Distributed Segment Tree: A Unified Architecture to
Support Range Query and Cover Query

Guobin Shen, Changxi Zheng, Wei Pu, and Shipeng Li

March 2007

Technical Report
MSR-TR~2007-30

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
http://www.research.microsoft.com

1 Introduction

Cover query, which is defined as to find all the intervals (or ranges) currently
maintained in the system that cover a given value, is highly desired functionality
but has been rarely touched. Cover query has crucial impact on the performance
of the distributed systems, in which maintenance of file integrity or object con-
sistency is required, because the overall performance is critically determined by
the effectiveness in handling the few specific objects or segments. For instance,
the performance bottleneck of BitTorrent is well perceived to be the “last-block
problem” [1] which refers to the excessive downloading time for the last few
blocks. Similarly, in a distributed file storage system, all the hosts responsible
for (typically few) specific updated file segments need to be reconciled. In all
these example, how to efficiently locate the peers or hosts that have the specific
block(s) or segment(s) affects the bottom line of the overall system performance.

On the other hand, range query, defined as to find all the values in a certain
range over the underlying structure, arises from many critical real applications
such as range partitioning in parallel databases and longest prefix match in rout-
ing schemes, has received considerable attention [2-4]. Recently, the research
work on range query has been extended to support multi-attribute range queries
where queries have multiple attributes and need to find the data items fitting
in a certain range for each attribute [5,6].

Efficient support of range query is a challenging task and usually requires
new architectural design. Efficient support of cover query is also as challenging
as that of range query if designed from scratch. Even provided the availability
of many proposals that handle range query efficiently, it requires non-trivial
extension or adaptation of those proposed solutions to support cover query.

In this paper, we present distributed segment tree (DST), a unified archi-
tecture that supports both range query and cover query in a uniform way and
equally efficient. DST is designed to base on DHT so as to take advantage
of all the merits of DHTSs like self-organizing capability, scalability, robustness
etc., and their simple interfaces. More specifically, DST is formed by overlaying
a special data structure, segment tree, which is very effective for representing
ranges (or intervals, segments), on top of the underlying DHT. Segment tree pos-
sesses a prominent feature - computability, that is, it allows an arbitrary range
to be uniquely decomposed into the union of a minimum number of supported
intervals (also called element subranges). By distributing these supported inter-
vals to responsible DHT nodes, we implicitly reestablish the connection between
the structural information of the segment tree and the underlying storage and
routing substrate - DHT, which has originally been stripped off by the random
hash operation. Because of the computability of the segment tree, a query (ei-
ther range query or cover query) can be fulfilled via multiple parallel underlying
DHT operations in a deterministic way, which lead to significantly shortened
user observed latency. DST can be extended to support for multiple dimensional
queries in a straightforward way.

We summarize our research contribution as follows:!

e Systematic study of the properties of segment tree. We identify the com-
putability feature of segment tree and develop an efficient segment splitting
algorithm to achieve the optimal decomposition. The unique decomposi-
tion enables the exploitation of parallelism among operations on subranges
and helps to significantly reduce the user observed latency.

e Recognition of the duality between range query and cover query and the
design of the distributed segment tree architecture to efficiently support
both range query and cover query in a uniform way. We also extend DST
to support multi-attribute range/cover queries and cover query for ranges.
To the best of our knowledge, this is the first architecture that can achieve
this.

e Proposal of novel load balancing mechanisms for both storage and query
traffic considerations, and extensive evaluation of DST on the PlanetLab.

The rest of the paper is organized as follows. Section 2 describes related
work. Then segment tree data structure and its properties are presented in
Section 3. We present the DST construction mechanisms and the protocols in
Section 4. Section 5 talks about various load balancing techniques. Experi-
mental results are reported in Section 6, followed by discussions in Section 7.
Finally, we conclude this work in Section 8.

2 Related Work

Proposals that support range query can be divided into two categories: those
based on DHT, such as locality sensitive hashing [2] [3] and prefix hashing
tree [6], and those do not, like Skip Graphs [4], Mercury [5] etc. Works based
on DHT usually has good load-balancing performance, but requires non-trivial
extension to support range query because of the exact key matching mechanism
of DHT. On the other hand, works do not rely on DHT usually have more native
support of range query since they do not use randomizing hash, but requires
explicit consideration of load-balancing.

Gupta et al. designed a locality sensitive hashing function to ensure that,
with high probability, similar ranges are mapped to the same node [8]. Similarly,
Li et al. adopted a locality-preserving geographic hash function to provide
multi-dimensional range queries support in sensor networks [3]. However, the
localization of hash functions seems to work against load-balancing. Chawathe
et al. proposed prefix hash tree (PHT) [6], which is essentially a new layer laid on
top of a normal DHT, to maintain the range information and in return provides
efficient support for range query. By laying upon DHT, it enjoys all the inherent

IThe basic concept of DST has been presented in TPTPS 2006 workshop [7] for idea ex-
change purpose among research P2P community. In this paper, we perform more comprehen-
sive study of DST, extend to multi-attribute case, address several optimization issues, and
conducted more extensive evaluation.

benefits of DHT such as scalability, robustness and load-balancing etc. However,
in the trie-based structure of PHT, keys are stored only at the leaf nodes that
share the same prefix. As a result, a client has to spend several (O(log D) for
a D-bit key) DHT get to reach the leaf nodes with the longest matched prefix,
using binary search which is intrinsically sequential. The support to multi-
dimensional range query is achieved through space-filling curves such as Hilbert
curve and Gray code.

Skip Graphs [4], unlike the DHTs, does not necessitate randomizing hash
functions and are therefore capable of range queries. Unfortunately, load balance
between nodes becomes a serious problem. Possible improvement proposed is
to either increase the number of virtual servers [9] or use an additional Skip
Graph to track the load on each node. However, they have focused on the
skewed storage load and the performance under skewed query load is unclear.
Mercury [5], which does not use hash functions either, adopts circular overlays
(the design philosophy is similar to that of DHT except not using hash) and
stores data continuously in them (one circular overlay for one-dimensional data)
to support multi-attribute range query. But, it requires explicit connections
among the multiple circular overlays and the load balancing problem has to be
explicitly addressed.

DST, while leveraging DHTS in a similar way as PHT does, differs from PHT
in their essential data structures. DST maintains a highly regular segment tree
data structure. Unlike PHT, the intermediate nodes of DST store keys as well.
The regularity of DST allows a client to uniquely decompose an arbitrary range
into a union of a minimum number of subranges that expands the range. The
parallelism among the resulting subranges can be exploited using parallel DHT
operations. Consequently, it can significantly reduce the query latency to, for
example, that of a single DHT get for moderate query range with a certain small
number of parallel network connections. Moreover, DST can be extended to
directly support multi-dimensional range query in a straightforward way, which
is in sharp contrast to other techniques that relies on linearization techniques or
space-filling curves to map multi-dimensional data into one dimension [10] [11].

To the best of our knowledge, there is few work that supports cover query.
The only work we are aware of is Interval Skip Graph (ISG) [8]. As shown in
their work, it requires nontrivial extension to Skip Graph, which can efficiently
support range query, in order to support cover query. The worst case insertion
complexity of ISG is O(n), where n is the node number. For queries, the ISG
needs to take O(logn) steps, as inherited from Skip Graphs, to locate the first
interval that matches a particular value or range, and conduct sequential queries
for each successive intervals thereafter. DST differs from ISG in that DST
is based on top of DHT and therefore enjoys all the merits of DHT such as
scalability and robustness etc. Also, the data structure of DST is the highly
regular segment tree while that in ISG is the random skip graph. As a result,
DST can possesses excellent parallelizability while ISG has to perform query
sequentially.

As will be shown in later sections, the DST can support both range query
and cover query in a uniform way and equally efficient. The reason is due to the

regularity of segment tree data structure, its efficiency in representing ranges
and the computability of the optimal range representation.

3 Segment Tree

In this section, we first describe the one-dimensional segment tree data structure
and its properties, and then extend the concept to multi-dimensional case.

3.1 Segment tree concept and properties

The basic data structure of DST, segment tree, comes from the Computational
Geometry [12], which is essentially a full binary tree with each intermediate node
represents a segment (or subrange, interval, and will be used interchangeably).
It possess some excellent properties listed below. Note that, from practical
interests, we only consider integers in segment tree.

1. The segment tree representing the range of length L has a height H =
log L + 1.

2. Each node on a segment tree represents an interval [s; x, ¢ 1], (I € [0,log L]
and k € [0,2' —1]). Its length is L =t — s,k +1. Clearly, the root node
interval equals to the segment tree range and leaf node interval is one.

3. Each non-leaf node has two children. The left child and the right child rep-
resent the intervals [s; k, L%J] and [L%J + 1,1, 1], respectively.
The union of the two children covers the same interval as the parent does.

4. For neighboring nodes on the same layer, we have s;, =t ;1 + 1 for all
k € [1,2! — 1]. This property ensures the continuity of the segment tree
among neighboring intervals on the same layer

5. All the nodes from the same layer span the whole segment tree range.
ol
That is, UZ;% "sie, tix] = L for all [€ [0,logL]. This property ensures
the integrity of the segment tree.

Level 0

Level 1

Level 2

Level 3

Segment [2, 6]

Figure 1: An exemplar segment tree with a range [0,7] and the representation
of range [2,6] via a union of (minimum) three subranges in the segment tree.

An exemplar segment tree representing the range [0,7] (i.e., L = 8) is de-
picted in Figure 1. It is easy to verify that all above properties hold. From above
properties, we can obtain the following theorems on the range representation
capabilities of segment tree.

Theorem 1 Any segment with a range R, (R < L), can be represented by a
union of some intervals in the segment tree. There may exist multiple possible
unions for any range with R > 2.

Proof: From the property 5, all the nodes from the same layer span the whole
segment tree range, L. Since R < L, it is obvious that the range R can be
represent by R number of consecutive leaf nodes each of which contains a single
value. This proves the first half of the theorem. According to the Drawer
Principle, out of all those leaf nodes falling into any range R > 2, we can find
at least two consecutive leaf nodes that can be merged into an upper layer non-
leaf node (i.e., their parent). Replacing these two leaf nodes with their parent
essentially gives an alternate representation of the range R.

Theorem 1 states that there are multiple possibilities to represent a larger
range with unions of smaller subranges. Two related questions naturally arise:
if or not there exists an optimal representation (i.e., minimal number of sub-
ranges involved in the representation) and, if yes, how to obtain the optimal
representation? The two questions are respectively addressed by Theorem 2
and Algorithm 1 below.

Theorem 2 The number of node intervals whose union can represent a range
R, (R < L), is bounded by 2|log R], and the bound is tight.

Proof: It is obvious that R can be represented by R = ZlU:OOg R (l; + ri)R;,

where [; = {0,1}, r; = {0,1} and R; = 2°. Since each R; is exactly the interval
represented by one node on the i-th level, then the actual node number equals
to Z}fg E (I; + r;). In a worst case, we have both I; and r; equal to 1 for all
i =0,1,---,|log R|. Therefore, the maximum number of nodes is 2|log R].
The tightness of the bound can be easily proved through construction of the
optimal union representation of the range [1, L-1].

Theorem 2 states that any segment with a range R, (R < L), can be rep-
resented by a union of no more than 2log R node intervals, which ensures the
efficiency of using segment tree to represent ranges. The segment splitting al-
gorithm shown in Algorithm 1 provides code snippet to obtain the minimum
number of node intervals whose union expands the range [s,t]. For instance,
the segment [2,6] can be minimally expanded by the union of intervals [2, 3],
[4,5] and [6,6], as also shown in Figure 1. The segment splitting algorithm
guarantees the computability of optimal representation which in turn removes
the ambiguity for the range splitting and enables concurrent parallel operations.

3.2 Multi-dimensional segment tree

The structure and algorithm for one-dimensional segment tree described above
can be extended to the multi-dimensional case in a straightforward way. In

Algorithm 1: Segment splitting algorithm

Procedure: SplitSegment(s, t, lower, upper, ret)
Input: s, t /*bounds of input interval to be splited®/
Input: lower, upper /*bounds of current node interval*/
Output: ret
begin
if s < lower €€ upper < t then

L ret.add(interval(lower, upper))

return

mid « (lower4upper)/2
if s < mid then

| SplitSegment(s, t, lower, mid, ret)
if ¢ > mid then

| SplitSegment(s, t, mid+1, upper, ret)

end

N-dimensional (N-D) case, a 2¥-branch segment tree is used to maintain the
structural information. Each node represents a IN-D sub-space labeled by two
N-tuples (usually the coordinates of two corners of the sub-space). The sub-
space on a node is dichotomized on each of its dimensions, and hence is divided
into 2 sub-spaces represented by its children.

To split a multi-dimensional space into a union of minimum number of sub-
spaces on a multi-dimensional segment tree, we can apply the segment splitting
algorithm (Algorithm 1) for each dimension separately. Let vector §; be the
resulting splitted subranges for the i-th dimension. Then the result for splitting
the multi-dimensional space can be computed as the cross product of all the
§; for t = 1,2,--- ,N. From Theorem 2, it is easy to derive that the number
of sub-spaces that are involved in the representation of an N-D space is upper
bounded by Hf\;l(ﬂlog R;|) where R; is the range on the i-th dimension of the
space. Although it is argued in [13] that it would not be possible to adequately
partition data, the upper bound actually suggests the applicability of multi-
dimensional segment tree for moderate query ranges, as to be detailed in the
discussion section (Section 7). Figure 2 illustrates a 2-D segment tree, where the
tetrad (a, b, ¢, d) represents a 2-D range, a < x < b, and ¢ < y < d. The whole
key space is (0,7,0,7), represented by the root. A query for range (2,7,0,3)
can divided into sub-queries for (2,3,0,1), (2,3,2,3), and (4,7,0,3).

4 Distributed Segment Tree

In this section, we first talk about the construction of distributed segment tree,
and then discuss the duality between range and cover queries, followed by the
protocols for insertion, removal, maintenance and query, for range query and
cover query, respectively.

0,34,7) (4,7,47)
(6,7,4,5)

Level 2 LZ, . —Z
- L= : v

Level 1

03,03) (4,7,03)

.
H
©1,01) 2300 o, % 7 @500 67,01

2-D Range: (2,7,0,3)

Figure 2: An exemplar two-dimensional segment tree with a space [0,7,0,7].

4.1 Mechanisms for DST construction
4.1.1 One-dimensional DST

The distributed segment tree is formed by overlaying the segment tree structure
on top of a DHT. An interval [s, t] is assigned to the peer associated with the key
Hash([s,t]), and all the peers that have been assigned a node interval collab-
oratively form a tree with parent-children relationships being indicated by the
segment tree. For instance, the peer responsible for interval [4,7] is the parent
of the nodes that are responsible for interval [4,5] and [6,7], and simultaneously
one child of the node responsible for interval [0.7]. This assignment implicitly
reestablishes a connection between the structural information (intervals) of the
segment tree and the underlying randomized (due to the hash operation) stor-
age and routing substrate - DHT. Thanks to the computability of segment tree
that an arbitrary range can be uniquely and deterministically represented by
the union of a minimum number of intervals, a query (both range query and
cover query) can be fulfilled at significantly reduced user observed latency by
exploiting the parallelism between underlying DHT operations.

4.1.2 Multi-dimensional DST

For multi-dimensional range query and cover query, while DST can certainly
be utilized in the way similar to other works that transform multi-dimensional
queries into 1-D queries via linearization techniques or space-filling curves, DST
can provide direct support of multi-dimensional queries by virtual of multi-
dimensional segment tree. An N-D DST can be formed by distributing the
N-D segment tree onto the DHT in the same way as in 1-D DST case, assigning
the sub-space to the peers according to the key hashed from the two N-tuples
of the sub-space. Like 1-D case, an N-D space can be uniquely decomposed a
series of sub-spaces and all the operations on those resulting sub-spaces can be
conducted in parallel. Note that because of the straightforward extension, the
protocols and load balancing techniques talked below can be directly applied to
multi-dimensional cases and will not be explicitly mentioned due to space limit.

4.1.3 Relation between DST and DHT

DST is designed to base on DHT so as to take advantage of all the merits of
DHTs like self-organizing capability, scalability, robustness etc., and their simple
interfaces. The key operation is the hashing of intervals and the assignment of
the hashed key to responsible nodes using DHT routing mechanism (e.g., a DHT
put).

The integration of DST with DHT can be achieved in two different fashion,
depending on which level the parent-children relationship of DST is maintained.
In the first tightly coupled fashion, the routing tables of DHT nodes are modi-
fied by adding extra entries containing pointers between a parent and children.
However, such entries must be clearly flagged to be effective only for DST op-
erations and not to affect the normal DHT operation. The pros of this method
is the efficiency for DST operation since parent and children are always in one
(overlay) hop. However, the cons is that it requires changes to all aspects DHT
operations including routing and maintenance.

A loosely coupled fashion is to completely build DST on top of DHT. The
parent-children relationship of DST is implicitly established by virtual of DHT
routing (i.e., using DHT get or put to communicate between parent and chil-
dren). The primary merit of this method is its simplicity. The relationship
between parent and children can be trivially built using the simple DHT in-
terfaces and DST can operate agnostically to the underlying DHT as long as
some basic interfaces such as get and put are supported. Moreover, the node
dynamics (e.g., churn) is completely handled by DHT and becomes transparent
to DST.? However, the merit comes at the cost of the efficiency: every message
is conveyed via DHT get or put operation which typically travels across mul-
tiple nodes. Note that such cost is not unique to DST. It is unavoidable for
any system that are built on top of DHT. In this paper, we adopt the loosely
coupled design.

4.2 Duality between range query and cover query

We mentioned above that DST can support both range query and cover query
equally efficient, which is exactly one of our design target. The primary reason
is the duality between range query and cover query.

From their definitions, we know range query is to find all the keys falling
into a specific range, and cover query is to find all the ranges covering a specific
key. Note that what being maintained by the system is keys (covered by ranges)
and ranges (covering keys) for range query and cover query, respectively. They
become a dual problem® with the logical reasoning of exchanging the roles of
keys and ranges, and the insertion and query operations.

Noticing the duality between range query and cover query, one may think

20ur protocols do not handle node failure. Instead, we rely on the robustness of the
underlying DHT.

3The meaning of dual problem here differs from the “duality principle” commonly referred
to in optimization problems stating the solution to one problem also holds for the other.

other systems designed for range query can also be used for cover query. This
is not true: it usually requires substantial modifications and it is very unlikely
to support both with exactly the same architecture (more comments on this in
the Discussion Section). In fact, it is the range representation capability and
computability of segment tree and the structural relation cross segment tree
layers make DST an effective means for supporting both range query and cover
query.

4.3 Protocols for range query
4.3.1 Key Insertion and Removal

The basic operation of key insertion is to insert the given key to a specific
leaf node of DST (as determined by DHT) and all its ancestors, because the
interval of any ancestor covers also that specific key. In other words, a key
should be inserted to all the nodes whose interval covers it. Thanks to the
computability of segment tree, a key can be inserted to a leaf node and all its
ancestors simultaneously and in parallel.

Removing a key from the DST is quite similar to the insertion process.
That is, the key is removed from the leaf node and all its ancestors and can be
executed in parallel.

4.3.2 Range Query

Given a range [s,t] under query, the client first splits it into the union of mini-
mum number of intervals than are maintained by element nodes in DST, using
the segment splitting algorithm in Algorithm 1. It then uses DHT get API to
retrieve the keys maintained on the corresponding DST nodes. The final query
result is the union of the keys returned. This result merging process is ex-
tremely simple since all the keys retrieved from different DST nodes are unique.
Moreover, all the DHT get operations can be called in parallel to shorten the
latency. According to Theorem 2, it is usually affordable since only at most
2|log R| threads is required for parallel DHT get invoking. Therefore, signif-
icantly reduced query latency can be guaranteed for moderate ranges under
query, as demonstrated in Section 6.

4.4 Protocols for cover query
4.4.1 Range Insertion and Removal

For cover query, what need to be inserted to or removed from the system are
ranges. In DST, to insert a range, a minimum number of subranges that expands
the range is first obtained using the segment splitting algorithm in Algorithm
1. The range is then inserted, in parallel, to all the nodes that are responsible
for those resulting subranges using DHT put API. Similar to the range query
case, at most 2|log R| threads are needed for parallel DHT put invoking which
guarantee the short insertion delay. There is no need for a node to propagate

the ranges inserted into it to its children unless some load balancing mechanism
is in place to balance the load across nodes at different layers.

The process for removing a segment from DST is basically the same as that
for insertion. If a parent node delegates the responsibility of maintain a certain
range to its children due to the downward load stripping mechanism (see next
Section), it needs to inform its children to delete the segment information.

4.4.2 Cover Query

Given a value v under query, it is obvious that the leaf node responsible for
v (or segment [v,v]) should be queried. Since intervals maintained by all the
ancestors of that leaf node also contains the value v (from property 3 of seg-
ment tree), therefore, those ancestors should be queried as well. Thanks to the
computability of segment tree, those ancestors can be easily identified prior to
query. Hence, cover query can also be performed by querying the responsible
leaf node and all its ancestors in parallel. For a DST with height H, if H parallel
threads can be executed concurrently for the query, then the query latency is
just one DHT get operation.

In a short summary, from above protocol descriptions for range query and
cover query, it is evident that DST fully manifests the duality between range
query and cover query and can support both of them in a uniform and equally
efficient way. These merits attribute to the regularity of segment tree and
computability of the optimal representation of ranges via segment splitting al-
gorithm (Algorithm 1).

5 Load Balancing

From the properties of the segment tree, we know that the higher level a node
is, the larger range it is responsible for. As an extreme case, the root node
is responsible for the whole segment tree range. While it is arguable that the
storage requirement of DST is not a big concern since what being stored is only
hash values, the query traffic is of more practical concern. In this section, we
will present various load balancing techniques with a focus on the query traffic.

5.1 Storage balancing

The proposed key insertion protocol for range query implies that the storage
requirement of nodes increases exponentially from higher layers (close to leaf) to
lower layers (close to root), which is not quite acceptable. Fortunately, the third
property of the segment tree indicates that the keys maintained by a parent node
is redundant as they are also completely maintained by its children. The reason
that a parent node maintains the keys is solely to improve the query efficiency.
Therefore, to balance the load, we design a downward load stripping (DLS)
mechanism which imposes a constraint (via a system parameter, threshold)
on the number of keys that a non-leaf node needs to maintain. The downward

10

load stripping mechanism works as follows: each node maintains two counters,
left counter and right counter. The left counter is increased by 1 if a key put to
this node can also be covered by its left child. Otherwise, the right counter is
increased by 1. If a counter reaches the threshold, it triggers a saturation event.
If the insertion of a key triggers either left saturation or right saturation, the
key will be simply discarded.

With the DLS mechanism in place, the storage consumption can be well
controlled. The drawback is in its negative impact on the query performance
because queries to those saturated nodes need to be relayed to their children.
The good thing is that the correctness of the query results is still ensured. The
probability of saturated nodes depends on the system parameter v. We examine
different settings for v in the experiments. We find when the ~y is proportional
to the interval [that a node is responsible for, i.e., v = ¢ + k - logl with c,
k being some constants, a good tradeoff between query performance and the
storage requirement can be achieved. In this case, the unbalance between nodes
at different layers is limited to a logarithmic scale.

Storage requirement is less a problem for cover query because a range is only
inserted into a minimum number of nodes that are responsible for its subranges.
Nevertheless, the DLS mechanism can also be applied. The system parameter,
threshold 7, is set to constrain the maximum number of segments that a node
can take. Different from the range query case, a single counter is enough.
Whenever a range is stored onto a node, its counter will increase by 1. Once
the counter reaches the threshold, it triggers a saturation event which will cause
the segment to be pushed down to its children. The model we adopted is
v=c+k-(H —logl), where H is the height of DST, and ¢, k and [have the
same meaning as for range query case. Note but, unlike the range query case
where DLS mechanism has negative impacts on the range query performance, it
has no impact on (and practically helpful to) the cover query performance and
only affects the segment insertion/removal process.

5.2 Query traffic balancing

The query traffic for cover query increases exponentially from higher layer nodes
(closer to leaf) to lower layer ones (closer to root), because we always query the
leaf node responsible for the given key and all its ancestors in parallel. This
implies that the root node will be queried by all the cover queries issued to the
system, which is obviously unacceptable. This is akin to the storage requirement
for range query case (due to duality between cover query and range query). Also,
the reward to query the root is limited when DLS mechanism in place because
the root stores only ¢ + k entries of range information.

We observe that in many practical P2P applications, it is often not necessary
to retrieve all the nodes whose interval cover a specific value. Instead, only a
limited amount of them is enough. For example, in BitTorrent, a client typi-
cally maintains up to four active connections and a pool of few tens of backup
connections to other peers. Therefore, it suffices to return only few tens records
from some nodes that can fulfill the issued query. In other words, we can visit

11

only a subset of nodes along the path from the leaf node to the root and retrieve
a desirable portion of answers. This implies less traffic towards nodes in lower
layers (closer to root). The key problem now becomes how to select the nodes
on the path and how to balance the query traffic cross layers of DST.

In our design, each parent node periodically informs all of its children about
the number of records it maintains and those of its ancestors by either through
dedicated messages or piggybacking on other messages (such as heartbeat). In
our experiment, we use dedicated messages whose payload is a length H (i.e., the
height of the segment tree) vector, where the i-th element of the vector contains
the number of records an inner i-th layer node maintains.? The message is
periodically sent out by the root. When a non-leaf node receives the message,
it fills in the number of records (i.e., intervals) it maintains and forward the
updated message to its children. With this periodical advertising mechanism,
the leaf nodes have the updated knowledge about the number of records stored
in all the nodes along the path from itself to the root.

With the knowledge at the left nodes on the number of records currently
stored in their ancestors, we are able to design a new tunable query interface —
cq(key, num), where a new field num is added to indicate the desired number
of replies. The client first send the query to the leaf node. If the leaf node
has enough number of records, it will fulfill the query directly. Otherwise, the
leaf node has two strategies to play with, i.e., the recursive strategy and the
iterative strategy. If the iterative strategy is chosen, the leaf node will return all
the records it maintains and also the knowledge about its ancestors. The client
will then randomly select some of the ancestors of the leaf node and conduct
a second round query. If the recursive strategy is chosen, the leaf node itself
will selected some of its ancestors and forward the cover query to them. There
is no penalty in time for the cover query to be finished for the two strategies,
however, the recursive strategy implies more load on the leaf nodes but can
ensure a better balance among the traffic sent to its ancestors.

Finally, the query traffic is not a major problem for range query because the
range under query will be split into a minimum number of subranges and only
the nodes responsible for those subranges are involved in the query.

6 Evaluation

We implemented both DST and PHT [6] upon the publicly available OpenDHT
service [14] and ran experiments on the PlanetLab. To ensure fair comparison,
we always run the same queries simultaneously from the same host server. We
also limit the number of concurrent DHT operations to 50 (i.e., at most 50
concurrent threads) for both of DST and PHT implementations to prevent the
system resource from exhausting. Due to the vagaries of load on the PlanetLab,
the reported results are averaged over more than 300 repeated experiments.

4Each element of the vector should be at least log~y long in bits. In our experiment, we
simply set it to be a byte.

12

Some of comparisons have been shown in [7] such as the 1-D insertion/query
latency for range query etc.

For sake of space considerations, we will more focus on the essential proper-
ties of DST and some new or updated experimental results like 2-D range query,
and will echo very few 1-D experimental results here to make full story.

6.1 Range query performance

To measure the performance of range query, and to compare it with PHT, 26
artificially generated keys are pre-loaded onto both DST and PHT. They are
uniformly distributed over a 229 key space.

6.1.1 Structural Properties

Recall that we use a threshold 7 to constrain the number of keys maintained
on each node. In the first experiment, we measure the number of nodes that
become saturated as the keys are inserted. We use the model v = ¢+ k - log/,
where [is the interval a node is responsible for and ¢, k are some constants.
k = 0 implies a constant model.

Figure 3 shows a plot of the percentage of saturated nodes on each level of
segment tree during the key insertion process. It can be found that if we make
the storage constraint to increase logarithmic with the interval that a node is
responsible for, the saturate ratio of nodes will be significantly reduced. This
implies that significantly fewer saturated nodes would be encountered while
perform range query. Notice that when a range query hits a saturated node,
the query needs to be relayed to its children. Therefore, slightly increase (in
logarithmic scale) the storage capacity of inner-nodes of DST, the range query
performance can be greatly improved.

1 T T

o
©

== 9gth level, c=30
— 9th level, c=30 k=10
-+ 10th level, c=30

o
=3

ratio of satuated nodes on each level
o

o
o
T

o
~
T

o ©o o
S o
T T T

o
N
T

o
T

- - 10th level, c=30 k=10

o2

3

4

of inserted keys x 10

Figure 3: The percentage of nodes that are full of capacity on each level when
inserting the keys onto them.

13

6.1.2 Query Performance

Due to space limit, we only report the experimental results for 2-D range query.
Please refer to [7] for 1-D case. In this set of experiments, we generated 1200
2-D range queries. Both dimensions of each 2-D range query are uniformly
distributed between [0, 2!°]. Figure 4 shows the cumulative distribution function
(CDF) of the latency of all the queries. Clearly, DST significantly outperforms
PHT.

<
8
T

)
8
T

3
3
T

2
3
T

&
8
T

@
8
T

»
8
T

—— DST Implementation]
~ = PHT Implementation | |

L L
160 180 200

CDF of Percentage of Queries

5
T

6‘DZD QB‘JeW Ijg%enc;/é%sec.l)go
Figure 4: A cumulative distribution function(CDF) of 2D query for 500 items.

PHT performs 2-D range query by converting the 2-D query to 1-D case using
space-filling curves such as Hilbert curve or z-curve. While space-filling curves
are proven good at retaining the correlation between neighboring element, it is
impossible to completely capture the 2-D correlation. As a result, when directly
applied to range query, it will lead to many false results. The reason is that
the conversion often significantly increased the actual query range, see Figure
10 for an illustration.

Define the noise ratio to be the undesired query range divided by the actual
query range that is submitted to the system. Figure 5 shows the average noise
ratio of 1000 random experiments, with the maximum range for each direction
is set to 1024 and we measure different query areas from 1 to 2'6. In general,
the noise ratio is very high, exceed 70% all the time. Interestingly, the noise
ratio depends on the shape of the query area and square query shape seems
most preferable.

6.2 Cover query performance
6.2.1 Structural Properties

In this set of experiments, we generate 10k segments randomly distributed in a
2! key space. The span of these segments are distributed uniformly from 100 to
5000. Figure 6 shows the average number of intervals maintained by the DST
nodes on each level. Indeed, the storage requirement on DST nodes are not
very heavy, especially considering what being maintained are only hash values.
The most loaded nodes maintains only less than 400 range information. Nev-
ertheless, it also demonstrates the effectiveness of the downward load stripping

14

— square
0.95F - portrait
- - landscape

., —-- random

Noise ratio

0.71

0.65

06 : x : ; : !
0 1 2 3 4 5 6
Query area x 10"
Figure 5: Noise ratio of 2-D range query due to z-curve linearization. Square,
portrait and landscape means the ratio of height to width is 1, 2 and 1/2,
respectively, and random means no constraint on the shape of area.

mechanism: without it, the average number of intervals maintained on the 4
level nodes of DST is much higher than that on the other levels. With downward
load stripping, the load is significantly smoothed over across levels of DST. We
adopted the model v = ¢+ k- (H — logl), where H is the height of DST, and
[is the interval a node is responsible for, and ¢, k are some constants. k = 0
implies a constant model.

From the figure, we can see that downward load stripping mechanism has a
profound impact on the nodes’ storage requirement. If the system parameter is
set to constant (80 in experiment), we can see most higher layer nodes (close
to the leaf) are saturated, however, about 10% of range information are lost
because when the leaf nodes themselves are saturated, they can not accept
ranges pushed down from its parent. As will be shown below, this generally
has no big impact (even beneficial) for practical settings when applying traffic
load balancing. However, if less or no such loss is desired, then slightly increase
(in logarithmic scale) of the storage capacity of lower layer nodes will greatly
mitigate the loss situation.

6.2.2 Query Performance

Figure 7 shows the CDF of latency (averaged over 1000 segments) for segment
insertion and cover query. The average latency are 6.169 seconds and 3.232
seconds, respectively. We notice that query latency is shorter than insertion
latency. This is because the query process is almost constantly query H DST
nodes along a path from root to a leaf. But the insertion process is elusive, and
additional cost may be caused to handle saturated nodes, i.e., push down the
inserted ranges to its children.

We designed traffic balancing mechanisms to alleviate lower layer nodes from
being overwhelmed by query traffic. We observed from real P2P applications
that generally only a desired amount, instead all, of results are expected when a

15

400

—— NODLS
350 ¢ k=0c=80 4
-0 k=10 c=100

300+

250

200+

Average Load

150

100-

501

14
Level on DST

Figure 6: Average number of intervals maintained on DST nodes.

5
8

P
8
T

®
8
T

3
T

2
2
T

3
&
T

@
8
T

»
8
T

--- Insert
— Query

s i s 2 3
Latency of Inserts and Queries (sec.)

5
T

o

CDF of Percentage of Inserts and Queries

Figure 7: Cumulative distribution function(CDF) of segment insertions and
cover queries for 1000 items.

peer issues a cover query. The average number of visited nodes vs the expected
portion of resulting records is shown in Figure 8. We see that when the expec-
tation is low, there is significantly savings in the number of nodes visited and,
interestingly, more strict storage constraint leads to greater savings. The reason
is that due to the downward load stripping, more ranges are pushed down to
lower layer nodes. Since a client will contact the corresponding leaf node first,
based on the reply, a client (we adopted the iterative strategy) can selectively
query a few more nodes directly in a second round.

7 Discussions

7.1 To or not to base on DHT

It is argued that DHT's are inherently ill-suited to range queries because the very
feature that makes for their good load balancing properties, randomized hash
functions, works against range queries [5]. However, as demonstrated in [6],

16

i
i

i
N
T

=
o
T

©
T

)
T

—— NODLS
¢ k=0 c=80
-o k=10 c=100

Average # of Nodes Visited

IS
T
<

N
T

L L L L
0 0.2 0.4 0.6 0.8 1
Hit Rate

Figure 8: Percentage of retrieval vs number of nodes visited

DHTs are feasible to be used as an application-independent building block to
implement other desired functionalities such as range query. Moreover, under
the powerful layering design principle, the development of some applications
can be significantly simplified by leveraging other already deployed DHT ser-
vices like OpenDHT [14], because the applications can be essentially alleviated
from various tedious overlay maintenance work and, instead, leverage the inher-
ent characteristics such as scalability, robustness etc. of the underlying DHT.
Therefore, we also based our work on DHT.

7.2 Direct or indirect support to multi-dimensional range
query

There are essentially two classes of approaches to perform multi-dimensional
range query, namely direct support and indirect support approaches.

Direct support approaches are to directly support multi-dimensional range
query by explicit design of new architectures (e.g., Mercury [5]) or directly
extend the 1-D range query solution to multi-dimension case (e.g., DST). Mer-
cury [5]) has the merit of being able to leverage existing 1-D range query solu-
tions, but it requires to incorporate multiple overlays and the member of each
overlay needs to maintain extra links to other overlays besides to predecessors
and successors in its own overlay. Also, the load balancing needs to be explicitly
addressed. DST, with simple extension of 1-D solution, risks that the combi-
nations of ranges on different dimensions may be explosive. But this problem
is strongly mitigated by the segment splitting algorithm that decomposes an
arbitrary range into the union of minimum number of subranges that are main-
tained by the segment tree. Figure 9 shows the upper bound (i.e., 2|log R])
and actual average number (averaged over 1000 random experiments for each
range), together with the deviation, of resulting subranges when applying seg-
ment splitting algorithm (Algorithm 1) for ranges from 100 to 5000. It can be
seen that in most cases, the resulting subrange number are small, which implies

17

DST is feasible, at least for moderate multi-dimensional range queries. Also,
recall that excellent parallelism can be leveraged among the responsible nodes.

301

251 —— Average

of Subranges
= N
(5 o

-
=)

0 1000 2000 3000 4000 5000
Range

Figure 9: Average number of resulting Figure 10: Illustration of noises
subranges. due to z-curve linearization.

Indirect support approaches (e.g., PHT) are to apply linearization techniques
or space-filling curves, and then resort to existing 1-D range query solutions.
However, as shown in previous section, the query results are very noisy. Figure
10 shows one case how the actual query range (gray area) is expanded due to
z-curve filling, as compared with the desired query range (black area). Even
though the noises can be filtered either inside the service or at the client, an in-
trinsic overhead on query traffic and processing time is incurred. While it can be
argued that PHT can be enhanced by replicating more data to the intermediate
tree nodes, it still lacks of the computability feature of DST that decomposes an
arbitrary given range into a minémum number of element subranges and exert
the parallelism among the resulting subranges. If to avoid flooding the whole
tree, PHT always need a few sequential prefix-matching steps (< O(log D)) to
locate the node that most tightly cover the range under query, starting from
which parallel queries can be applied.

7.3 Support of cover query

To the best of our knowledge, there is few work that supports cover query. As
pointed out in the previous section that the cover query problem is essentially
a dual problem of range query. Therefore, it might be natural for one to have
the impression that any work designed to support range query could be revised
to support cover query fairly easily. Unfortunately, this is usually not the case.

Taking Interval Skip Graph (ISG), the only proposal we are aware of that
supports cover query, as example. It is well known that Skip Graph can support
range query efficiently, however, it takes nontrivial extensions to design ISG to
support cover query, as demonstrated in [8]. As a first step, Skip Graphs is
extended to store intervals rather than values. Nodes that storing different

18

intervals are then sorted according to the starting point value of their intervals.
Unfortunately, doing this way alone is not adequate since it only tells when to
stop a query and one has to start a query always from the beginning of the
ISG. To further prune away the non-necessary queries, each node of ISG is also
required to store the maximum value among the intervals in all its preceding
nodes. Due to such extra effort, the worst case insertion complexity of ISG is
O(n), where n is the node number. For queries, the ISG needs to take O(logn)
steps, as inherited from Skip Graphs, to locate the first interval that matches
a particular value or range, and conduct sequential queries for each successive
intervals thereafter.

As pointed out before, the reason DST can support both range query and
cover query equally efficient is due to the regularity of segment tree data struc-
ture, its efficiency in representing ranges and the computability of the optimal
range representation. The other advantage of DST comes from the choice of
DHT, where both ranges and values are handled equally with hashing.

7.4 Support of cover query for intervals

So far we have talked the cover query for a specific value. However, in real
applications, sometimes it is desired to find cover query for intervals, i.e., to find
peers whose intervals can cover the interval (or range) under query. Note that
this is a completely different from range query. To the best of our knowledge,
this problem has not been addressed.

DST can be easily extended to support this feature. Suppose we want to find
the intervals currently maintained in the system that cover a certain interval S.
We can first calculate an interval S’ that is in the segment tree and covers S
with minimum expansion. We then directly contact the node responsible for S’.
If we can not get enough results from that node, we split S into the union of a
minimum number of element subranges of the segment tree. Then we query the
nodes that are responsible for those resulting subranges and all their ancestors,
and perform a filtering process to filter out the replies that cover only a portion
of S.

7.5 Potential applications

There have been enough statement on the applicable scenario of range query.
Here, we would describe a few practically appealing application scenarios for
cover query. All of them would benefit from DST for more efficient query.

e In the file swarming applications such as BitTorrent, a file is divided into
a large number of slices. Different slices are exchanged among all peers
to accelerate the downloading process. Clearly, a peer needs first to find
some other peers that have that specific slice before she can download
from. It is especially helpful when only few blocks need to be downloaded
for which current BT protocol failed to handle efficiently and is known as
the “last-block problem”.

19

e In real streaming applications, random seek is a frequent phenomenon [15].
How well the random seek is supported is directly related to the user
experience and is a highly desired feature. To apply P2P technology, peers
who performed random seeks (to new positions) need first to lookup some
(or all) other peers that can potentially and immediately serve them, i.e.,
whose cached segments of bitstream covers the desired access positions.

e Similar requirement also arises from wireless sensor networks where all
the intervals of sensed data cover a specific value needs to be effectively
identified [8].

While above applications require efficient cover query of a single key, there
are also scenarios that require cover query over an interval or a range. For
example, in many e-Business platforms and deployed P2P systems, reputation
mechanisms are imposed to establish the trust among participants and to ensure
the health of the systems in the long run. With a reputation system in place,
a user may want to transact only with other users whose reputation is above a
certain tolerable value, which corresponds to a cover query of the interval from a
certain value towards infinity. In most online games, players are rated according
to their skill levels. It is natural for players to find other players with similar or
close levels.

8 Conclusion

In this paper, we first identified the importance of cover query and established
the duality between range query and cover query. Then, we presented dis-
tributed segment tree (DST) - a layered DHT structure that embraces the seg-
ment tree concept - which can support range query and cover query in a uniform
way and equally efficiently. To the best of our knowledge, this is the first piece
of work that can achieve this, while other proposals designed for range query
requires substantial extension in order to support cover query.

The computability feature of segment tree allows an arbitrary range to be
uniquely decomposed into a union of minimum number of element subranges,
which in turn enables DST to exploit the parallelism among resulting subranges.
In consequence, the performance of DST is significantly enhanced by exploit-
ing the parallelism and achieves query latency close to a single DHT get for
moderate query range with a certain small number of parallel network connec-
tions. To address the storage and query traffic concerns, we designed effective
load balancing techniques. We also extended DST to support multi-dimensional
range/cover queries and conducted in-depth discussion on various system design
aspects. We systematically studied various properties of DST and evaluate its
real performance for 1-D/2-D range/cover queries. All the results and compar-
isons demonstrate the effectiveness of DST for several important metrics.

20

References

1]

2]

3]

[4]

A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and
improving a bittorrent network’s performance mechanisms,” in IEEE Pro-
ceedings of the INFOCOM, Barcelona, Spain, 2006.

A. Gupta, D. Agrawal, and A. E. Abbadi, “Approximate range selection
queries in peer-to-peer systems,” in in Proceedings of the First Biennial
Conference on innovative Data Systems Research (CIDR2003), Asilomar,
CA, USA, 2003.

X. Li, Y. J. Kim, R. Govindan, and W. Hong, “Multi-dimensional range
queries in sensor networks,” in in Proceedings of the 1st International Con-
ference on Embedded Networked Sensor Systems (SenSys’03), Los Angeles,
USA, Nov. 2003, pp. 63-75.

J. Aspnes and G. Shah, “Skip graphs,” in Proc. of 14th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), Jan. 2003.

A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting scal-
able multi-attribute range queries,” in Proceedings of the ACM SIGCOMM,
Portland, USA, Sept. 2004, pp. 353-366.

Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, J. M. Heller-
stein, and S. Shenker, “A case study in building layered dht applications,”
in Proceedings of the ACM SIGCOMM, 2005.

C. Zheng, G. Shen, S. Li, and S. Shenker, “Distributed segment tree: Sup-
port of range query and cover query over dht,” in The 5th International
Workshop on Peer-to-Peer System (IPTPS’06), Santa Barbara, USA, Feb.
2006.

P. S. P. Desnoyers, D. Ganesan, “Tsar: A two tier sensor storage architec-
ture using interval skip graphs,” in The 3rd ACM Conference on Embedded
Networked Sensor Systems (SenSys’05), San Diego, USA, Nov. 2005.

A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load
balancing in structured p2p systems,” in The 2nd International Workshop
on Peer-to-Peer System (IPTPS’03), Feb. 2003.

A. Andrzejak and Z. Xu, “Scalable, efficient range queries for grid infor-
mation services,” in in Proceedings of the 2nd International Conference on
Peer-to-Peer Computing (P2P’02). Washington, DC, USA: IEEE Com-
puter Society, 2002.

C. Schmidt and M. Parashar, “Enabling flexible queries with guarantees in
p2p systems,” IEEE Internet Computing, vol. 8, no. 3, pp. 19-26, 2004.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, Berlin,
1997.

21

[13]

[14]

[15]

T. Hodes, S. Czerwinski, B. Zhao, A. Joseph, and R. Katz, “An architecture
for secure wide-area service discovery,” in Wireless Networks, ser. 8, Mar.
2002, pp. 213-230.

S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu, “Opendht: A public dht service and its uses,” in
Proceedings of the ACM SIGCOMM, 2005.

C. Zheng, G. .Shen, and S. Li, “Distributed prefetching scheme for ran-
dom seek support in peer-to-peer streaming applications,” in Workshop on
Advances in Peer-to-Peer Multimedia Streaming, ACM Multimedia 2005,
Singapore, Nov. 2005.

22

