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ESPRESSO: Advanced Steps

(i) Essentials #2
(i) MAKE-SPARSE




ESPRESSO: “Essentials #2” Step

generating all essentials when not given all primes

“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

(prime cover = cover using only prime implicants, i.e. fully-expanded cubes)

| Q1. Does the cover include all essentials?
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q1. Does the cover include all essentials?

00 01 1 10 Al. YES! Every prime cover F of a
yz function f includes all its essentials
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?

Note: cover F does not necessarily
include all primes!
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?
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Essentials #2” Step
Example: given any “prime cover” F of a Boolean function f
| Q2. Which cubes in the cover are essential?
wXx
00 4 01 11 10 .. how to identify all essentials when
yzOO 1 0 0 cover F does not include all primes?
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?

wXx
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v 1 1 0 0 CASE ANALYSIS:
00 3 types of minterms in cubes
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?

WX
00 4 01 1 10
vzo ol (A o o CASE ANALYSIS:
= i 3 types of minterms in cubes
01 0 & U 1\c-0
— Each ON-set minterm is:
1110 0 1 1| = (i) covered by 2 or more cubes
< D
10 0 0 0 0
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?

WX
00 4 O1 1 10
yzoo i ™ o o CASE ANALYSIS: '
3 types of minterms in cubes
010 & U \clo
Each ON-set minterm is:
1110 0 {1 / 1 (i) covered by 2 or more cubes
[b) = (ii) covered by only 1 cube
10 0 0 0 0
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?

WX
00 4 O1 1 10
yzoo i ™ o o CASE ANALYSIS:
3 types of minterms in cubes
010 & U 1N\ o
Each ON-set minterm is:
1110 0 {1 / 1 (i) covered by 2 or more cubes
[b) = (ii) covered by only 1 cube
10 0 0 0 0
| 2 sub-cases: ..
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?

wXx
00 4 01 1 10
yz @ i 0 0 CASE ANALYSIS:
00 =/ | 3 types of minterms in cubes
]
010 & b/ 1\¢ |0 Each ON-set minterm is:
0 0 T } 94 (i) covered by 2 or more cubes
1 ‘bLE = (i) covered by only 1 cube
0 0 0 0
10 N\| 2 sub-cases: ..
! (a) ON-set minterm “isolated”:

no neighboring cubes (only OFF-set)
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?

wXx
00 4 oO1 11 10
yz 1 1 0 0 CASE ANALYSIS:
00 3 types of minterms in cubes
|
010 ~ \i// Vl \\C 0 Each ON-set minterm is:
0 0 < } ; (i) covered by 2 or more cubes
1 %\L‘” = (ii) covered by only 1 cube
0 0 0 0
10 | | 2 sub-cases: ..
1 (b) ON-set minterm not “isolated”:

has neighboring adjacent cube(s)
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?

wXx
vz 00 4 01 11 10 Test for Case #2(b):

{ 1 0 0 not in “isolated regions” =
00 <— has neighboring cubes
01 0 8 U 1\c|0 = Grow ‘consensus” cubes:

... between each adjacent cube pair
1 0 0 K 1 , 1
D

10 0 0 0 0
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?

wX
vz 00 4 O1 11 10 Test for Case ii(b):

{ 1 0 0 not in “isolated regions” =
00 <— Has Cube Neighbors
01 0 = Grow ‘consensus” cubes:

0 4 ... between each adjacent cube pair
" \ ["adjacent” = distance-1]
00 |0 \ o o

|

X = CONSENSUS (cube B, cube C) |
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?

Test for Case #2(b):
not in “isolated regions” =
Has Cube Neighbors

—=>_Intuition: experiment to ‘grow”
missing implicants
- Consensus cube = “seed” which spans
gap between adjacent cube pair
(non-intersecting)

- Idea: used to LOCALLY generate the

“core” of missing primes in cover

X = CONSENSUS (cube B, cube ¢) | (consensus often is non-prime)
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?

Tl Y [0 [0 |[d2 e e i vt enic
(i) the set of other cubes in cover, and
010 (ii) the set of consensus cubes (i.e seeds
of missing primes)
110 then it is essentiall
00 |0 0\ 0

X = CONSENSUS (cube B, cube C) |
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?

10

X = CONSENSUS (cube B, cube C) |

A2. If a cube w in cover F is not entirely
covered by the union of:

(i) the set of other cubes in cover, and

(ii) the set of consensus cubes (i.e seeds
of missing primes)

then it is essentiall

| EXAMPLE #1: cube A Essential
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential?

A2. If a cube w in cover F is not entirely
covered by the union of:

(i) the set of other cubes in cover, and

(ii) the set of consensus cubes (i.e seeds
of missing primes)

then it is essentiall

y200(—1 o o
010
11 0
00 |0 0\ 0

X = CONSENSUS (cube B, cube C) |

| EXAMPLE #2: cube C Not Essential
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“Essentials #2” Step

Example: given any “prime cover” F of a Boolean function f

| Q2. Which cubes in the cover are essential? |

10 A2. Algorithmic Formulation*: ESSEN #2
0 Given cover F, including cube ‘e’ (to check
if e essential):
== 1. Remove ‘e’ from F:
e 6 =F-{e
2. Compute consensus of ‘e’ and each cube

0 0 1 in 6:
1 %D H = consensus{e, G}

3. Formulate containment problem:
Check if e <= 6 UH

X = CONSENSUS (cube B, cube C) | | *equivalent to Hachtel/Somenzi, Theorem 5.4.1 (p. 204)
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ESPRESSO: “Make-Sparse” Step

12



Multi-Output Minimization: Example #1

Multi-Output Function

f1

.

f2

#25

Multi-Output Minimization: Example #1

‘ Cover #1A: min-cost cover, using ONLY multi-output primes ‘
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Multi-Output Minimization: Example #1

fl 4

‘ Cover #1A: using ONLY multi-output primes
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corresponding 2-level implementation
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PLA Representation of Cover
= “cubical complex”

COST = 15 gate inputs
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Multi-Output Minimization: Example #1

fl A

‘ Cover #1B: using some NON-PRIMES! ‘

f2
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NOT a multi-output
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input part output part
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NOT a multi-output
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::E X —

corresponding 2-level implementation
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PLA Representation of Cover
= “cubical complex”

COST = 14 gate inputs = better!
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Peculiar feature of multi-output primes (spanning multiple functions):

NOT a multi-output

f1 fz / prime

f2

ILyx

f1 f2 multi-output

1 -
C / / prime
| ] Fo
i

X
, v
a8

I:>| Spanning more functions: (i) increases coverage, BUT (ii) also increases cost! |
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ESPRESSO Strategy: using MAKE-SPARSE (simple version)
Basic idea:
-Initial ESPRESSO goal: body of algorithm always ‘expands’ to multi-output primes
- Post-processing step (at end of algorithm) = MAKE-SPARSE

- heuristically reduce final cover cost by DELETING UNNECESSARY OUTPUT CONNECTIONS
- Basic version of "MAKE-SPARSE":

-- this step is a form of multi-output "REDUCE” =

eliminate unnecessary AND-gate wire fanouts
-- also known as “reduce output parts”
See previous slides:
= - before MAKE-SPARSE: Cover #1A (cost = 15 gate inputs)
- after MAKE-SPARSE: Cover #1B (cost = 14 gate inputs)
#30
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Used in Espresso-II:

-Key Idea: improved “MAKE-SPARSE” can involve new expansion too!
Step #1. Use restricted “reduce”: “"REDUCE OUTPUT PARTS”
for each AND-gate, eliminate unnecessary output connections
Step #2. Use restricted “expand”: “EXPAND INPUT PARTS”

for each AND-gate, expand if possible within current outputs
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Multi-Output Minimization: Example #2

‘ Multi-Output Function: illustrates advanced MAKE-SPARSE operation

f1 f2 (NEW: DC minterm)

y 4
.

#32
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Multi-Output Minimization: Example #2

‘ Cover #2A: initial min-cost cover, using ONLY multi-output primes ‘

multi-output
prime

Hilipn

z
.
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Multi-Output Minimization: Example #2

STEP #1 -- Cover #2B: after RESTRICTED REDUCE of output part
= "REDUCE OUTPUT PART"

NOT a multi-output
prime
fl 4 f2 N
c N \

2 W &

#34




Multi-Output Minimization: Example #2

STEP #2 -- Cover #2C:

after RESTRICTED EXPAND of input part

- no expansion to new outputs, only within current outputs!
= "EXPAND INPUT PART"
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|

multi-output
prime

-

FINAL COVER
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Multi-Output Minimization: Example #2 -- details

fl A

multi-output ‘ Cover #2A: using ONLY multi-output primes ‘

prime

f2
c

N (NEW: DC minterm)
N
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NX X NX X <X X < X
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— f1

—_— B / multi-output

D—L "

corresponding 2-level implementation

prime

——

x vy z |f
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1 0 -1]1 0

1 0 1|1 1
/0 0 00 1

PLA Representation
= “cubical complex”

COST = 15 gate inputs

input part output part

#36
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Multi-Output Minimization: Example #2 -- details

| STEP #1 -- Cover #2B: REDUCE OUTPUT PART |

fl A fz (NEW: Dc{inferm) NOT a multi-output
\V prime
\ </ i
input part output part
b 4 x y z [fi f2
/!
X ' 01 -1 0
B D
1 0 -1]1 0
X' — A
y — ) ! 1 0 1)0 1
X — : f1
y' — B NOT a multi-output / 0 0010 1
X / P rime
X —> PLA Representation of Cover
;’ _- (4 = “cubical complex”
S
y — D )
7 = COST = 14 gate inputs = better!
corresponding 2-level implementation #37

Multi-Output Minimization: Example #2 -- details

| STEP #2 —- Cover #2C: EXPAND INPUT PART |

f1 f2 (NEW: DC minterm)
A \. EXPAND cube as much as
7 <« possible within _current outputs
| c
input part output part
b4 x y z [fi f2
/!
X ' 01 -1 0
B D
1 0 -1 0
; ‘Dj
y — 1 - 1]0 1
X — : f1
y — B EXPAND cube as much as /0 0 0]0 1
posszb/e within_current outputs
X

PLA Representation of Cover

) l = “cubical complex”

lll l><l

) COST = 13 gate inputs = even better!

N <X N

corresponding 2-level implementation #38




