Source Code README

This document is about the C++ implementation of the paper “A fast im-
plicit method for time-dependent Hamilton-Jacobi PDEs” by Vladimirsky and
Zheng. Both the paper and the source code can be downloaded from the project
webpage.

1 Code Compilation

The code compilation has been tested in Linux using both gcc and Intel’s com-
piler. If you have CMake installed, you can compile it using the following steps:

1. Create a build dir and go into it
mkdir gcc-build && cd gcc-build

2. Run cmake to configure the Makefile
cmake ..

3. Compile it
make

After compiling the code, you can run the three executables located in gcc-
build/src folder. They are ExplicitTDHJ2D, ImplicitTDHJ2D and Mixed TDHJ2D
respectively corresponding to the explicit, implicit and hybrid methods de-
scribed in the paper. Different command line options are possible. See their
details by providing the -h option (e.g., run ImplicitTDHJ2D -h).

2 Required Library

This code requires |Boost library| installed.

3 Customize the Tested PDEs

The code solves the time-dependent HJB PDEs which have the form
ur + f(x,1)|Vu| = g(z,1).

We implemented three different numerical solves, namely the explicit, implicit
and hybrid methods. Their main code are respectively ExplicitTDHJ2D.cpp,
ImplicitTDHJ2D.cpp and MixedTDHJ2D.cpp. All these solvers are implemented
as C++ template classes. The f and g functions and the boundary conditions
are specified as the template parameters.

Both the f and g functions are defined as a C++ functional. Namely, a
C++ struct with operator (). For example, a f function is defined as

http://www.math.cornell.edu/~vlad/
http://www.cs.columbia.edu/~cxz/
http://www.cs.columbia.edu/~cxz/TimeDepHJB/
http://www.cs.columbia.edu/~cxz/TimeDepHJB/
http://www.boost.org/

struct func_F

{

inline double operator() (const vector2d& pos, double t) const
{ return ... }

};

The boundary condition class should specify the number of boundary nodes,
the positions of the boundary nodes, and their values. Please look at the code
in src/BoundaryCond.h as examples.

Once you have your own f, g and boundary condition classes are defined.
You can use them by defining a test case in the solver’s main code (e.g. Im-
plicit TDHJ2D.cpp),

#ifdef USE_TEST_XX
typedef SimpleBoundaryCond2D TBC;
typedef CachedImpLattice2D<func_F, func_G, TBC> TLattice;

Here USE_TEST_XX is the test case number. You can now enable this test case
by define a flag USE_TEST XX in src/config.h.

	Code Compilation
	Required Library
	Customize the Tested PDEs

