
One-to-Many: Example-Based Mesh Animation Synthesis

Changxi Zheng
Columbia University

Figure 1: 1000 starving feeding creatures are synthesized from a provided short clip of deformable mesh animations (in the inset). The
output animations can have arbitrary length, each presenting different motions. Our method is fast, requires no knowledge of the models for
creating the examples, and supports various types of deformable mesh animations.

Abstract

We propose an example-based approach for synthesizing diverse
mesh animations. Provided a short clip of deformable mesh an-
imation, our method synthesizes a large number of different ani-
mations of arbitrary length. Combining an automatically inferred
linear blending skinning (LBS) model with a PCA-based model re-
duction, our method identifies possible smooth transitions in the
example sequence. To create smooth transitions, we synthesize re-
duced deformation parameters based on a set of characteristic key
vertices on the mesh. Furthermore, by analyzing cut nodes on a
graph built upon the LBS model, we are able to decompose the
mesh into independent components. Motions of these components
are synthesized individually and assembled together. Our method
has the complexity independent from mesh resolutions, enabling
efficient generation of arbitrarily long animations without tedious
parameter tuning and heavy computation. We evaluate our method
on various animation examples, and demonstrate that numerous di-
verse animations can be generated from each single example.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Object representations I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—
Animation

Keywords: animation, synthesis, transition, bone graph, cut node

1 Introduction

Creating deformable mesh animations is a key task in computer
graphics. Traditionally, it is either manually crafted by skilled ani-
mators or automatically generated using physics-based simulations.
Although proven to be very successful, these methods can still suf-

fer from high production cost when we strive to capture the tremen-
dous richness of our real-world motions: no tree leaves move in
exactly the same way; flags in a wind flap differently; and people
walk, run and dance with a variety of styles. To produce rich vari-
ations, one has to laboriously adjust underlying motion curves or
change related parameters and repeat simulations.
In this paper, we explore a different approach of creating diverse
deformable mesh animations by addressing a key question: can we
automatically synthesize different mesh animations from a single
deforming sequence (see Figure 1)? Indeed, many other aspects of
computer graphics have witnessed successful example-based syn-
thesis methods (such as character animation [Kovar et al. 2002],
texture synthesis [Wei et al. 2009], shape design [Kalogerakis et al.
2012], mesh posing [Der et al. 2006], noise pattern design [Galerne
et al. 2012], and simulation [Martin et al. 2011]). For mesh anima-
tion synthesis, however, major challenges arise from the curse of
dimensionality and the need to ensure spatial and temporal coher-
ence: it can be difficult to synthesize high-dimensional animations,
such as mesh deformations, with limited amount of data; mean-
while, it is critical to ensure all mesh vertices to move in a spatially
and temporally coordinated fashion; additionally, we hope to gener-
ate a large variety of animations, all of which satisfy user-specified
constraints.
Our approach starts by estimating a linear blend skinning (LBS)
model [James and Twigg 2005; Kavan et al. 2010; Le and Deng
2012] from the provided example. Using it as a reduced defor-
mation model, we manage the geometric complexity of detailed
meshes and ensure spatial coherence of their deformations. How-
ever, our key goal is different from all the previous work about mesh
skinning and deformation editing: we aim to synthesize motions of
all the LBS bones and thereby create diverse mesh animations.

Contributions Our approach has the following three major con-
tributions. (i) First we propose a difference metric of mesh de-
formation state for identifying possible transitions in the example
sequence. We define the difference metric in the local frame of ref-
erence of a selected bone for eliminating any linear transformations,
and employ a PCA-based reduced coordinates for fast evaluation.
(ii) Unlike character animation synthesis [Kovar et al. 2002; Arikan
and Forsyth 2002], simply blending mesh animations at transitions

Input
Animation

LBS
Model

Bone
Animations

Assemble
Components

Final
Synthesis

Bone Graph &
Cut Nodes

Identify
Transitions

Constraints
(Collisions,

Targeted Frames, etc.)

Generate
Smooth

Transitions

Identify
Components

Figure 2: Overview: We synthesize various mesh animations from
a single input by inferring an LBS model and synthesizing LBS
bone motions (in magenta rectangle). Furthermore, by identify-
ing weakly coupled LBS components, we can synthesize animations
asynchronously in multiple components (in blue rectangle). The
dash arrows indicate a possible data flow when performing single-
components synthesis.

can lead to unpleasant artifacts, because for high-dimensional mesh
deformations it can be rare, if not impossible, to find close enough
states from the provided example. We instead blend the deforma-
tion gradients at a set of selected characteristic key vertices, and
thereby estimate temporally coherent bone motions and the result-
ing mesh deformations. (iii) Furthermore, we decompose the mesh
into multiple regions whose deformations are weakly coupled with
each other. We find that these regions can be identified by the cut
nodes of a bone graph, a graph extracted from the LBS model. We
then independently synthesize the bone motions of different graph
components separated by the cut nodes. Finally, combining the mo-
tions of those components asynchronously produces numerous dif-
ferent animations (see Figure 1).

Applications Our method offers an efficient and resolution-
independent way of synthesizing a large number of similar yet dif-
ferent animations. It is particularly powerful for creating an ani-
mation database as well as generating “motion textures” in a large
scale animating environment. In addition to the efficiency and di-
versity, directly generating motion curves for LBS bones allows our
method to be easily integrated into a standard animation pipeline:
an animator can easily post-edit synthesized animations by adjust-
ing generated LBS motion curves [Der et al. 2006], or assemble
together animations of different mesh components (see Section 4).

2 Related Work

Example-based synthesis has seen wonderful success in many as-
pects of computer graphics. Among those listed above, most
closely related to our work are several data-driven character anima-
tion techniques. Pullen and Bregler [2000] created cyclic character
motions by sampling joint angles using constructed wavelets and
Laplacian pyramid. Our approach shares some similarities with
motion graphs [Kovar et al. 2002; Arikan and Forsyth 2002; Lee
et al. 2002; Gleicher et al. 2003], which encapsulate connections
among a database of motion clips. User-directed character motions
are synthesized by graph walks that meet user specifications, and
simple linear blending techniques are used to generate transitions
between two clips. Although sufficient for those low-dimensional
character motion data, for our goal it is hard to blend two sequences
of mesh deformations without introducing artifacts. Therefore, we
propose a gradient-domain blending technique to address it. More-
over, these methods often require thousands of input frames to pro-
duce plausible results. However, creating such a large corpus of
deformable mesh animations can be prohibitively expensive. Less
input frames are used in [Lau et al. 2009], in which the method
learned a Dynamic Bayesian Network to model variations of human
motions from hundreds of frames. However, this method only aims
to produce subtle variations close to input motions. In contrast, our

method is able to produce large distinctions. Lastly, all these meth-
ods are particularly suitable for character animations which can be
efficiently represented by low-dimensional datasets, such as hierar-
chical kinematic skeletons together with time-varying joint angles.
Unfortunately, this representation leads to the curse of dimension-
ality when it comes to animate high-dimensional phenomena, such
as mesh deformations. Our method, complementary to all these
methods, is designed to synthesize deformable mesh animations.
Regarding to mesh animation synthesis, the most closely related
work is Mesh Ensemble Motion Graphs (MEMG) [James et al.
2007], which played back motion clips of deformable ensembles.
Given a candidate transition location, it asynchronously offsets the
transitions of ensembles to nearby frames to avoid interpenetra-
tions. While their work is focused on looping the input animations
of a group of ensembles, our method has a different goal, aiming
to produce various animations of a single deformable object. Key
technical differences include: (i) we address the problem of select-
ing plausible transition locations up to arbitrary rigid transforma-
tions using an LBS model, whereas MEMG assumes all meshes are
fixed at some locations and uses reduced modal coordinates to rep-
resent moderate deformations. (ii) we use gradient domain blending
to avoid transition artifacts, rather than a simple linear blending of
reduced coordinates as used in MEMG. And (iii) we address the
problem of decomposing a mesh into weakly coupled regions for
independent asynchronous animation synthesis.
Combing with various physics-based simulation techniques, data-
driven animation synthesis has proven to be successful in many
specific cases. For example, James and Fatahalian [2003] tabu-
lated specialized impulse responses to enable transitions between
precomputed motion clips. Specifically for cloth animations, data-
driven methods have been developed to enrich the details of a cloth
simulation [Wang et al. 2010; Kavan et al. 2011]. Moreover, user-
provided examples have been successfully used to guide simulation
methods to mimic the dynamics of given examples for cloth [Wang
et al. 2011] and elastic bodies [Martin et al. 2011]. Different from
these work, our method, assuming no knowledge of underlying
physics, synthesizes animations kinematically and supports arbi-
trary mesh deformations.
Our method is partially inspired by “video textures” [Schödl and
Essa 2002; Agarwala et al. 2005; Kwatra et al. 2005], in which a
set of transition frames of a video is detected and is used for asyn-
chronous synthesis of new video clips. In our problem, we con-
sider the 3D deformable animation synthesis. The fundamentally
different animation data from video clips necessitate new metrics
for asynchronous transition identification and new algorithms for
blending deformation sequences.
Finally, our method relies on an LBS model, which can be auto-
matically learned from an input animation. To this end, we use [Le
and Deng 2012] because it guarantees an unit sum of bone weights,
an important property for ensuring reliable gradient-domain com-
putation in our scheme (see Section 3.3). Other techniques [James
and Twigg 2005; Kavan et al. 2010] have also been devised, while
some of them (such as [James and Twigg 2005]) use the unit sum
of bone weights as a soft constraints that might not be satisfied ex-
actly in the solution. Finally, we note that an inferred LBS model as
a reduced deformable model has been used for character pose edit-
ing [Der et al. 2006; Wang et al. 2007]. In this paper, we employ it
for animation synthesis.

3 Single-Component Animation Synthesis

An overview of our method is depicted in Figure 2. In this section,
we start from presenting our synthesis method for a deformable
mesh as a single component. Later in section 4, we extend our
method to decompose a deformable mesh into weakly coupled com-

Input
Animation

time axis

transitions

Output
Animation

Figure 3: Single-Component Animation Synthesis: (Top) We
identify transitions of a single input animation. (Bottom) New an-
imations are synthesized by splicing input animation segments to-
gether and creating smooth transitions.

ponents and synthesize their animations independently. Provided
an input animation sequence of N frames, our basic strategy is to
find smooth transitions between two frames, and optionally splice
animation segments at those transitions (see Figure 3).

3.1 Background on the LBS Model

A deformable mesh can have thousands of vertices, resulting in a
large number of degree of freedoms (DoFs). However, in a typi-
cal animation, all vertices must move in a spatially coherent way;
individual vertices never move independently with respect to their
neighbors. This suggests that the complexity of a plausible mesh
animation is much less than its geometric complexity. Similar
to [Der et al. 2006], we exploit the correlation of vertex movement
using an LBS model.
An LBS model consists of a set, B, of bones, each of which is
described by an affine transformation { Rb, tb } . A deformed vertex
vi is then transformed from its undeformed point v̄i to

vi =
�
b�B

wib(Rbv̄i + tb), (1)

where wib are pre-defined skinning weights, which are constant
scalars throughout the entire animation. In this paper, we simply re-
fer { Rb, tb } as the position of a bone, b. Notice that although Rb can
be any affine matrices, we start from an LBS model with only rigid
rotations, Rb, because a rotation matrix Rb together with a transla-
tion tb defines an orthogonal local frame of reference for its LBS
bone. These well-defined local frames of reference provide conve-
nience for our animation synthesis method. Later in Section 3.3,
we will relax Rb and allow them to be general affine matrices.
Although an LBS model can be manually created, provided an input
animation, we infer it automatically following the recent method
in [Le and Deng 2012]. This method guarantees that Rb is always
pure rotations, and that the unit constraint (i.e.,

�
b�B wib = 1), an

important property for our method as explained in Section 3.3, is
satisfied. The output of LBS precomputation includes (i) the num-
ber of bones, | B| , (ii) the skinning weights wib for every bone and
vertex, and (iii) a time series of bone positions { Rb(t), tb(t)} , t =
1 ...N at each frame of the input animation.

3.2 Identifying Smooth Transitions

The first step of our method is to identify transition frames. Namely,
we need to find pairs of frames, (fi, fj), whose spacetime states are
close enough for creating a smooth transition from fi to fj . First,
we define a transition cost function D(i, j) by incorporating the
following two components.

Local-Frame Bone Position A mesh deformation is invariant
up to a rigid transformation. In other words, when splicing two
animation clips, we can apply any rigid transformation to either

Figure 4: A simple LBS
model is illustrated using
a bar deformed by two
bones (top). The vertex-
bone weights are color-
mapped on the mesh (bot-
tom).

clip without changing the mesh deformation sequences. Therefore,
when evaluating a transition cost, we need a compatible frame of
reference for comparing the states of two animation frames. For
this purpose, we select an LBS bone as a reference bone, br , and
compute the positions of other bones bi (referred as non-reference
bones) with respect to the local frame of reference of br for each
animation frame t (see Figure 5):

Ri� r(t) = RT
r (t)Ri(t), and

ti� r(t) = RT
r (t) [ti(t)� tr(t)] .

(2)

While we can use any LBS bone as the reference bone, br , to get
reliable results in practice we always choose the most influential
bone that has the maximum sum of weights

�
i�V wib as br , where

V is the set of all mesh vertices. This local-frame translation (2)
guarantees the elimination of any rigid transformation on the entire
mesh; it also eases the creation of a smooth transition in section 3.3.

Reduced Bone Coordinates Next, we represent all the local-
frame bone positions, { Ri� r(t), ti� r(t)} , using reduced coordi-
nates. Since the rotations are in a nonlinear Lie group, SO(3), we
use the matrix logarithm function to map them into the correspond-
ing Lie algebra, so(3), of skew symmetric matrices, and represent
them using 3 × 1 axis-angle vectors. Assembling all N example
frames together, we construct a matrix Ar as follows:

Ar =

�� p1
1 p2

1 · · · pN
1

...
...

. . .
...

p1
| B| p2

| B| · · · pN
| B|

�� , where pj
i =

�
ti� r(j)

�(Ri� r(j))

�
. (3)

Here �(Ri� r(j)) denotes the 3 × 1 axis-angle representation of
rotation matrix Ri� r(j), and hence pj

i is a 6 × 1 vector describing
a single bone position at frame j. Next, we compute a truncated
SVD [Golub and Van Loan 1996] (thresholded at 0.005),

Ar � UrSrV
T
r = UrQr. (4)

Then each column vector qi, i = 1 ...N in the matrix Qr , is a
reduced-coordinate vector that compactly describes the mesh defor-
mation at frame i and is not affected by any rigid transformation.
In all our examples, qi has a length no larger than 38, enabling fast
evaluations of our transition cost function.

Transition Cost Function After laying out the requisite termi-
nology, we have the ingredients to define the transition cost func-
tion D(i, j) between frame i and j. We use a squared state-space
distance metric,

D(i, j) =�qi � qj�22 + ���qi � �qj�22 + ��ri � rj�22, (5)

Here the first two terms are similar to the metric used in [James and
Fatahalian 2003]. qi is a reduced-coordinate vector as computed
in (4); �qi is computed using a finite difference approximation (i.e.,
�qi � qi � qi�1). The third term is to reflect the change of the

x

z

y

x

z

y

o

y y

Figure 5: Local-Frame Bone Positions: The LBS bone positions
in the world frame (left) are translated into the local frame of ref-
erence of the reference bone br (right). We evaluate our space-time
difference metric and create smooth transitions in the local frame
of br , allowing arbitrary rigid transformations to be applied on an-
imation segments while preserving spatiotemporal correlations.

reference bone br at a transition. Since the reference bone at frame
i and j can always perfectly match under a rigid transformation,
we only consider the difference of its first derivatives at i and j.
Therefore, we define ri as the position of br at animation frame
i� 1 with respect to its local frame of reference at animation frame
i. Similar to pj

i in (3), ri is the 6 × 1 vector

ri =

�
RT
r (i)[tr(i� 1)� tr(i)]
�(RT

r (i)Rr(i� 1))

�
. (6)

The weights, � and �, balance the three terms so that none of
them dominates the others, and in our implementation we use
� =

maxi=1. . N �qi�22
maxi=1. . N ��qi�22

, and � =
maxi=1. . N �qi�22
maxi=1. . N �ri�22

.

Finally, we evaluateD(i, j) for every pair of frames (i, j) of the in-
put animation, and only keep the pairs whose cost function value is
below a threshold (i.e., D(i, j) < Tc) as our candidate transitions.
The threshold Tc can be controlled by a user. A small value results
in less variations in output animations; a large value produces more
distinct results, but may potentially introduce transition artifacts. In
all our examples, we use Tc = 40 maxi=1. . N D(i, i� 1).

3.3 Creating Smooth Transitions

Input

Output

(i,j)

i ja b
e f

Let Sa� i denote a segment of
input animation from frame a
to i, and Sj � b denote another
segment from frame j to b. If
(i, j) is one of our candidate
transitions, we are ready to splice these segments together (see Fig-
ure 3) to form a new animation segment Se� f , where f � e =
i� a+ b� j.
We first match br’s position at the transition (i, j). For every
frame of Sa� i, we simply copy br’s position into the output, Se� f ,
namely, �Rr(e + k) = Rr(a + k) and �tr(e + k) = tr(a + k) for
k = 0...(i � a).For every frame of Sj � b, we apply a fixed rigid
transformation to its time series of br to match it against the last
frame of Sa� i,

�Rr(e+ i� a+ k) = Rr(i)R
T
r (j)Rr(j + k), and

�tr(e+ i� a+ k) = Rr(i)R
T
r (j)[tr(j + k)� tr(j)] + tr(i),

(7)

for k = 0...(b � j).Notice that because of the third term in our
transition cost function (5) this rigid transformation is sufficient to
achieve a smooth velocity change of br as well.
Next, consider the non-reference bones bi �= br . We now splice
their motions in both segments so that they match exactly at the
transition (i, j) and meanwhile preserve spatiotemporal correla-
tions. One straightforward approach is to linearly blend the bone

(a) Poisson Blending (b) Our Method

Figure 6: Comparison of Blending Methods: Simple blending
near transition frames using Poisson solves leads to unpleasant ar-
tifacts (left). Our method (right) based on sampled deformation
gradients preserves spatiotemporal coherence and produces more
natural transitions (also refer to supplemental video). Input anima-
tion comes from [Briceño et al. 2003].

coordinates or solve a 1D Poisson equation for every bone position
coordinate { Ri(k), ti(k)} with fixed boundary values at a and b
and an equality constraint at (i, j). Unfortunately, such a simple
scheme strives to keep temporal smoothness, but neglects spatial
correlations of the bone positions, leading to undesirable artifacts
as shown in Figure 6 and supplemental video. Notice that simple
linear blending causes no problems in character animations [Kovar
et al. 2002; Arikan and Forsyth 2002], because those methods use
more input frames, each with a small number of DoFs for repre-
senting a character motion, and hence it is possible to find close
enough transitions. It also works well in Mesh Ensemble Motion
Graphs [James et al. 2007], because it assumes moderate deforma-
tions, and numerous ensembles with asynchronous transitions allow
effective diffusion of transition artifacts in space-time.
Inspired by gradient domain shape editing techniques [Yu et al.
2004; Sumner et al. 2005; Der et al. 2006], we preserve spatial
coherence of bone positions by solving the bone positions based
on blended mesh deformation gradients. To overcome geometric
complexity, we avoid evaluating deformation gradients on the en-
tire mesh; instead we compute them at a set of selected vertices.
This strategy is closely related to the ones used by [Der et al. 2006]
and [Meyer and Anderson 2007].

Selection of Key Vertices Concretely, we select a set V of mesh
vertices based on the learned LBS model. For each bone b, we add
into V one vertex vb that has the maximum weight associated with
b (i.e., vb = arg maxv�V wvb). In addition, for each pair of bones
(bi, bj), we select a vertex vij using vij = arg maxv�V wviwvj ,
and add it into V if both bi and bj have non-zero weights on it (i.e.,
wviwvj > 0). Intuitively, these vertices serve as coupling points to
capture how the bones move spatially coherently.

Deformation Gradients at Key Vertices We precompute a de-
formation gradient for each vertex v � V at every input animation
frame. Since we have applied a rigid transformation to align the
reference bone br in (7), we compute vertex deformation gradients
also in the local frame of reference of br , so we can use them to
estimate the local-frame bone positions later. In particular, given a
set of local-frame bone positions, { Rb� r(t), tb� r(t)} , b = 1...| B| ,
at an animation frame t, the resulting local-frame deformation gra-
dient at a key vertex vi is derived by differentiating (1),

�vi(t)

�v̄i
=
�
b�B

(Rb� r(t)v̄i + tb� r(t))
�wib

�v̄i
+ wibRb� r(t). (8)

Caution needs to be taken when precomputing the spatial deriva-
tives, � wib

� v̄i
, because the LBS model only defines wib on the mesh

0 Animated Frames

Ve
rte

x
D

ef
or

m
at

io
n

G
ra

di
en

t

70

2nd segment

1st segment

Figure 7: Blending Deformation Gradients of Key Vertices:
Given the mesh of a feeding creature (left), we select a set of key
vertices (middle). When splicing two segments, we blend the time
series of deformation gradients of key vertices from both segments
(shown by blue and green curves) by solving 1D Poisson equa-
tions. The resulting smooth time varying deformation gradients
(red curve) is then used in (9) for solving bone positions.

surface not in the 3D space. To avoid artifacts for estimating bone
positions in the next step, we need to guarantee a unit sum of bone
weights (i.e.,

�
b�| B| wib = 1) when estimating the LBS model,

and also ensure
�

b�| B|
� wib
� v̄i

= 0, since both properties guaran-
tee a deformation gradient to be an affine matrix F when the entire
mesh undergoes an affine transformation F. Otherwise, an unde-
formed mesh still results in non-identity deformation gradients. Un-
fortunately, computing � wib

� v̄i
using finite element approximations

on arbitrary meshes as used in [Der et al. 2006] cannot guarantee the
latter property due to the mesh irregularity. Instead, we propose to
compute � wib

� v̄i
for all key vertices using a constrained least-square

solver which robustly ensures both properties. Detailed derivations
are presented in Appendix A.

Representation of Deformation Gradient Each deformation
gradient is a 3 × 3 matrix Di(t) = � vi(t)

� v̄i
describing local mesh

rotations and stretches at frame t. To create smooth transitions, we
synthesize new vertex deformation gradients at the frames nearby
the transition location. Since a deformation gradient contains non-
linear rotational part, simple blending can lead to artifacts. Similar
to [Sumner et al. 2005; Huang et al. 2011], we represent each Di(t)
in rotation-strain coordinates by computing the polar decomposi-
tion [Golub and Van Loan 1996], Di(t) = Ui(t)Si(t), where Ui(t)
is a rotation matrix, and Si(t) is a symmetric stretch matrix. The
rotation-strain coordinates of Di(t) is a 9 × 1 vector di(t), in which
the first 3 elements is the axis-angle coordinates �(Ui(t)), and the
rest 6 elements stack the upper triangle part of Si(t). In summary,
at the end of the precomputation stage, we have a time series of
di(t) for each key vertex vi �Vk.

Solving Local-Frame Bone Positions Now we proceed to com-
pute bone positions for creating smooth transitions. Recall that our
goal is to form a new animation segment Se� f using Sa� i and
Sj � b. We first blend the rotation-strain coordinates �di(t) on time
axis by solving a 1D Poisson equation for each coordinate compo-
nent (see Figure 7),

�d��i (t) = g(t), t = e...f, s.t. �di(e) = di(a) and �di(f) = di(b),

where g(t) is computed using the finite difference approximation at
the corresponding frames of the precomputed di(t). Each 1D Pois-
son solve amounts to solving a tridiagonal linear system. Next, we
compute the bone positions based on deformation gradients �Di(t)

constructed from �di(t). As derived in [Der et al. 2006], the de-
formation gradient in (8) can be written as a linear operator with
respect to the bone positions { Rb� r(t), tb� r(t)} ; hence (8) is of

Figure 8: Avoiding collisions: We detect collisions while splicing
animation segments (as described in § 3.4), resulting in 60 differ-
ent blowing clothes from a single example. While the cloth in the
provided animation (shown in the inset) may flap down and touch
a sphere, none of the synthesized clothes swings down and gets de-
formed by the sphere that does not exist in the output scene (see the
video for all clothes).

a form d = Gp, where d stacks the deformation gradients Di at
key vertices into a vector, and p stacks all the bone positions. At
each output frame t, t = e...f , provided the blended deformation
gradients �Di(t), we compute bone positions { �Fb� r(t), �tb� r(t)} for
all the non-reference bones by stacking �Di(t) into a vector �d and
solving a least-square system,

Gp = �d. (9)

Notice that here we use �Fb� r to indicate that from now on a non-
reference bone has general affine matrices instead of pure rotations,
because the least-square solves have no guarantee to ensure pure
rotations in the results. Nevertheless, there is no problem to use
them in the LBS model for computing mesh deformations. Now
that the solved bone positions are in the local frame of the reference
bone br , we finally translate them into the world frame based on the
synthesized reference bone positions. In particular, we compute

�Fb(k) = �Rr(k)�Fb� r(k), and
�tb(k) = �Rr(k)�tb� r(k) + �tr(k), k = e...f.

(10)

At this point, we have the basic ingredients to generate various an-
imations: we randomly select segments that start and end at transi-
tion frames and splice them together using the presented algorithm.

3.4 Constrained Animation Synthesis

While our primary goal is to produce many different animations
from a single example, our method can easily incorporate user-
specified constraints. With selected candidate transitions, a motion
graph is constructed similar to approaches for character animation
synthesis [Kovar et al. 2002; Lee et al. 2002]: each node of the
graph represents a segment of the input animation, and each edge
corresponds to a candidate transition. The algorithm of searching
on the graph is flexible, depending on specific applications. The
graph walking strategies in character motion synthesis can of course
be naturally applied. In what follows, we present the details of our
graph walking implementation.
Our implementation incorporates two types of constraints, targeted
frames and collision avoidance. Targeted frames specify that a
set of frames fi, i = 1...M from the input animation must ap-
pear at frame �fj , j = 1...M in the output animation. Collision
avoidance requires that the synthesized deformable mesh should
not interpenetrate with other objects in the environment. Notice
that it is unlikely that our single-component synthesis introduces
self-collisions if the input animation contains no self-collisions, be-
cause it reuses input animation frames with only moderate changes
near transitions.

Bone
10

Bone
16

Bone
13

Bone
7

Bone
6

Bone
1

Bone
4

Bone
12

Bone
15

Bone
5Bone

11

Bone
0

Bone
8

Bone
3

Bone
2

Bone
9

Bone
14

Figure 9: A bone graph is illustrated using a deformable snake
from [Briceño et al. 2003]. (Top) The snake is colormapped ac-
cording to its LBS bone distribution. (Bottom) The corresponding
bone graph consists 17 bones with 2 cut bones in red circles.

The targeted frames split the output time axis into intervals. For
each interval, the start and end frames are given. We use multi-start
bidirectional search [Russell and Norvig 2009] to find sequences
of input animation segments forming the desired intervals. There
are multiple start and end nodes on the graph, because it is likely
that many input segments contain the same targeted frame. When
searching on the graph, we conduct AABB-tree-based collision de-
tection, and discard the current searching path if the newly created
transitions introduces collisions. We also label each input mesh de-
formation frames in which a collision occurs and avoid using these
frames in the synthesis (see Figure 8). Additionally, we compare
the current path with existing results. If it overlaps largely with
some existing result, we discard the current search to avoid gener-
ating animations utterly alike each other. Lastly, it is possible that
the start frame or the end frame or both of them are not specified for
an interval, then bidirectional search is unnecessary, and we simply
conduct a random walk on the graph to generate diverse results.

4 Multi-Component Animation Synthesis

In this section, we extend the presented single-component anima-
tion synthesis algorithm to create different transitions at multiple
spatial regions of the deformable mesh. Then, individual synthesis
for different regions allows their animations to be assembled asyn-
chronously, resulting in more diverse output.

Why Is Multi-Component Asynchronous Syn-
thesis Reasonable? For a complex deformable
mesh, there usually exist multiple weakly coupled,
if not completely independent, deformable regions.
For example, consider the upper and lower body of
a dancer, both parts can deform independently in an
animation sequence. This suggests that their anima-
tions can be synthesized separately. Moreover, from the perspec-
tive of the dynamic system analysis [Strogatz 2000], deformation
dynamics with a large number of DoFs very often exhibits both pe-
riodic and chaotic behaviors. We detect transitions by essentially
identifying periodic deformations. Meanwhile, motions cross mul-
tiple regions can experience chaotic dynamics (such as the classic
double pendulum), in which very little co-
ordination among these regions is exhibited.
Therefore, animations of those regions can
be synthesized independently and assembled
without noticeable artifacts. Our key goal in
this section is to detect those independently
deformed mesh regions, synthesize their an-
imations asynchronously and assemble them
seamlessly.

Animation 1 Animation 2 Animation 3 Animation 4

Figure 10: Multi-component synthesis method produces a vari-
ety of animations even for a perfectly periodic horse gallops from
[Sumner and Popović 2004]. Single component synthesis (Left
bottom) generates no variations for the input (left top). Multi-
component synthesis automatically separates the tail from the body,
and produces different tail motions (right) while the body galloping
motion is still perfectly periodic (also refer to the video).

4.1 Decomposition of LBS Bones

To harness this basic insight, our first step is to identify indepen-
dent regions. Fortunately, we find that the structure of LBS bones
provides a helpful abstraction to this end.

Bone Graph First, we create a bone graph. We construct a
weighted undirected graph where each node corresponds to an LBS
bone. There exists an edge eij between node i and node j if and
only if there is at least one vertex v that has non-zeros weights with
respect to both bones (i.e.,wviwvj > 0). The corresponding weight
dij is set as

dij = max
v�V

wviwvj. (11)

A large weight dij suggests that at least one vertex is heavily af-
fected by bone i and j. Consequently, when we synthesize bone
motions, both bones must move in a correlated way to deform their
associated vertices properly. On the other hand, a small dij indi-
cates that almost no vertices are affected by both bones, and hence
they can move independently. As illustrated in Figure 9, the struc-
ture of a bone graph reflects the coupling between LBS bones, thus
helping for identifying weakly coupled or independent components.

Cut Nodes We then cut off the bone graph edges
that indicate very weak coupling. We discard the
edges whose weights are smaller than a threshold
Te. For all the examples, we always use Te =
0.1 maxi, j dij without breaking the graph into dis-
connected components. Next, we find all cut nodes
(or cut vertices) of the resulting graph. A node is
called a cut node if removing this node from the graph results in
separated components (see Figure. 9). Our implementation follows
the efficient algorithm [Thulasiraman and Swamy 1992] for find-
ing all cut nodes in a complexity of O(n + m), where n and m
are respectively the number of nodes and edges in the graph. Sup-
pose that bc is a cut node, which, after being removed, separates
the graph into two components B1 and B2. In this case, we have
two independent bones components, B1 � { bc } and B2 � { bc } . In
summary, by analyzing the bone graph, we identify multiple com-
ponents separated by cut nodes.

4.2 Assembling Multi-Component Animations

Let Ci, i = 1...T denote the resulting weakly connected compo-
nents of the bone graph. We independently synthesize the bone
motions of each component following the presented algorithm in
Section 3. Suppose for each Ci, we have synthesized mi anima-
tions, each with a length of M frames. We now present the details

Algorithm 1: merge bone animations of component Ci and Cj
procedure: merge bone animation (Ci , Cj , bc)
begin

foreach mi of synthesized bone animations for component Ci do
foreach mj of synthesized bone animations for component Cj do

compute Dc(i, j) using (12)
if Dc(i, j) � Tc then return
foreach frame f = 1 . . . M do

copy the sequence of bone positions in Ci
update bc’s positions in the resulting animation using (13)
foreach bone b�Cj , b�= bc do

compute b’s positions in the resulting animation using (14)

of assembling them together to produce more variations.
For each pair of components Ci and Cj , if there exists a cut node bc
separating them (i.e., { bc } = Ci ≈Cj), we combine their motions
based on bc’s position at each animation frame. As outlined in Al-
gorithm 1, consider the independently synthesized bone motions of
Ci and Cj . Let { Fc, i(t), tc, i(t)} and { Fc, j(t), tc, j(t)} , t = 1...M
denote respectively the time series of bc’s positions in both compo-
nents. We are able to combine the motions of both components nat-
urally if bc’s motions are similar up to a rigid transformation. In par-
ticular, we compute polar decompositions, Fc, i(t) = Uc, i(t)Sc, i(t)
and Fc, j(t) = Uc, j(t)Sc, j(t), and a difference metric,

Dc(i, j) =
M�
t=1

�Sc, i(t)� Sc, j(t)�2F . (12)

We combine the two motions if Dc(i, j) < Tc, where Tc is a con-
stant for balancing the diversity and plausibility of the results. In
practice, we use Tc = 0.05 maxt=1. . F { �Sc, i(t)�2F , Sc, j(t)�2F } .
When merging them, we use the motions from one component, Ci,
as an “anchor”, and match the motions of Cj against it using rigid
transformations. Namely, we first update bc’s position using

Fc(t) =
1

2
Uc, i(t) (Sc, i(t) + Sc, j(t)) and tc(t) = tc, i(t), (13)

Here simply averaging the corresponding stretch matrices from Ci
and Cj as bc’s output stretch matrix produces no artifacts, since our
selected Tc ensures that they are close enough. All the other bone
motions in Ci are unchanged. And the motion of a bone b �Cj , b�=
bc in the combined animation is computed by

Fb(t) = Uc, i(t)U
T
c, j(t)Fb, j(t), and

tb(t) = Uc, i(t)U
T
c, j(t)[tb, j(t)� tc, j(t)] + tc, i(t).

(14)

Here at each animation frame t, all the bones b � C are applied
the same rigid transformation, and hence their spatial correlation
is preserved. These rigid transformations are temporally coherent,
since they are computed from the continuously changing positions
of bc. As a result, the resulting merged bone motions are temporally
correlated as well.
The merged components Ci and Cj form a new component Cij ,
which is then used to merge with another component if they share
a cut node. We repeat this procedure until all the components are
assembled together. From there we know all the bone positions in
a synthesized sequence, and finalize the resulting deformable mesh
animation. During this process, each merge produces a number of
different animations (see Figure 10). Meanwhile, we check if the
user-specified constraints are satisfied by the merged animations.
In our implementation, we optionally discard results that introduce
any self-collisions.

Figure 11: 1000 different blowing clothes are synthesized from a
single example shown in the inset where the colormap indicates the
LBS bone distribution.

5 Results

We have applied our method to a range of animations, including
available animations of previous work [Briceño et al. 2003; Sumner
and Popović 2004; Zheng and James 2012] as well as our home-
brew animations, including cloth simulations, human and animal
animations, and flexible objects. The results are synthesized on an
Intel quad-core i7-3770 (3.4 GHz) processor with 8 GB RAM, and
are summarized in Table 1. Our implementation exploited possi-
ble parallelism in the synthesis using Intel’s thread building block
library.

Constrained Synthesis We demonstrate the collision avoidance
in our animation synthesis using the blowing cloth example (see
Figure 8). The targeted frames are demonstrated using the dancers
(see Figure 13), for which we enforce all the animations start from
the same frame and end at another frame. This produces 1000
dancers that start and end at the same poses but dance differently
in between (refer to the supplemental video).

Cloth Animations Only a single component on the bone graph is
detected for all our cloth animations (see Figure 11 and 12). This
is because clothes usually experience large deformations, and we
need many correlated LBS bones to approximate their animations.
The resulting bone graphs tend to be highly connected, raising a
challenge on maintaining spatial coherence in the resulting anima-
tion (see a comparison in Figure 6). Consequently, for cloth ani-
mations with many small scale deformations (such as the wrinkles
in Figure 12), only a small number of plausible transition pairs are
detected, resulting in fewer variations for the flag example.

Multi-Component Synthesis We identified weakly coupled
components for the galloping horse, the dancer, and feeding crea-

Figure 12: 36 flags flap differently in a wind.

Example Input Complexity Analysis Synthesis
Frames Vtx Tri Bones,| B| tLBS Trans Components tanaly Anim Frames tsynth

flag � 210 6909 13436 50 20.4 min 54 1 3.8 min 36 360 3.6 sec
dancer 1� 180 7061 14118 27 11.2 min 58 1 2.1 min 1000 600 80.6 sec
dancer 2 � 180 7061 14118 27 11.2 min 98 3 3.2 min 1000 600 162.7 sec
horse� 48 8431 16843 22 9.6 min 24 2 1.4 min 4 336 1.2 sec
flowing cloth � 230 25921 51200 46 32.6 min 204 1 3.5 min 1000 480 20.4 sec
cloth window� 230 25921 51200 46 32.6 min 204 1 3.5 min 60 480 296.3 sec
feeding creature 280 21721 38458 91 16.5 min 526 26 9.7 min 1000 750 203.5 sec

Table 1: Example statistics for # input animation frames, the mesh complexity (# vertices and # triangles), # LBS bones (| B|), LBS computa-
tion time (tLBS), # transitions, # weakly coupled components, animation analysis time (tanaly), # different output animations, # output frames,
and the synthesis time (tsynth). The rows of dancer 1 and dancer 2 are respectively for single-component and multi-componenent synthesis,
both using the same input example. The multi-component transition number is the total number from all individual components. We indicate
examples from prior work using � for [Briceño et al. 2003], � for [Sumner and Popović 2004], and � for [Zheng and James 2012].

Figure 13: 1000 dancers are synthesized from a single example.
The output dancers exhibit different dancing sequences.

ture examples. The input of galloping horse consists of 48 frames
forming two perfectly periodic galloping cycles. Single component
synthesis detect transitions connecting corresponding frames into
both cycles, resulting in no variations. In contrast, multi-component
synthesis separates the tail from the horse body, and detect more
transitions for the tail part (see Figure 10). To synthesize the 1000
dancers (see Figure 13), we use an extra constraint that allows the
reference bones to be rigidly transformed only on the ground plane
(i.e., the X-Y plane), so that the synthesized dancers always move
on the ground.

6 Conclusion

We have presented a method for synthesizing deformable mesh an-
imations from a single input animation sequence. Requiring no
knowledge of the models for creating the input animation, our
method can be used for generating a wide range of mesh animations
without repeating the creation process of the source animation. Our
experiments suggest that many mesh animations can be decoupled.
Reusing those individual components asynchronously is an efficient
way to produce various animations with user-specified constraints.

Limitations and Future Work The main contribution of this
work is to identify transitions and splice mesh animations smoothly.
This method works well when the input animation exhibits periodic
and ideally chaotic motions. Our multi-component analysis decom-
poses the mesh into smaller components and hence is able to detect
even locally periodic motions for constructing motion graphs. In
the worst case, if the input animation shows a sequence of very
distinct deformations, then the resulting synthesized animations are
quite limited. Our current synthesis ignores the interaction of the
resulting animations with the surrounding environment. For exam-
ple, the resulting cloth animation cannot response correctly against

wind forces. This problem can be alleviated by introducing high-
level constraints in the graph search. And there is much room
for further improving the efficiency of searching the created mo-
tion graphs to satisfy different types of constraints. In general,
data-driven animation synthesis has the difficulty of exploring new
mesh deformations out of the scope of input animations. Multi-
component synthesis is able to produce new deformations by comb-
ing different components asynchronously, but is limited to a few
identifiable components. Another promising future direction is to
combine this method with physics-based simulations: simulation is
performed only when we cannot reuse existing results, and hence
produces new deformations. Finally, it could be interesting to ex-
plore other types of animations (such as fluids) with the same idea
of example-based synthesis.

Acknowledgments We would like to thank the anonymous re-
viewers for their constructive feedback. We also thank Xiaochen
Hu for his help of early testing implementation, Papoj Thamjaroen-
porn for proofreading and improving a few figures, and Eitan Grin-
spun for his feedback. This work was supported by Columbia Uni-
versity young faculty startup fund.

A Spatial Derivative of Bone Weights

Evaluating vertex deformation gradients using equation (8) requires
the precomputation of spatial derivatives of bone weights, � wib

� v̄i
, at

selected key vertices. If the entire mesh undergoes an affine trans-
formation, all the LBS bones have the same position { F, t} , and the
deformation gradient must be F. The property is guaranteed in (8)
only when �

b�| B|

�wib

�v̄i
= 0 (15)

is ensured in our estimation of � wib
� v̄i

. Consider a key vertex vi that
has P neighbor vertices vj , j = n1..nP . For an arbitrary irregular
mesh, finite element approximation considering the difference of
weights between vi and vj cannot guarantee the satisfaction of (15)
by the resulting derivative estimations. Our new approach starts
from the approximation using the definition of scalar field spatial
derivative:

�wib

�v̄i
(vj � vi) � wjb � wib. (16)

Stacking all neighbors together according to (16) yields a linear
least-square equation of a form Aidb = cb for a single bone b. We
weight each row of the system by the inverse of

�
�vj � vi�22, so a

closer neighbor results in a better approximation in (16). The con-
straint (15) couples the bone weight derivatives together. Therefore,
we need to stack together the equations for all bones, and solve a

least-square system of a form

[Ai
Ai

. . .

]
d = c (17)

with the equality constraint (15). Here d stacks the unknown weight
derivatives for all the related bones of the vertex vi, and c stacks
weight differences between vi and all its neighbors for all the re-
lated bones. Fortunately, the size of this system is small, since in
a typical LBS model, each vertex is affected by at most 4 bones,
rendering a system (17) at most 4P ×12. We solve this constrained
least-square system by projecting d into the space that satisfies (15)
(using QR factorization on the system of (15)) and solving the re-
sulting least-square problems.

References

AGARWALA, A., ZHENG, K. C., PAL, C., AGRAWALA, M., CO-
HEN, M., CURLESS, B., SALESIN, D., AND SZELISKI, R.
2005. Panoramic video textures. ACM Trans. on Graphics (SIG-
GRAPH 2005) 24, 3 (July), 821–827.

ARIKAN, O., AND FORSYTH, D. A. 2002. Interactive motion gen-
eration from examples. ACM Trans. on Graphics (SIGGRAPH
2002) 21, 3 (July), 483–490.

BRICEÑO, H. M., SANDER, P. V., MCMILLAN, L., GORTLER,
S., AND HOPPE, H. 2003. Geometry videos: a new representa-
tion for 3d animations. In 2003 ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, 136–146.

DER, K. G., SUMNER, R. W., AND POPOVIĆ, J. 2006. In-
verse kinematics for reduced deformable models. ACM Trans.
on Graphics (SIGGRAPH 2006) 25, 3 (July), 1174–1179.

GALERNE, B., LAGAE, A., LEFEBVRE, S., AND DRETTAKIS,
G. 2012. Gabor noise by example. ACM Trans. on Graphics
(SIGGRAPH 2012) 31, 4 (July), 73:1–73:9.

GLEICHER, M., SHIN, H. J., KOVAR, L., AND JEPSEN, A. 2003.
Snap-together motion: assembling run-time animations. In Pro-
ceedings of the 2003 symposium on Interactive 3D graphics,
181–188.

GOLUB, G. H., AND VAN LOAN, C. F. 1996. Matrix Computa-
tions, 3rd ed. Johns Hopkins University Press, Baltimore, MD.

HUANG, J., TONG, Y., ZHOU, K., BAO, H., AND DESBRUN,
M. 2011. Interactive shape interpolation through controllable
dynamic deformation. IEEE Transactions on Visualization and
Computer Graphics 17, 7, 983–992.

JAMES, D. L., AND FATAHALIAN, K. 2003. Precomputing in-
teractive dynamic deformable scenes. ACM Trans. on Graphics
(SIGGRAPH 2003) 22, 3 (July), 879–887.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh anima-
tions. ACM Transactions on Graphics 24, 3 (Aug.), 399–407.

JAMES, D. L., TWIGG, C. D., COVE, A., AND WANG, R. Y.
2007. Mesh ensemble motion graphs: Data-driven mesh anima-
tion with constraints. ACM Trans. on Graphics 26, 4 (Oct.).

KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND
KOLTUN, V. 2012. A probabilistic model for component-based
shape synthesis. ACM Trans. on Graphics 31, 4 (July).

KAVAN, L., SLOAN, P.-P., AND O’SULLIVAN, C. 2010. Fast
and Efficient Skinning of Animated Meshes. Computer Graphics
Forum (Eurographics 2010) 29, 2.

KAVAN, L., GERSZEWSKI, D., BARGTEIL, A., AND SLOAN, P.-
P. 2011. Physics-inspired upsampling for cloth simulation in
games. ACM Trans. on Graphics (SIGGRAPH 2011) 30, 4.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. ACM Trans. on Graphics (SIGGRAPH 2002) 21, 3
(July), 473–482.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. ACM Trans.
on Graphics (SIGGRAPH 2005) 24, 3 (July), 795–802.

LAU, M., BAR-JOSEPH, Z., AND KUFFNER, J. 2009. Modeling
spatial and temporal variation in motion data. ACM Trans. on
Graphics (SIGGRAPH Asia 2009) 28, 5 (Dec.), 171:1–171:10.

LE, B. H., AND DENG, Z. 2012. Smooth skinning decomposition
with rigid bones. ACM Trans. on Graphics (SIGGRAPH Asia
2012) 31, 6 (Nov.).

LEE, J., CHAI, J., REITSMA, P. S. A., HODGINS, J. K., AND
POLLARD, N. S. 2002. Interactive control of avatars animated
with human motion data. ACM Trans. on Graphics (SIGGRAPH
2002) 21, 3 (July), 491–500.

MARTIN, S., THOMASZEWSKI, B., GRINSPUN, E., AND GROSS,
M. 2011. Example-based elastic materials. ACM Trans. on
Graphics (SIGGRAPH 2011) 30, 4 (July), 72:1–72:8.

MEYER, M., AND ANDERSON, J. 2007. Key point subspace ac-
celeration and soft caching. ACM Transactions on Graphics 26,
3 (July).

PULLEN, K., AND BREGLER, C. 2000. Animating by multi-level
sampling. In Proceedings of the Computer Animation, CA ’00.

RUSSELL, S. J., AND NORVIG, P. 2009. Artificial Intelligence: A
Modern Approach, third ed. Prentice Hall.

SCHÖDL, A., AND ESSA, I. A. 2002. Controlled anima-
tion of video sprites. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.

STROGATZ, S. H. 2000. Nonlinear Dynamics and Chaos. West-
view.

SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer for
triangle meshes. ACM Trans. on Graphics (SIGGRAPH 2004)
23, 3 (Aug.), 399–405.

SUMNER, R. W., ZWICKER, M., GOTSMAN, C., AND POPOVIĆ,
J. 2005. Mesh-based inverse kinematics. ACM Trans. on Graph-
ics (SIGGRAPH 2005) 24, 3 (July), 488–495.

THULASIRAMAN, K., AND SWAMY, M. N. S. 1992. Graphs:
Theory and Algorithms, first ed. Wiley-Interscience.

WANG, R. Y., PULLI, K., AND POPOVIĆ, J. 2007. Real-time
enveloping with rotational regression. ACM Trans. on Graphics
(SIGGRAPH 2007) 26, 3 (July).

WANG, H., HECHT, F., RAMAMOORTHI, R., AND O’BRIEN, J.
2010. Example-based wrinkle synthesis for clothing animation.
ACM Trans. on Graphics (SIGGRAPH 2010) 29, 4 (July).

WANG, H., O’BRIEN, J. F., AND RAMAMOORTHI, R. 2011.
Data-driven elastic models for cloth: modeling and measure-
ment. ACM Trans. on Graphics (SIGGRAPH 2011) 30, 4 (Aug.).

WEI, L.-Y., LEFEBVRE, S., KWATRA, V., AND TURK, G. 2009.
State of the art in example-based texture synthesis. In Euro-
graphics’09, State of the Art Report.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND
SHUM, H.-Y. 2004. Mesh editing with poisson-based gradient
field manipulation. ACM Trans. on Graphics (SIGGRAPH 2004)
23, 3 (Aug.), 644–651.

ZHENG, C., AND JAMES, D. L. 2012. Energy-based self-collision
culling for arbitrary mesh deformations. ACM Trans. on Graph-
ics (SIGGRAPH 2012) 31, 4 (July), 98:1–98:12.

