j in (B.6), with unit values being good initial guesses (see Table

B.1). In the second pass, we can adjust the (Gaussian) distribution for the bub-

bles’ radius (and thus frequency), e.g., to approximate spectra of recorded fluid

sounds.

B.3 Derivation of Source Strength, S b

We estimate the delta-function source strength, S b, of a point-like bubble from

its “divergence sourcing” strength (c.f. [KLL+07]). First, we take the divergence

of the relationship between harmonic acoustic pressure p(x) and acoustic veloc-

ity v(x),

∇p = −iωρv ⇒ ∇2 p = −iωρ (∇ · v) . (B.7)

Given our divergence singularity of the form, ∇2 p=S bδ(x−xb), we can estimate

S b by integrating over a small domain Ωb containing the tiny bubble (so that∫
Ωb
δ(x − xb)dΩ=1):

S b = −iωρ
∫

Ωb

(∇ · v) dΩ. (B.8)

The divergence theorem, and the rate of fluid expulsion from the volume Ωb

due to ε-amplitude pulsations, r =r0 + εe+iωt, yields∫
Ωb

(
∇ · ve+iωt

)
dΩ = −

d Vb

dt
= −4πiωr2εe+iωt. (B.9)
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It follows that S b is given by (5.10).
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APPENDIX C

APPENDIX FOR CHAPTER 7

C.1 Analytical Solution of LCQP Problem (7.8)

Here we present the analytical solution to the LCQP problem (7.8) which evalu-

ates the optimal deformation energy for specified contact locations given by the

barycentric coordinates α and β. Suppose there are n vertices on the mesh, then

the displacement vector u is of length 3n, and K is a 3n × 3n matrix. First, we

introduce some notations: let a = [ α1 α2 α3 −β1 −β2 −β3 ]T , B = [ X i
1 X i

2 X i
3 X

j
1 X

j
2 X

j
3 ]T ,

and

A= [ 0 ... α1I α2I α3I ... 0 ... −β1I −β2I −β3I ... 0 ] ,

where I is a 3 × 3 identity matrix, A is a 3 × 3n sparse matrix, and the positions

of the 3 × 3 block matrices αtI ,−βtI , t = 1, 2, 3 in A correspond to the positions

of vertices X i
t ,X

j
t , t = 1, 2, 3 in the vector u. With these notations, the equality

constraint of (7.8) becomes

Au + BTa = 0. (C.1)

Using Lagrange multipliers, the displacement u should satisfy the following

equation at the optimum,

Ku=ATλ, (C.2)

where λ ∈ R3 are Lagrange multipliers. Note that although K is rank-3 de-

ficient (recall section 7.3), equation (C.2) can be exactly satisfied with infinite

number of u. This is because the null space of K spans the displacements of

rigid translation, and the matrix A, whose sum of each row is always zero, has

vanished projection on the null space of K. All the solutions of (C.2) yield the
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same energy value uT Ku, and can be expressed as u = K†ATλ, where K† is the

Moore-Penrose pseudo-inverse of K. Then λ can be determined using the con-

straint (C.1). Namely,

Au = AK†ATλ = −BTa. (C.3)

Note that the K matrix can be seen as an n × n block matrix, in which each block

is a scaled 3 × 3 identity matrix, aI3×3, and similarly A can be seen as a 1 × n

block matrix. We first condense K into a n × n matrix K̃, where each element

K̃i j is the scalar of the corresponding 3 × 3 block in K. It can be shown that K̃

is a rank-1 deficient matrix, and its pseudo-inverse K̃† is the condensed version

of K†. Moreover, A is sparse, having only non-zero blocks corresponding to the

involved 6 vertices. The left-hand side of (C.3) can be written as a 6×6 quadratic

form,

λ=
−BTa

aT K̃†sa
.

And hence the optimum energy value is

Êi j = uT Ku = uT ATλ = −(Ba)Tλ =
aT BBTa

aT K̃†sa
. (C.4)

C.2 Fast Precomputation of Green’s function

As shown in appendix C.1, the certificate precomputation involves computing

the Green’s function G = K̃† of the n × n matrix K̃ condensed from K. Direct

computation requires the SVD or eigen-decomposition of K̃ (recall that K̃ is a

rank-1 deficient symmetric positive semi-definite matrix). Let the thin SVD of K̃

is K̃ = VSVT , where V is n × (n − 1) orthonormal matrix, and S is (n − 1) × (n − 1)

diagonal matrix, then the pseudo-inverse is K̃† = VS−1VT . This computation

requires O(n3) work for SVD or eigen-decomposition.
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In this section, instead of computing K̃† directly, we present a fast computa-

tion of a matrix G equivalent to K̃† in the sense that

aT Ga=aT K̃†a (C.5)

for all possible a, where a corresponds to barycentric coordinates of two points

on the triangle, and has the form a = [ 0 ... α1 α2 α3 ... 0 ... −β1 −β2 −β3 ... 0 ], with α1 +

α2 +α3 =1 and β1 +β2 +β3 =1. The equivalence (C.5) is sufficient for the certificate

computation using (C.4).

First, note that the null space of K̃† is spanned by the vector v = [ 1 1 ... 1 ]T
1×n,

and vTa = 0. Then the vector a can be written using the eigen-matrix of K̃ as

a = Vk. Now given an n × (n − 1) matrix U such that VT U is a (n − 1) × (n − 1)

full-rank matrix, then UT K̃U is invertible, and G = U(UT K̃U)−1UT is equivalent to

K̃† in the sense of (C.5). This is because

aT U(UT K̃U)−1UTa = kT VT U(UT VSVT U)−1UT Vk

= kT VT U(VT U)−1S−1(UT V)−1UT Vk

= kT S−1k = kT VT VS−1VT Vk

= aT K̃†a.

In practice, we use a sparse matrix U =

[
In×n 0n×1

]T

, and then UT K̃U is just the

(n − 1) × (n − 1) upper-left sub-matrix of K̃. We compute G̃ = (UT K̃U)−1 using

the sparse Cholesky factorization of UT K̃U (with complexity O(n
3
2 )) and a solve

(UT K̃U)G̃ = I(n−1)×(n−1) (with complexity O(n2 lg n)). Both the factorization and

back-substitution for the solve can be efficiently performed in parallel using

PARDISO direct solver [SG04]. Finally, the n× n G matrix is a simple expansion

of G̃,

G = UG̃UT =

G̃ 0

0 0

 .
169



For complexity estimates, we used the fact that a 2D grid Laplacian on n vertices

suggests an O(n
3
2 ) cost for sparse Cholesky factorization, and O(n2 lg n) for back-

substitution (or less if done in parallel) to get G assuming the Cholesky factors

require O(n lg n) space [Dem97].

C.3 Exact Evaluation of Tri-Tri Certificates

In this section, we present the details of computing the triangle-triangle cer-

tificate by solving optimization problems (7.11) and (7.12). Both problems are

instances of the more general problem,

minimize
xT Ax + aTx + cu

xT Bx + bTx + cd

subject to x ∈ C,

(C.6)

where both A and B are symmetric positive-definite matrices, x = [ x y ]T is a

2D vector, and C is a convex set on 2D space. Recall that C is a triangle for

problem (7.11), and a square for problem (7.12).

C.3.1 Optimum value on the boundary

0 (i)

(ii)
(iii)

1

1
First we consider the optimum value on the boundary

of C. As presented in section 7.5.1, a boundary point

of problem (7.11) corresponds to a case where a ver-

tex touches an edge, and so does a boundary point of

problem (7.12). Therefore, we only need to compute the

boundary optimum for (7.11). There are 3 segments on the boundary: (i)
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x = [ a 0 ]T , a ∈ [0, 1], (ii) x = [ 0 a ]T , a ∈ [0, 1], and (iii) x = [ a 1−a ]T , a ∈ [0, 1].

Substituting them respectively into (C.6), we obtain a 1D objective function,

f (a) =
Aua2 + Bua + Cu

Ada2 + Bda + Cd
.

For the segment (i),

Au = A11, Bu = a1, Cu = cu

Ad = B11, Bd = b1, Cd = cd.

For the segment (ii),

Au = A22, Bu = a2, Cu = cu

Ad = B22, Bd = b2, Cd = cd

For the segment (iii),

Au = A11 − 2A12 + A22,

Bu = 2(A12 − A22) + a1 − a2,

Cu = A22 + a2 + cu

Ad = B11 − 2B12 + B22,

Bd = 2(B12 − B22) + b1 − b2,

Cd = B22 + b2 + cd.

To compute the optimum on a segment, taking f ′(a) = 0, we get a cubic equa-

tion. Fortunately, we observe that for all cases the 3rd-order coefficient al-

ways vanishes, and therefore we only need to solve the quadratic equation

Aqa2 + Bqa + Cq = 0, where Aq = AuBd − BuAd, Bq = 2(CdAu − CuAd), and

Cq = CdBu − CuBd. If the solution of these quadratic equations are in [0, 1],

we compute its corresponding optimum value f (a). Otherwise, the optimum

occurs at the segment end-points, i.e., f (0) or f (1).
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Figure C.1: Simplification of the objective function: (a) The numerator
and denominator of the objective function in (C.6) are plot-
ted as two elliptical contours. (b) We apply an affine trans-
formation to regularize the objective function into a simpler
form (C.7), in which the numerator has a circular contour and
the denominator has an axis-aligned elliptical contour cen-
tered at the origin.

C.3.2 Optimum value in the interior of domain

Next we check if an optimum appears in the interior of C. For each interior

optimum, we compute the optimum value, compare it with the boundary op-

timum values, and take the minimum. This case is more involved. To ease the

derivation, we first regularize the problem (C.6) into a simpler form. Both the

numerator and denominator of (C.6) are 2-D quadratic forms, representing two

sets of ellipse contours on the 2-D plane (see Figure C.1(a)). Using an affine

transformation ψ : x 7→ Fax + ta, we simplify (C.6) into the following form (see

Figure C.1(b)),

minimize
(u − cx)2 + (v − cy)2 + c̃u

au2 + bv2 + c̃d

subject to [ u v ]T ∈ ψ[C].

(C.7)

In practice, this simplification is performed in three steps: (i) we compute the

eigen-decomposition, A = VΣVT , to simplify the numerator of (C.6), and using
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x = VΣ−1/2VTy, the objective function of (C.6) becomes into

yTy + aT VΣ−
1
2y + cu

yTΣ−
1
2 VT BVΣ−

1
2y + bT VΣ−

1
2y + cd

≡
yTy + ãTy + cu

yT B̃y + b̃Ty + cd
,

(ii) next we compute the eigen-decomposition, B̃ = UDUT , to diagonalize the

denominator: using z = Uy further transforms the above objective function into

zTz + ãT Uz + cu

zT Dz + b̃T Uz + cd
≡
zTz + âTz + cu

zT Dz + b̂Tz + cd

,

and (iii) we take the translation z = v − 1
2D−1b̂, and finally simplify the objective

function into

vTv + (â − D−1b̂)Tv + cu + 1
4 b̂

T D−2b̂ − 1
2 â

T D−1b̂

vT Dv + cd −
1
4 b̂

T D−1b̂
.

This form of objective function agrees with (C.7): let p ≡ â − D−1b̂, then cx =

−p1/2, cy = −p2/2, a = D11, b = D22,

c̃u = cu +
1
4
b̂T D−2b̂ −

1
2
âT D−1b̂ − c2

x − c2
y , and

c̃d = cd −
1
4
b̂T D−1b̂.

Affine transformation preserves convexity of a domain, therefore ψ[C] is still a

convex set. Since the simplified problem (C.7) is equivalent to (C.6), from now

on, we check if the optimum of (C.7) can be achieved in the interior of ψ[C], and

then compute the optimum value if it is inside of ψ[C]. Let n(u, v) and d(u, v)

denote the numerator and denominator respectively in the objective function

of (C.7). Consider the objective value on a single contour ΩC : d(u, v) = C (see

blue ellipse in Figure C.2). The method of Lagrange multipliers shows that the

local optimum of the objective function n(u,v)
d(u,v) on the contour ΩC occurs when a

contour of n(u, v) meets ΩC tangentially (see green circle in Figure C.2a). Let τ

denote the optimum point on d(u, v) = C. If τ is outside of the ψ[C], then the

optimum on the set ΩC ∩ ψ[C] (see the gray polygon in Figure C.2a) is on the
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boundary of ψ[C], in which case the optimum has been computed as presented

in Appendix C.3.1. Otherwise, we need to compute the interior-point optimum.

Now put together the optimum points of all contours of d(u, v). We observe

that they form a curve Cp (see red curve in Figure C.2a) which is analytically

determined by the following function,

y =
1

CAx + CB
−

1
CB

, (C.8)

where CA =
−(b−a)2

abcxcy
and CB = b−a

acy
. Then we determine if the curve Cp inter-

sects with the domain ψ[C] by checking the intersection of Cp and the piecewise

boundary segments of ψ[C]. In particular, to check the intersection of Cp and a

boundary segment defined by its two end points (x1, y1) and (x2, y2), we solve a

quadratic equation Aba2 + Bba + Cb = 0, where

Ab = CACB(x1 − x2)(y1 − y2),

Bb = C2
B(y1 − y2) + CA[(x1 − x2) + CB(x1y2 + x2y1 − 2x2y2)],

Cb = C2
By2 + CA(x2 + CBx2y2).

The curve Cp intersects with the boundary segment if a root a of this

quadratic equation is in [0, 1]. For problem (7.11), its domain has 3 boundary

segments, hence it requires 3 quadratic solves, and for problem (7.12), it needs

4 quadratic solves to check intersections. If Cp is separated from ψ[C], no fur-

ther computation is needed, because the optimum will occur on the boundary

of ψ[C], and the optimum values have been computed in Appendix C.3.1. Oth-

erwise, we compute the local optimum q of the objective function n(u,v)
d(u,v) on the

curve Cp. If q is outside of ψ[C], then again the optimum on the set Cp ∩ ψ[C] is

on the boundary of ψ[C], and hence the optimum of the entire domain ψ[C]

occurs on the boundary. If q is in the interior of ψ[C], we compare its ob-
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Figure C.2: Contour optimum: The optimum of objective function (C.7)
on elliptical contours form the red curve which can be analyt-
ically determined. (a) shows the general case, and (b) and (c)
illustrate the special cases where the center of the circular con-
tours of the numerator is on x- or y- axes.

jective value with the minimum value from the boundary (computed in Ap-

pendix C.3.1) and take the minimum. q is computed as follows. Substitut-

ing (C.8) into the objective function of (C.7), we get a single variable rational

function r(x). The optimum occurs when r′(x) = 0. This equation is a 6-order

polynomial equation, which fortunately can be factorized into two cubic equa-

tions, i.e. r′(x) = p(x)q(x) = 0. The first cubic equation p(x) = Pax3 +Pbx2 +Pcx+Pd

has the coefficients

Pa = (a − b)3,

Pb = 3(a − b)2bcx,

Pc = 3(a − b)b2c2
x, and

Pd = b2cx(bc2
x + ac2

y).

The discriminant of this cubic equation is always negative, indicating this equa-

tion has only one real root. The second cubic equation q(x) = Qax3 + Qbx2 + Qcx +

175



Qd has the coefficients

Qa = a(a − b)cx,

Qb = (b − a)(ac̃u − c̃d) + ac2
x(2b − a) + abc2

y ,

Qc = −cx(c̃d(a − 2b) + ab(c̃u + c2
x + c2

y)), and

Qd = −bc̃dc2
x.

We solve these cubic equations using the method of Nickalls [Nic93]. In practice,

the curve Cp is separated from the domain ψ[C] in most of the cases. In practice,

we only need to solve cubic equations for less than 0.2% of the triangle-triangle

certificates.

Care needs to be taken for two special cases where Cp produces lines parallel

to the X or Y axes: (i) cx = 0 and (ii) cy = 0. Both cases largely simplify the

computation. When cx = 0, Cp are the lines x = 0 and y = a
a−bcy (See Figure C.2b);

when cy = 0, Cp are the lines y = 0 and x = b
b−acx (see Figure C.2c). Determining

the intersection of these straight lines with the convex domain is trivial. When

cx = 0, the optimum on the curve Cp always occurs on Y-axis, and is determined

by a quadratic equation Ayy2 + Byy + Cy = 0 (instead of a cubic equation), where

Ay = 2bcy, By = 2[c̃d − b(c̃u + c2
y)], and Cy = −2c̃dcy.

Symmetrically, when cy = 0, the optimum on the curve Cp appears on X-axis,

and is computed by the quadratic equation Axx2 + Bxx + Cx = 0, where

Ax = 2acx, Bx = 2[c̃d − a(c̃u + c2
x)], and Cx = −2c̃dcx.
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[BJ10] Jernej Barbič and Doug L. James. Subspace Self-Collision Culling.
ACM Transactions on Graphics, 29(4):81:1–81:9, July 2010.

[Bla86] W.K. Blake. Mechanics of Flow-Induced Sound and Vibration. Aca-
demic Press, 1986.

[Bra20] S.W.H. Bragg. The World of Sound. G. Bell and Sons Ltd., London,
1920.

[Bro99] Bernard Brogliato. Nonsmooth Mechanics. Springer, second edition,
1999.

[BSM+03] Hector M. Briceño, Pedro V. Sander, Leonard McMillan, Steven
Gortler, and Hugues Hoppe. Geometry videos: a new represen-
tation for 3d animations. In 2003 ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, pages 136–146, August 2003.

[Bur98] C.J.C. Burges. A tutorial on support vector machines for pat-
tern recognition. Data mining and knowledge discovery, 2(2):121–167,
1998.

[But03] John C. Butcher. Numerical Methods for Ordinary Differential Equa-
tions. John Wiley & Sons, New York, NY, 2003.

[BW97] J. Bonet and R. D. Wood. Nonlinear Continuum Mechanics for Finite
Element Analysis. Cambridge University Press, 1997.

[CAJ09] Jeffrey N. Chadwick, Steven S. An, and Doug L. James. Har-
monic Shells: A practical nonlinear sound model for near-rigid
thin shells. ACM Trans. Graph., 28(5):1–10, 2009.

178



[CGC+02] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran
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