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Figure 1: A reduced skinning model of 150K hairs for interactive simulation: (a) We visualize the guide hairs and their weights on other
hairs using a colormap. With 150K hair strands, our reduced simulation runs at 40ms per frame. Two of the simulated frames are shown in
(b) and (d). As a comparison of the simulation quality, we show the same frames generated by a full simulation (30-60 seconds per frame) in
(c) and (e). Our reduced model exhibits comparable hair motions and details as captured by the full simulation.

Abstract

Realistic hair animation is a crucial component in depicting virtual
characters in interactive applications. While much progress has been
made in high-quality hair simulation, the overwhelming computa-
tion cost hinders similar fidelity in realtime simulations. To bridge
this gap, we propose a data-driven solution. Building upon precom-
puted simulation data, our approach constructs a reduced model to
optimally represent hair motion characteristics with a small number
of guide hairs and the corresponding interpolation relationships. At
runtime, utilizing such a reduced model, we only simulate guide
hairs that capture the general hair motion and interpolate all rest
strands. We further propose a hair correction method that corrects
the resulting hair motion with a position-based model to resolve
hair collisions and thus captures motion details. Our hair simulation
method enables a simulation of a full head of hairs with over 150K
strands in realtime. We demonstrate the efficacy and robustness of
our method with various hairstyles and driven motions (e.g., head
movement and wind force), and compared against full simulation
results that does not appear in the training data.
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1 Introduction

With a striking development of realistic hair models, hair simula-
tion has popularized itself in computer generated movies. Although
equally desired in computer games and interactive applications, re-
altime hair simulation has been much less explored. The main chal-
lenge is due to a high complexity of realistic hair models. For
instance, a young adult typically has more than 100K hair strands.
Realistic simulation of such amount of hair strands must consider
hair-hair and hair-body interactions, yielding an overwhelming com-
putation cost.

Our goal is to develop a fast hair simulation method that is able to
capture realistic hair motion details with interactive performance.
Although making up-front simplification is important for blazing
performance, we prefer the choices that retains physical foundations
and realism, since such a model also promises in controllability,
extensibility and easy parameter setup. From this vantage point, it
seems a logical strategy is to build a reduced model from physics-
based hair simulation.

Our reduced model exploits the basic idea of simulating only a small
set of guide hairs and interpolating the motion of a full set of hairs.
While this idea has been explored in previous methods, they all share
a major drawback of sacrificing hair motion details – interpolation
acts like a low-pass filter that easily smears out detailed motions in-
troduced by complex strand geometry and mutual interactions. The
key challenge in designing a reduced hair model is thus how to re-
tain the physical realism and motion details. To this end, we need
to address three problems. First, we seek to effectively assign guide
hairs to properly describe the “bones” of a full hair simulation. Dif-
ferent hair styles have different physical properties, leading to very
diverse hair motion characteristics. Therefore any ad-hoc or random
selection of guide hairs would be incapable of producing compara-
ble motion details as captured in a full hair simulation. Second,
it is important to decide for each single hair strand its guide hairs
and assign the weights such that the interpolation results match full
simulation results as well as possible. Finally, even with carefully
chosen guide hairs and optimal interpolation weights, the nature of
interpolation would unavoidably cause the loss of motion details,
unless hair mutual interactions are taken into account.

To address these problems, we propose to train a reduced model
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from a few sequences of precomputed full simulation data. Our
intuition is that although possible head motions can vary tremen-
dously, hair motions with respect to nearby hair strands are quite
limited and damped by large amount of collisions. This observation
suggests that it is sufficient to extract a reduced model from only
a few typical head motions. We therefore develop two techniques.
First, we propose an optimized hair skinning model with carefully
selected guide hairs based on the training data. We construct a graph
that reflects the local motion similarity of hair strands in the train-
ing data and formulate guide hair selection as a graph partitioning
problem, which clusters hair strands into a few groups with coherent
motions. We then select a representative strand as a guide hair from
each group. The interpolation weights for each hair particle are then
optimized by solving a linearly constrained least-square problem.

Hair motions interpolated using the skinning model lacks details,
because it ignores collisions. Our second technique is to further cor-
rect the resulting hair motions to respect collisions using a position-
based correction model. To this end, we again exploit the training
data and cluster hair particles into weakly coupled groups in the pre-
process. At runtime, we use Jacobi iterations to resolve collisions
in each group in parallel. Because of the weak coupling discovered
from training data, only a small number of iterations are needed to
capture plausible motion details.

Contributions. The core contribution of our work is a fast reduced
hair simulation model based on a small set of training data, together
with a collision correction algorithm to capture detailed runtime
hair motions. We show that this model produces very similar re-
sults as captured by a full simulation, but with significantly higher
performance (see Figure 1).

Furthermore, to demonstrate practical application of our method, we
build a realtime hair simulation system incorporating advanced hair
rendering and facial tracking. This system is able to simulate up to
150K hair strands entirely in realtime, proving the usability of our
method in computer games and interactive applications, in which
the total computing power has to be shared with other components.
To the best of our knowledge, this level of realtime performance
under a full integration of realistic hair simulation, rendering and
facial animation has not yet been achieved in previous works.

2 Related Works

Hair Simulation. Realistic hair modeling and animation has long
been an important research field [Ward et al. 2007], starting from the
early work [Rosenblum et al. 1991; Anjyo et al. 1992] for animating
individual hair strands without taking into account hair mutual in-
teractions. For high-quality hair animation, simulating every single
strand is advantageous for capture hair motion details, as advocated
by [Selle et al. 2008]. Dynamic models for single hair strand have
been extensively studied to plausibly capture real-world strand be-
haviors [Bertails et al. 2006; Selle et al. 2008; Bergou et al. 2008;
Casati et al. 2013]. Based on these models, methods that operate
on the strand level and take into account complex hair interactions
can yield high-fidelity results. Selle et al. [2008] modeled hair inter-
action as a combination of strand stiction and geometric collision,
successfully resolving dynamical change of wisp structures that are
lacking in clump approaches. Daviet et al. [2011] developed a hy-
brid approach that robustly simulate the Coulomb friction effects
between hair fibers. Unfortunately, all these methods focus on cap-
turing motion details and thus requires a large computation budget
to run offline. The high computation cost renders them impractical
for interactive applications.

Focusing more on the high-performance simulation of hairs, vari-
ous simplified representations have been proposed to accelerate hair
mutual interactions. One common idea is to implicitly resolve hair

interactions with continuum dynamics by exploiting the properties
of volume-preserving and local motion coherence. For example,
Hadap and Magnenat-Thalmann [2001] applied fluid dynamic mod-
els to resolve hair collisions; and Bando et al. [2003] modeled hairs
as loosely connected particles that are animated in a continuum
way. Aiming at stylized hair, some methods [Petrovic et al. 2005]
used volumetric structures to filter hair velocity and density inside.
A similar approach was proposed by [Müller et al. 2012] to mimic
hair-hair repulsion efficiently. To enhance the hair details McAdams
et al. [2009] proposed a hybrid fluid solver in the hair simulation
pipeline.

Perhaps the most relevant hair representation to our approach is the
aggregate clump models, in which strands are interpolated from a
few simulated guide strands, and hair interactions are handled on a
volumetric grid [Tariq and Bavoil 2008], or processed by simplified
primitives such as strips [Chang et al. 2002], cylinders [Choe et al.
2005; Plante et al. 2001], and spheres [Iben et al. 2013]. Adaptive
clump models [Bertails et al. 2003; Ward and Lin 2003; Ward et al.
2003] have further extended this idea to capture more details in
certain cases without sacrificing too much computational cost.

Many of these fast hair simulation methods rely on heuristic models
to trade off between accuracy and performance. They exchange the
simulation quality for performance. In contrast, we optimize our
reduced model based upon high-resolution full simulation data to
ensure detailed hair motions to be preserved better.

Data-driven Animation. Data-driven approaches are efficient al-
ternatives to physically based simulation, especially when the tar-
get phenomena are too expensive to simulate or too complex to
model properly. They have proven useful in simulating various phe-
nomena such as deformable objects [James and Fatahalian 2003],
clothes [Kavan et al. 2011] and fluids [Wicke et al. 2009].

One common data-driven strategy is to enhance coarsely simulated
results using motion details extracted from high-resolution data.
This approach has been successfully applied for generating detailed
cloth animations [Feng et al. 2010; Wang et al. 2011; Kavan et al.
2011]. Though physical principles may not be fully satisfied, the re-
sult improvement appears plausible in many cases and the computa-
tional overhead is usually low. Meanwhile, since the low-frequency
motions are not changed for detail enhancement, the resulting mo-
tions always agree with the simulated motions in large scales.

Another strategy of data-driven approach is to construct efficient
reduced models for complex dynamical systems. Such data-driven
reduced models have been applied for simulating deformable ob-
jects [James and Fatahalian 2003] and fluids [Treuille et al. 2006;
Wicke et al. 2009]. Our hair simulation method follows this general
approach. However, for hair simulation, the motion details heavily
depend on hair mutual interactions, which are challenging to resolve
but critical for motion details. Our approach corrects hair motions
after a reduced simulation step to enhance details. Our hair skinning
model is also similar in spirit to the cubature method of nonlinear
deformable simulation [An et al. 2008], which exploits the spatial
coherence for fast spatial integrations of internal forces. However,
we are not solving any integration problem, and hair motion might
not exhibit significant spatial coherence due to numerous collisions.

For reduced hair simulation, the recent work by Guan et al. [2012]
proposed a multi-linear reduce model incorporating head geome-
try and various user-specified parameters. The proposed simulation
runs in a reduced space with up to 4000 hair strands being animated
in about 20ms per frame. However, one major limitation is that the
runtime character motion needs to have sufficient similarity as the
training data. Moreover, this method considers no hair-hair inter-
actions, therefore lacking many details. Our method distinguishes
from this approach in two aspects: first, we optimize the selection



Figure 2: Skinning interpolation: Our reduced model interpolates
a full set of hairs (right) using a few guide hairs (left) visualized with
different colors. (middle) We visualize the hair blending weights of
the skinning model using a color map.

of guide hairs and their weights for affecting other hairs. As a re-
sult, our reduced model represents the local hair relationships with
large-scale motions constrained by physically simulated guide hairs.
This approach is flexible to incorporate various head motions and
environmental forces. Meanwhile, we explicitly resolve hair-hair
and hair-body interactions to recover realistic motion details.

3 Rationale and Overview

Interactive hair simulation is challenging, mainly because numerous
hair strands need to be considered and intricate collisions prevail
throughout the simulation. At every step, a simulator needs to detect
collisions, compute contacts and internal forces, and advance every
single hair strand. In other words, collision resolution are coupled
in the hair dynamics. As a result, previous interactive hair models
have to sacrifice detailed collision resolution in exchange for fast
hair dynamics, and thus fail to retain hair details such as clump
separation and stray hairs.

Key Idea. We propose to decouple the detailed collision resolu-
tion from hair dynamics. Our method first simulates hair dynamics
and advance hair states using a reduced model, followed by a hair
correction step that resolves collisions for hair details. This decou-
pled scheme enables us to build separated models for both steps.
Unlike previous hair simulation methods, we optimize both our re-
duced hair model and hair correction scheme based on precomputed
full simulation data. This idea is motivated by the observation that
widespread hair collisions effectively restrict hair strands to move
in a limited way with respect to their nearby hairs. Thus, a small set
of full simulation data is sufficient to extract local statistical infor-
mation that reflects spatial coherence of hair motions and helps to
accelerate collision resolution. Concretely, our method consists of
the following two components.

Offline Training. Provided a time sequence of hair motion from
a full simulation, our system selects a set of representative strands
based on their local motion similarity exhibited in the training data
(§5). These hair strands will serve as guide hairs in our reduced
hair model at runtime. Next, we learn a hair skinning model that
interpolates the motions of a full set of hairs using the guide hairs
(§5.2). This skinning model resembles a linear blend skinning (LBS)
model [James and Twigg 2005; Kavan et al. 2011], in which the
guide hairs serve as bones while the others act like skin. In addi-
tion to building the skinning model, we extract hair-hair interaction
statistics from the training data and cluster hairs into weakly cou-
pled regions (§5.4). These regions, called hair correction groups,
are critical to accelerate our hair correction step at runtime.

Simulation stateRest state

Transform

Figure 3: Hair Skinning Model: In our hair skinning model, each
normal hair particle (in purple) is interpolated from its guide hair
particles (in orange). (Left) We describe the rest state of a hair
particle using a tangential vector t̄i and particle position p̄i in
the head’s local frame of reference. (Right) We use the skinning
model Eq. (2) to interpolate normal hair particles also in the head’s
frame of reference.

Interactive Hair Simulation. At runtime, we directly simulate
the selected guide hairs to capture general hair motions and rough
collisions (§6.1). We then interpolate the motions of entire hair
strands using the learned hair skinning model. These steps serve
as a prediction, resulting full-resolution hair dynamics but lacking
motion details. Lastly, as a correction step, we resolve detailed
hair collisions. To ensure interactive performance, we propose a
position-based correction model (§6.2), which resolves collisions in
parallel on all hair correction groups, and converges within a very
small number of iterations.

4 Reduced Hair Model

Hair Representation. In our reduced hair model, a hair strand is
a B-spline curve described by a chain of particles. In addition to
position p ∈ R3, a hair particle also carries a tangential direction
t to aid smooth interpolation in our hair skinning model (detailed
later). In general, we use s = (p, t) to denote the state of a hair
particle. Since hairs are always attached to a rigid head, we put a
bar over a letter (i.e., s̄ = (p̄, t̄)) to denote hair particle state in the
head’s local frame of reference. We refer s̄ as the local coordinate
of a hair particle, and s as its world coordinate. Given a rigid
head transformation T , the local-to-world transformation of a hair
particle is s = T s̄, in which p is translated and t is rotated by T .

Similar to previous approaches [Chang et al. 2002], our reduced hair
model consists of a small set of guide hairs and the rest of the hairs,
which we call normal hairs to distinguish them from the guide hairs.
To ensure interactive performance, we simulate only guide hairs
with explicit collision resolution, and then interpolate the states of
normal hairs from guide hairs. Our method does not depend criti-
cally on any particular hair simulation model as long as the reduced
simulation guarantees interactive performance. In our implemen-
tation, we use the mass-spring strand dynamic model [Selle et al.
2008] to provide plausible and physically based hair motions, even
though it is not originally intended for realtime simulation.

Hair Skinning. To interpolate normal hairs, we propose to exploit
precomputed full simulation data to determine interpolation weights.
This enables a flexible hair skinning model that can be automatically
set up, and thus significantly distinguish it from previous interpola-
tion methods [Chang et al. 2002]. In particular, instead of interpolat-
ing an entire strand of a normal hair from guide hairs, we propose to
interpolate every normal hair particle from a subset of hair particles
on guide hairs (see Figure 3).



Figure 4: Examples of a training sequence driven by different
head motions (shown in individual rows).

We first define a rest state s∗ for all hair particles as the static equi-
librium state when the head is static. And the corresponding local
coordinate is s̄∗. Consider a simulation step, in which the head
transformation is T and guide hair particles are moved to their cur-
rent states sg . For each guide particle g, we first compute a local
transformation Bg that transforms it from its rest state s̄∗g to its
current state s̄g in the local frame, i.e.,

s̄g = T−1sg = Bgs̄
∗
g. (1)

When interpolating the state si of a normal hair particle i, we con-
sider a set Ci of guide particles that affect i, and update si as

si = T

∑
g∈Ci

wigBgs̄
∗
i

 , (2)

where wig are positive skinning weights. This skinning model is
similar to the classic LBS model widely used in deformable ani-
mations. For our purpose, it offers two major advantages. First, it
enables us to interpolate normal hairs from guide hairs with fine
granularity, as the hair particles along a single normal hair can be
affected by different guide hairs. Second, it is easy to train this
model from full simulation data. Indeed, this hair skinning model
requires three sets of parameters: (i) a set of guide hairs, (ii) a set Ci
of affecting guide particles for every normal particle i and (iii) the
associated weights wig , all of which are determined in our training
stage as detailed in the next section.

5 Offline Model Construction

We now present our algorithm to set up the reduced hair model for
interactive simulation. In addition, to lay out the foundation of our
runtime hair correction algorithm, we will describe our clustering
algorithm for creating hair correction groups also based on supplied
full simulation data.

5.1 Training Data Preparation

Input to our offline hair simulation includes three parts:

• A complete hair geometry at rest state provides a reference
state to compute transformation of hair particles in the head’s
local frame of reference, as used in §4.

Algorithm 1 Guide Hairs Selection

1: Go through all training frames, detect interacting particles pairs
and build the topology of graph G

2: Calculate motion similarity of each edge in G according
to Eq. (5)

3: Partition G into strand clusters
4: Iteratively select a guide hair in each cluster to maximize energy

function (7)

• A sequence of rigid head motion is used to drive a full hair an-
imation sequence. They describe the state of the head model at
each animation frame, and help to transform hair particle coordi-
nates between the head’s local and world frame of reference. We
denote them as Tf , f = 1...F .

• A full hair animation sequence serves as our training data set.
Many hair simulation models driven by prescribed head motions
can be used to generate the training sequence. In our implemen-
tation, we adopt the mass-spring model [Selle et al. 2008] to
simulate a full set of hairs with F frames.

To prepare the training data, we select about 8 typical head move-
ments including roll, yaw, pitch and other random motions (see
Figure 4). Based on these movements, our full simulation generates
an animation with about 500 frames (i.e., F = 500).

5.2 Guide Hair Selection

With the training data prepared, we now select a small set of guide
hairs for runtime simulation. At first glance, this problem is similar
to skinning mesh animations [James and Twigg 2005; Le and Deng
2012]: we need to select guide hairs as bones and skin with normal
hairs. However, fundamental differences exist, and therefore direct
application of those methods would fail. First, a guide hair is not
really a “bone”, since it can twist, curl or tangle, and would never
be rigid or simply deformed as in conventional LBS models. Con-
sequently, we select individual hair strands as guide hairs, but build
the skinning model on individual hair particles instead of entire hair
strands. Moreover, we need to handle a large number of hair parti-
cles (about 2 millions in our experiments), and select hundreds of
guide hairs. The problem size is much larger than a typical mesh
skinning problem.

We therefore propose to estimate the hair skinning model in two
steps. First, we cluster hair strands into groups using a motion
similarity graph, and select a single representative hair from each
group as the guide hair. Next, we estimate the skinning weights wig

based on the training sequence (see an outline in Algorithm 1).

Similarity Graph of Strand Motion. We first build a graph model
that reflects the local motion similarity of hair strands. We note
that Iben et al. [2013] also relies on a graph model built upon the
static initial hair geometry to cluster hair-hair contacts. In contrast
to their method, our goal is to analyze motion similarity, and thus we
consider the entire input animation sequence, in which hairs might
move drastically away from their initial states.

We first build a graph on hair particle level instead of strand level,
because a single hair may twist or curl differently at its different
parts. On the graph, every node represents a hair particle. We
initialize graph edges by considering hair particle proximity. Let
pi(f) denote the position of particle i at an input frame f . For
every particle i at f , we search its nearby particles within a radius
rl and create an edge between them. In other words, we initialize
an edge between i and j as long as there exists a frame f such that
‖pi(f)−pj(f)‖2 < rl. The radius rl is the distance threshold used



Figure 5: Hair Groups, Guide Strands, and Skinning Weights:
We illustrate the hair groups, guide hairs and skinning weights with
different hair styles. (Left Column) The hair particles are clustered
into hair groups. (Middle Column) Next, a small number of guide
hairs are selected from each group. (Right Column) Lastly, we build
a hair skinning model (§5.3) We visualize the hairs with a colormap
encoding the skinning weights from guide hair particles.

in our full simulation to allow hair particle interactions. Meanwhile,
for every edge eij , we maintain an integer number cij that counts
the number of frames in which i and j are in proximity. Namely,

cij =
∑
f∈F

δ(pi(f),pj(f)), (3)

where the indication function δ(pi(f),pj(f)) is defined as

δ(pi(f),pj(f)) =

{
1, ‖pi(f)− pj(f)‖2 ≤ rl
0, ‖pi(f)− pj(f)‖2 > rl

. (4)

To enable efficient use of graph algorithms, we further prune the
graph edges by removing the edges whose counts are smaller than a
threshold, i.e., cij < εeF . In practice, we set εe = 0.2.

After building the basic graph topology, we then assign each edge
eij a weight uij to measure the motion similarity between hair
particle i and j. Consider a particle i at frame f . Let s̄i(f) and
s̄i
∗ denote its local coordinate of the current state and rest state

respectively. We also compute a local transformation Bi(f) that
transforms the particle from s̄i

∗ to s̄i(f) (i.e., s̄i(f) = Bi(f)s̄i
∗).

Then the weight uij is defined as

uij = −
∑
f∈F

(
‖s̄i(f)−Bj(f)s̄∗i ‖22 + ‖s̄j(f)−Bi(f)s̄∗j‖22

)
+ Cw,

(5)

where Cw is a constant to ensure uij is always positive. In practice,
we simply use the maximum value of the first term in Eq. (5):

Cw = max
i,j

∑
f∈F

(
‖s̄i(f)−Bj(f)s̄∗i ‖22 + ‖s̄j(f)−Bi(f)s̄∗j‖22

)
.

This weight function is invariant to head poses, since we compute
the difference in the head’s local frame. It further guarantees that
a pair of particles with similar motions produces a large weight,
which is a property allowing to apply the K-way cut algorithm in
the next step.

Before applying our guide hair selection algorithm, we finally shrink
the size of the graph. We contract all hair particle nodes that come
from a single hair strand into a single graph node. We also sum
up the weights of edges that are contracted into a single one, and
use the summation as the weight of the resulting edge. After this
step, we have a graph whose nodes correspond to individual hair
strand. Our next step is to cluster this graph into groups and select
a representative node from each group as a guide hair.

Graph Partition. We partition the graph into k parts to group hairs
with coherent motions. Formally, we cut the graph into k disjoint
sets {S1,S2, ...,Sk} while minimizing

f =

k−1∑
i=1

k∑
j=i+1

∑
a∈Si,b∈Sj

uab. (6)

This is a classical minimum K-cut problem. When k is user-
specified as in our case, it is NP-hard. Instead, we adopt approxi-
mated K-cut algorithm [Vazirani 2001], which provides fast perfor-
mance and guarantees bounded approximation results. In practice,
we use the approximated K-cut algorithm provided by the library
METIS [Karypis and Kumar 1998].

Selection of Guide Hairs. We now select a guide hair from each
group, which consists of coherently moving hairs. Although there
are many choices on guide hair selection, given the large size of
graph nodes, we prefer a method that balance the computation cost
and the quality of the resulting skinning model. Therefore, we
propose an hair selection algorithm that maximizes the following
energy function

f(G) =
∑
i/∈G

∑
j∈N (i)∩G

uij , (7)

where G is the set of selected guide hairs; i denotes a normal hair;
and j denotes a guide hair in its neighborhoodN (i) (i.e., there exists
an edge eij on the graph). We then select guide hairs to maximize
the similarity between every normal hair and the guide hairs in its
neighborhood using an iterative algorithm:

• Initialization: We select in each group the node that has the
maximum summation of edge weights. Note that these nodes can
not guarantee a maximum energy value of Eq. (7), because two
selected nodes may connect with each other.

• Iteration: We then sequentially operate on every single group
and fix other groups. We traverse each node in the current group
and compute the energy function value when using that node as
the guide hair. We select the node that leads to the maximum
energy value as the guide hair, and move on to the next group.

• Termination: We repeat the iteration until selected guide hairs G
stop changing. Since at each iteration the energy function never
decreases, this algorithm always converges and terminates.

Given a large graph, this heuristic algorithm is fast and produces
plausible skinning model configuration. In Figure 6, we compare its



Figure 6: Reconstruction Errors of different guide hair selection
strategies: the error metric is defined as Eq. (8). Randomly selected
guide hairs (green curve) lead to large error. A brute-force hair
selection strategy (Blue curve) performs iteratively over every group
to find the guide strands that lead to the smallest error, taking about
10 hours. Our heuristic approach (orange curve) is slightly less
optimal, but much faster, taking less than 10 minutes.

performance against the results of directly optimizing the reconstruc-
tion error of the skinning model, which is mathematically optimal,
but computationally much more expensive.

5.3 Estimation of Skinning Weights

After the selection of guide hairs, we finally estimate the skinning
weights wig for every normal hair particle, and complete our skin-
ning model setup. Here for every normal hair particle i, we decide
(i) a set Ci of guide hair particles that affect its position interpolation
and (ii) the skinning weight wig for every guide hair particle g ∈ Ci
(see Algorithm 2).

Guide Hair

We start by introducing a few no-
tations. Consider a normal par-
ticle i in one of the graph parts
that we partition into in §5.2. Let
ti denote the graph part that con-
tains i and N (ti) denote the set
of other graph parts connecting
with ti. In other words, for any
graph part t ∈ N (ti), there ex-
ists an graph edge (a, b) such
that a ∈ t and b ∈ ti. In addition, we use H(t) to denote the
set of guide hair particles on the guide hair of graph part t. See the
adjacent figure for an illustration of these notations.

Initially, given a normal particle i, we choose its guide particle set
as Ci = H(ti) ∪ H(t) ∀t ∈ N (ti). Then we estimate a skinning
weights wig such that the resulting skinning positions for all nor-
mal particles at every input frame are as close as possible to their
provided positions in the training sequence. Concretely, we solve
a least-square minimization problem similar to [James and Twigg
2005; Wang and Phillips 2002],

min
wi

F∑
f=1

‖
∑
g∈Ci

wigBg(f)s̄∗i − s̄i(f)‖2, (8)

where, consistent with earlier notations, s̄i(f) and s̄∗i are respec-
tively the local coordinates of the current and rest states of particle
i; and Bi(f) transforms the particle from s̄∗i to s̄i(f). This approx-
imation is linear with respect to the unknowns wig , which should

Algorithm 2 Skinning Weights Estimation

1: for each normal hair particle i do
2: Find all affecting guide particles Ci

3: Estimate skinning weightsWig for each g ∈ Ci with Eq. (8)
4: Limit particle size in Ci and re-estimate skinning weights
5: end for

also satisfy the constraints

wig ≥ 0 and
∑
g∈Ci

wig = 1. (9)

We simply solve this linearly constrained least-square problem us-
ing a quadratic programming solver implemented using QL [Schit-
tkowski 2005].

At this point, Ci can have tens of guide particles. A large Ci size will
degrade our runtime skinning performance. Therefore, we further
limit its size such that |Ci| ≤ M for every particle i. To this end,
we discard guide particles from Ci and only keep M particles with
the largest weight wig . In practice, we use M = 10. This step
finalizes the guide particle set Ci. Finally, we use the updated Ci
and solve the constrained least-square problem (8) to finalize the
skinning weights.

5.4 Clustering Hair Correction Groups

In addition to setting up the hair skinning model, we cluster all
hair particles into a number of groups, called hair correction groups.
The purpose of these groups is to accelerate the collision resolution
step in the interactive hair simulation. We will present the collision
resolution details later in §6.2. For now, we note that our goal
here is to partition the hair particles into groups with minimal inter-
group collision interactions. At runtime, we resolve collisions inside
each group in parallel, and use a few iterations to address the weak
interactions across groups. Readers who are not familiar with the
hair collision resolution details may skip this section temporarily
and refer it back from §6.2.

Again, we address this clustering problem using a graph model. In
fact, we reuse the graph that we create at the beginning of §5.2. We
briefly review the graph here. In the graph, each node corresponds
to a hair particle. An edge eij is created if there exists a frame f
such that ‖pi(f)−pj(f)‖2 < rl. Now, the weight of an edge eij is
the number of frames in which i and j interact each other, computed
as in Eq. (3).

This graph reflects how frequently two hair particles interact. We
seek to cut this graph into K parts, each forming a correction group.
Meanwhile, to balance the runtime parallel computation, we hope
the size of each group to be as close as possible. Formally, our graph
partitioning problem is to partition the graph nodes into K groups
with roughly equal sizes such that the total weights of edges con-
necting nodes in different groups is minimized. This is yet another
constrained K-cut problem, and we again use the approximation
algorithm implemented in METIS [Karypis and Kumar 1998] to
solve it. In all our results, we set K = 100 to take advantage of
parallelism for runtime collision resolution.

6 Interactive Hair Simulation

With a reduced hair model setup, we proceed to present our in-
teractive hair simulation. In general, our simulation method has
two steps: (i) we simulate the selected guide hairs and use them to
interpolate a full head of hair; (ii) we correct interpolated hair mo-
tions to further resolve detailed collisions. The first step generates



Figure 7: Reuse of Collision Links: In a typical hair simulation,
our temporally coherent link update reuses more than 80% of links
from previous frames on average.

smooth motion in large space scales, while the second step fills in
details. However, large-scale interactive simulation allocates very
limited time budget for these steps. For instance, we must finish a
timestep within 30ms in a practical system with many other com-
ponents. Therefore, we optimize both steps and exploit parallelism
and temporal coherence throughout the simulation.

6.1 Simulation of Reduced Hair Model

At runtime, we simulate only guide hairs. While many hair simu-
lation methods are available, our implementation is largely based
on the mass-spring model [Selle et al. 2008] as also used for train-
ing data generation. We detect hair-body collision using a level-set
representation of solid geometry and process collisions as in [Brid-
son et al. 2003]. Hair-hair interactions are approximated with a
penalty model, which considers both repulsion and stiction effects
when two particles are close to each other. At each time step, we
create a spring link between two hair particles whose distance is less
than a threshold. As they move away from each other, we dynami-
cally remove the spring links. We refer the reader to their paper for
implementation details.

Temporally Coherent Link Update. We find that one critical per-
formance bottleneck at every timestep is the spring link update,
because the interacting pairs of particles change over time. While
various spatial acceleration data structures exist to accelerate the
nearest neighbor searches (NNS), it is still expensive to perform
at each timestep given limited time budget. To make matters even
worse, a sudden change of head motion may push together hair
strands, and thus severely increase the number of collision pairs.
Such a burst of collision pairs suddenly slows down the simulation
and unstabilizes the frame rate, resulting in an unpleasant lag in a
realtime system.

To alleviate this problem, we exploit temporal coherence and pro-
pose a limited link update algorithm. First, we limit the maximum
number (denoted as N ) of links that a hair particle can have at a
timestep. This enables us to use k-nearest neighbor (kNN) search,
which outperforms the fix-radius search because of more efficient
pruning. Next, we notice that the link distribution varies tempo-
rally coherently, because the distance between two particles always
changes gradually over time. Therefore, at the beginning of our
collision detection, we first check if a particle’s links from previous
timestep are still within the penalty distance threshold. We only
discard existing links that becomes invalid at the current timestep.
If the number (denoted as M ) of remaining links is less than N , we
search for additionalN −M nearest particles, and check if we need
to create extra spring links. Because of the temporal coherence of
links,N−M tends to be very small, leading to small-scale and thus
fast kNN searches. In our experiments, we find that this algorithm
reuses more than 80% links on average (see Figure 7), and thus
largely improve the runtime performance.

6.2 Hair Correction for Detailed Collision Resolution

After advancing the states of guide hairs at a timestep, we inter-
polate the states of all normal hairs using the hair skinning model
introduced in §4. Not surprisingly, the resulting animation lacks
detailed motions, because the hair skinning ignores collisions. Our
final step in the interactive simulation is to correct the interpolated
hair states to resolve collisions and thus recover hair details.

If the total number of normal hairs is extremely large (e.g., more
than 150K hairs), we can extend our model and organize hairs as a
three-level structure and perform hair correction only at the middle
level with about 10K strands to guarantee realtime performance. We
defer the details of this minor extension in §7.

Position-Based Collision Resolution. We now correct all hair par-
ticles to resolve collisions. Given a limited time budget and a large
number of hair particles, it it necessary to keep the collision reso-
lution as light as possible. Therefore, a natural choice is to correct
hair particle positions using position-based dynamics (PBD) [Müller
et al. 2007]. Our first attempt was to follow the PBD and project hair
particles using collision constraints with a few Gauss-Seidel itera-
tions. Unfortunately, this correction is independent at each timestep,
disregarding the temporal coherence of hair particles. It leads to
rather pronounced flickering artifacts, because some corrected hairs
can move back and forth with respect to other hairs.

Instead, we propose to ensure the temporal coherence using a regu-
larized energy function in PBD framework. In particular, we correct
hair particle positions by minimizing the cost function,

g =
∑
i∈P

1

2
mi‖p′i−pi‖22+

kh2

2

∑
(i,j)∈L

∥∥∥∥p′i − p′j − dr
pi − pj

‖pi − pj‖2

∥∥∥∥2
2

,

(10)
where p′i is the corrected particle position that we need to solve; pi

is the position resulting from hair skinning model; mi is the mass
of particle i; h is the simulation timestep size; dr is the collision
distance threshold as used in our penalty-based collision model; L
indicates the set of particle pairs whose distance is less than dr . The
second term of g penalizes the violation of collision constraints,
while the first term penalizes the deviation of correction positions
from the interpolated and temporally coherent positions. Lastly,
k is the parameter to balance both terms, also used as a stiffness
parameter in the PBD framework.

As another justification of the cost function Eq. (10), we note
that pi can be seen as predicted positions. And minimiz-
ing Eq. (10) amounts to solving a correction equation, M(p′−p) =
h2∇C(p′,p), where M is the mass matrix consisting of mi, p and
p′ are vectors stacking the predicted and corrected hair particle po-
sitions respectively, and C(p′,p) is the collision energy function
used as the second term in Eq. (10).

We note that similar formulation has been developed in the recent
work [Liu et al. 2013]. Here we emphasize the fundamental differ-
ences to clarify the reason why we can not apply their method and
to motivate our proposed solution in the rest of this section. First,
aiming at interactive hair simulation, we have much larger problem
size with quite limited computing budget. Even directly solving a
sparse linear system as proposed in their method with our problem
size is unaffordable in realtime. More importantly, their method
assumes a fixed spring connectivity throughout the simulation and
thus a constant system matrix that allows pre-factorization for fast
solve. Unfortunately, hair simulation breaks this assumption, be-
cause hair particles may move close to or away from each other,
changing the spring links dynamically. Lastly, facing these difficul-
ties, we choose to use the spring energy function appeared as the
second term in Eq. (10). This function distinguishes itself from the
conventional spring potential that is used as a critical form to enable



Algorithm 3 Fast Position Correction

Input: Original particle positions P
Output: Corrected particle positions P ′

1: for i = 1→ maxIteration do
2: for g = 1→ allGroup do
3: Correct collision for P ′ ← p ∈ Cg ,
4: with boundary conditions p /∈ Cg ← P
5: end for
6: P ← P ′

7: end for

the fast solve in [Liu et al. 2013]. Our energy function instead fixes
the spring link direction to linearize the collision forces with respect
to p′i, and therefore allows interactive parallel solves.

Fast Solve of Corrected Positions. A direct approach to mini-
mize Eq. (10) is to solve∇p′g = 0. It solves a sparse linear system
because Eq. (10) has a quadratic form. However, given the large
number of hair particles, the direct sparse solve is still unaffordable
in interactive simulation. For example, in our system, a time budget
of 20ms allows only a sparse linear solve with about 2500 hair par-
ticles (i.e., about 100 hair strands), much smaller than the desired
hair simulation size. We therefore seek for a faster solver. We out-
line our proposed solver in Algorithm 3, and elucidate its critical
components as follows:
• Jacobi Iterations over Hair Correction Groups: During the

training stage, we cluster hair particles into hair correction groups
(see §5.4). The resulting correction groups tend to have weak
hair-hair interactions across groups. At the high level, our algo-
rithm takes Jacobi iterations over the correction groups. At each
iteration, we resolve the hair particle collisions in the correction
groups individually. When operating on one group, we fix the
positions of particles in all other groups using the positions from
last iteration. The weak coupling among hair correction groups
enables a fast Jacobi convergence. In practice, 4 iterations are
sufficient to resolve all collisions plausibly. In Figure 8, we jus-
tify the advantage of our hair correction groups by comparing its
convergence rate with a naive approach.

• Parallel Solve on Hair Correction Groups: We use Jacobi iter-
ations over correction groups instead of Gauss-Seidel-type itera-
tions, because it enables us to exploit widespread multiprocessor
for solving Eq. (10) in parallel. Consider one correction group
with a set Pt of particles, we solve the corrected particle positions
by minimizing the cost function,

gt =
∑
i∈Pt

1

2
mi‖p′i − pi‖22+

kh2

2

∑
(i,j)∈L
i∈Pt or
j∈Pt

∥∥∥∥p′i − p′j − dr
pi − pj

‖pi − pj‖2

∥∥∥∥2
2

.
(11)

Here in the second term, when a particle is linked against another
particle j outside of the group, we use the fixed position pj from
last iteration. Given a small number of particles in one correction
group, minimizing gt amounts to solving a small linear system.
Thus we can solve it in a short time (usually less than 3ms).

• Incremental Cholesky Factorization: Minimizing gt by solv-
ing the equation∇p′gt = 0 takes the form Ap′ = b, in which A
is a sparse matrix. Its sparsity pattern depends on particle connec-
tivity. In particular, if the distance between two particles i and j
in the group is less then dr , we add a spring link between them.
Correspondingly, we have a rank-3 update of A,

A← A + vvT , (12)

Figure 8: Error convergence curves of iterative hair correction
with different particle clustering strategies: The error is defined as
the sum of particle distances to the directly solved optimal particle
positions. The green curve is generated using a naive clustering
based on geodesic distance of strand roots on head scalp. The or-
ange curve shows the result with our hair correction groups, which
requires much fewer iterations to converge.

where vT =
[
0 ... kh2I3×3 ... − kh2I3×3 ... 0

]
is a 3 × 3n

matrix, where n is the number of particles in the group; it has
zero everywhere except two nonzero 3× 3 blocks, kh2I3×3 and
−kh2I3×3, at positions corresponding to particle i and j. Here
I3×3 is a 3× 3 identify matrix. Similarly, when a link between i
and j is removed, we have another rank-3 update, A← A−vvT .
This low-rank update of A suggests that we once again exploit
the temporal coherence of link update. At the beginning of the
hair correction step, we use the low-rank incremental Cholesky
algorithm [Seeger 2007] to update the Cholesky factorization of
A, and reuse it during our Jacobi iterations.

Lastly, our Jacobi iterations always converges to the hair particle
positions that minimize Eq. (10), because Eq. (10) is a quadratic
form with a unique global minimum, and every hair correction solve
in each group always decreases its value.

7 Implementation Details

Hair Simulation. We use a mass-spring model similar to [Selle
et al. 2008] for both offline and runtime simulations. We sample
every hair strand uniformly in arc-length and build particle spring
connections. The number of particles per strand is a critical pa-
rameter that affects both the result quality and performance. We
found a size of 20-25 in our experiments can achieve a good bal-
ance. For different hair styles, we adjust the simulation parameters
(e.g., spring stiffness, damping and friction coefficients) to get plau-
sible dynamic behavior. But both offline full simulation and runtime
interactive simulation use the same set of parameters, and no further
parameter tuning is needed.

Multi-Level Reduced Model. For extremely large number of hairs,
our reduced model can be easily extended to perform multi-level
interpolation to guarantee the performance. The normal hairs at a
coarse level serve as guide hairs for its succeeding fine level. For
instance, to ensure realtime performance on a commodity desktop,
our current implementation for the most complex examples orga-
nizes more than 150K hairs as a three-level structure. The top level
consists of a few hundred (200-400 in our experiments) guide hairs
simulated directly at runtime. The second level are sparser normal
hairs interpolated using guide hairs. And the finest level are the
full hairs further interpolated from the second level. We estimate
two skinning models for hair interpolation from the first level to the
second level and from the second level to the third level. But we
perform strand interaction correction only at the second level, which
typically consists of about 20K in our experiments.

Hair-Body Collision Correction. While hair-body collisions are



Figure 9: From left to right: the results of our reduced model with-
out interaction correction, the results of our reduced model with
interaction correction, and the full simulation results.

largely resolved during guide hair simulation, the interpolated nor-
mal strands may still penetrate into the body. To efficiently correct
hair-body collisions at runtime, we assume both the head and body
undergo rigid transformation, and precompute a distance field and
the distance gradient (for normals) stored in a level-set lattice. In
the correction step, after interpolating all normal hairs, we detect
colliding particles by evaluating their distance value from the body
surface. All colliding particles are pushed outwards along the pre-
computed normals using repulsion impulses. To ensure spatial and
temporal coherence, we further filter correction impulse vectors by
a smooth kernel.

Hair Rendering. We render all figures and animations in this paper
using a realtime renderer that uses the single scattering formula-
tion [Marschner et al. 2003] and handles shadows as in [Lokovic
and Veach 2000].

8 Experimental Results

We validate our reduced model on a variety of hairstyles, including
straight, wavy and curly hairs. Experiments show that the model
can generate detailed hair motions and produce similar results as
captured by a full simulation. Figure 12 shows some animation
results driven by head/body motions (the first three rows) and wind
forces (the bottom row).

We have extensively experimented our method on new head motions
that are not included in training motions (see Figure 12). Results
show that our method generalizes to new head motions well as long
as (i) the runtime head rotation is within the range of the training
data, and (ii) the head does not move with much larger velocity than
that in the training data. We also observed that as long as sufficient
head motion variance is included, specific motion in the training
data would not greatly affect the resulting reduced model, strand
partition or skinning weight distribution.

As shown in Figure 11, we integrated our hair simulation algorithm
into a video-based facial tracking system [Cao et al. 2013]. The
rigid head transformation tracked by the system is used to drive
the hair animation, which is then rendered together with the digital
avatar. We are able to run the entire system in realtime. Please see
the supplemental video for a live demo. This clearly demonstrates
the potential of our reduce hair model in interactive applications.

Performance. We tested the performance of our method on a com-
modity PC with a quad-core Intel i7-3770K CPU, 32GB memory
and Nvidia GeForce GTX 760 graphics card. For a hair model

Figure 10: Effects of number of guide hairs: (Top) one resulting
frame simulated using 100/200/500 guide hairs and a full simulation.
(Bottom) the respective reconstruction error curves of a training
sequence, evaluated according to Eq. (8).

Figure 11: We apply our interactive hair simulation to a realtime
performance-driven digital avatar.

with 150K strands and 300 guide hairs, the total simulation time is
about 40ms per frame, with 15ms for guide hair simulation, 5ms for
interpolation, and 20ms for collision correction.

Our implementation of offline full simulation typically costs 0.5-1
minute per frame for 100K-150K strands. The total simulation time
for a training sequence of 500 frames is around 5 hours. During
reduced model construction, guide hair selection takes about 10
minutes, and skinning weight estimation takes about 30 minutes.

Comparisons. In Figure 9, we compare results of our reduced
model (with and without collision correction) and the full simula-
tion results, under the same head motions that do not exist in the
training data. As shown, the collision correction enhances the inter-
polation results and recover more motion details and wisp structures,
resulting in more realistic animations. Please refer to the video for
more comparisons. Although one can still see some differences be-
tween our results and the full simulation results, they are visually
similar with motion details largely preserved. More importantly, our
method generates the results in realtime, being over two orders of
magnitude faster than the full simulation.

The most important parameter of our reduced model is the number
of guide hairs. More guide hairs leads to larger degrees of freedom
(DoFs) for runtime simulation, but better interpolation for the full
hair model. In practice, we use 200-300 guide hairs in all our results.
In Figure 10, we compare the results and reconstruction errors with
100, 200, and 500 guide strands, and we found that guide strands of
more than 200 would not significantly improve the visual realism of
the final results.



Figure 12: Animation results generated by our method: Top three rows demonstrate different hair styles, while the bottom row shows the
animation driven by wind forces.

9 Conclusion

We have introduced a data-driven approach to simulating a full head
of hairs in realtime, while still preserving similar motion details
as in an offline full simulation. Our approach is composed of an
optimized hair skinning model with carefully selected guide hairs
and interpolation weights, and a position-based correction model
that can corrects the interpolated hair motions to respect collisions.
We hope our approach is practically useful for many interactive
applications such as games and virtual reality systems.

There exists a number of limitations of our algorithm: (i) Currently
the same simulation parameters are used for both offline and runtime
simulation to produce consistent motion. But our reduced model
may not fit well with different parameters or hair geometry. (ii) Our
runtime hair correction adds plausible local motion details using a
penalty model to resolve collisions, but cannot completely prevent
strand mutual collision. Strand penetration can still occur. (iii) Our
current strand mutual interaction model lacks realistic friction ef-
fects, a more advanced interaction model [Daviet et al. 2011] might
be incorporated to further improve the results. (iv) And runtime
head motions that are significantly beyond the scope of the training
data (as discussed in §8) may produce unsatisfactory results.
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