CSEE 6861 CAD of Digital Systems Handout: Lecture #144/28/16

Prof. Steven M. Nowick nowick@cs.columbia.edu

Department of Computer Science (and Elect. Eng.)
Columbia University
New York, NY, USA

Introduction to Approximate Computing (follows Handout #43 paper)

Conventional Mirror Adder = efficient transistor-level design

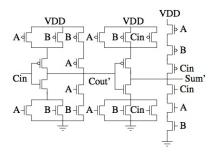


Fig. 1: Conventional MA

Figures courtesy of: V. Gupta, D. Mohapatra, S.P. Park, A. Raghunathan and K. Roy, "IMPACT: IMPrecise adders for low-power Approximate Computing," Proceedings of the IEEE Int. Symp. on Low-Power Electronics and Design (2011)

#3

Full Adder Designs: Mirror Adder (MA)

Simplified + Approximate Mirror Adders

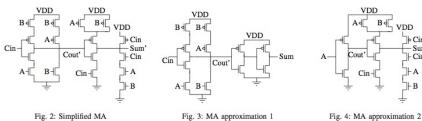


Fig. 2: Simplified MA Fig. 3: MA approximation 1

Simplified + Approximate Mirror Adders: Layouts

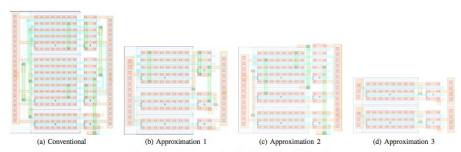


Fig. 5: Layouts of conventional and approximate MA cells

#5

Full Adder Designs: Mirror Adder (MA)

Accurate + Approximate Mirror Adders: Truth Table

TABLE I: Truth table for conventional full adder and approximations 1, 2 and 3

Inputs			Accurate outputs		Approximate outputs						
A	B	C_{in}	Sum	Cout	Sum_1	Cout1	Sum_2	Cout2	Sum_3	Cout3	
0	0	0	0	0	1 X	0 🗸	0 🗸	0 🗸	0 🗸	0 🗸	
0	0	1	1	0	1 🗸	0 🗸	1 🗸	0 🗸	0 X	0 🗸	
0	1	0	1	0	0 X	1 X	0 X	0 🗸	1 🗸	0 🗸	
0	1	1	0	1	0 🗸	1 🗸	1 X	0 X	1 X	0 X	
1	0	0	1	0	1 🗸	0 🗸	0 X	1 X	0 X	1 X	
1	0	1	0	1	0 🗸	1 🗸	0 🗸	1 🗸	0 🗸	1 🗸	
1	1	0	0	1	0 🗸	1 /	0 🗸	1 /	1 X	1 🗸	
1	1	1	1	1	0 X	1/	1 /	1/	1 /	1 /	

#6

DSP Application areas: Discrete Cosine Transform (DCT) and Inverse DCT (IDCT)

- Approximate Mirror Adders: Output quality

(for 7-9 LSB bits using approximation)

- peak signal to noise ratio (PSNR)
- accurate 20-bit adder: PSNR = 31.16dB

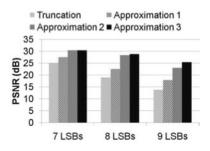


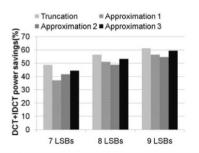
Fig. 8: Output quality for different techniques

#7

Full Adder Designs: Mirror Adder (MA)

DSP Application areas: DCT and IDCT

- <u>Goal:</u> use improved performance to reduce Vdd
→ for power savings


TABLE III: Operating voltages for different techniques

	$V_{DD}(V)$ for the 3 cases									
Technique	7 I	SBs	8 I	SBs	9 LSBs					
	DCT	IDCT	DCT	IDCT	DCT	IDCT				
Truncation	1.13	1.03	1.10	1.03	1.1	1				
Approx. 1	1.18	1.05	1.1	1.03	1.1	1.03				
Approx. 2	1.15	1.1	1.13	1.1	1.1	1.1				
Approx. 3	1.14	1.02	1.11	1.01	1.1	1				

#8

DSP Application areas: DCT and IDCT

-power and area savings

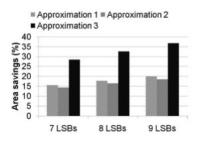


Fig. 9: Power savings for DCT+IDCT over the base case

Fig. 10: Area savings for DCT+IDCT over the base case

#9

Full Adder Designs: Mirror Adder (MA)

DSP Application areas: DCT and IDCT

-overall quality metric for approximate designs

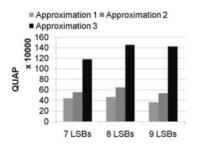


Fig. 14: Comparision of different approximations

#10