CSEE 6861 CAD of Digital Systems

Handout: Lecture #1
1/21/16

Prof. Steven M. Nowick
nowick@cs.columbia.edu

Department of Computer Science (and Elect. Eng.)
Columbia University
New York, NY, USA

Key Synthesis/Optimization Steps: at 3 Levels

1. Architectural Synthesis (also, “High-Level Synthesis” [HLS])
Starting point: behavioral system specification
Steps: scheduling, resource allocation (sharing) and binding
Outcome: register-transfer level (RTL)] optimized design
for block-level datapath + FSM controller specification
2. Logic Synthesis
Steps:
sequential synthesis: FSM optimization
combinational synthesis: (i) 2-level logic minimization, (ii) multi-level logic optimization
technology mapping: optimal mapping of gates to VLSI "library” cells

Outcome: mapped gate-level circuit

3. Physical Design
Steps: circuit partitioning, chip floorplanning, place-and-route ("P&R")
..« + late timing correction/optimizations, etc.

Outcome: complete chip layout =» ready for fabrication
#3

High-Level Specification: Differential Equation Solver
(diff-eq) Custom Unit

diffeq {

read (x, y, u, dx, a);

repeat {
Xl = X + dx
ul = u=-({3*x*u*dx)=-(3°*y *dx)
;- - y +u -
c = xl < a
X = Xl u = ul y = yl

until (¢);

write (y);

Figures courtesy of: 6. De Micheli, Synthesis and Optimization of Digital
Circuits, McGraw-Hill (1994)

#4

Target Micro-Architecture: Register-Transfer Level

{ &

STEERING ¥
* ALU i COSJI:OL
MEMORY
FIGURE L.12
Example of structural view at the architectural level.
#5
Detailed Target Micro-Architecture:
Control
inputs
1
y Control t] RF/Scratch pad
signals
Bus 1 - T - -
Bus2 - ~
- State

register
Next- | |_(SR)
state
logic

[}
Status sngnalé Bus3
Controller Data path
Cor:rrol
outputs

Figure 2. Typical architecture.

Courtesy of: P. Coussy, D.D. Gajski, M. Meredith and A. Takach,
“An Introduction to High-Level Synthesis”, IEEE Design & Test of Computers (July/Aug. 2009)

#6

Architectural Synthesis
Unscheduled Control-Dataflow Graph (CDFG): diff-eq

20 “n
:‘NOP;

#7

Scheduled CDF6: minimum-latency

770
INOP}
. e o

-5 548

g 7

10

TIME 4

el
’ n
',NOP'I

#8

Architectural Synthesis

Scheduled CDFG: min-area
= resource-constrained (RC)

TMED o

TIME2 |

TIME3 |

TIME4 |

TIMES

TIME 6

TIME 7

#9

Architectural Synthesis

Resource Allocation/Sharing

#10

llopa ”

ion Block

ional Funct
17 inputs/69 outputs = 2119 gate inputs (literals)

inat

ized Comb

Logic Synthes
Initial Unoptim

#11
#12

o2
s

€% : i

3 Y
m ..w:, © , Ih&\l\:\

ion

T

inimiza

Logic Synthesis

Result of Heuristic 2-Level M
2119 gate inputs (literals) down to 1153 gate inputs

Logic Synthesis

Result of Multi-Level Optimization: “opa”
2119 gate inputs (literals) down to 430 gate inputs

#13

Logic Synthesis
Technology Mapping =

binding to VLSI cells &
Mlﬂll(ﬁn = <
40 © ‘

© o@‘

FIGURE 10.6
Covering of a subject graph.

#14

Optimal Circuit Partitioning: Kernighan-Lin Algorithm

T T

Fig. 1. Partitioning of 412-cell circuit into groups of size <8§.

Figure courtesy of: A.E. Dunlop and B.W. Kernighan, "A Procedure for Placement
of Standard-Cell VLSI Circuits”, IEEE Trans. On Computer-Aided Design (Jan. 1985)

#15

Optimal Place-and-Route

Fig. 4. Automatically generated layout for circuit with 453 signals and
412 cells.

Figure courtesy of: A.E. Dunlop and B.W. Kernighan, "A Procedure for Placement
of Standard-Cell VLSI Circuits”, IEEE Trans. On Computer-Aided Design (Jan. 1985)

#16

Final Chip Layout

T LHEE WUk

FIGURE 1.3

One of ATET's Application Specific Standard Product chips. The chip was designed and laid out using
AT&T CAD tools. with a standard cell design style. (Courtesy of AT&T.)

17

Review: Basic Definitions
(2-Level Logic Minimization)

Literal: a variable (x) or its complement (x")
Product: an “AND” of literals (e.g. xy’ z, @’ bcd”)
Cube: a product (another equivalent name)

Implicant: a cube/product which contains no OFF-set minterm (i.e. 0 value)

Note: implicants do not need to contain any ON-set minterms (i.e. 1 values), but they usually do

Prime Implicant (PI, prime): a maximal implicant (i.e. not contained in any larger implicant)

Essential Prime Implicant (essential): a prime which contains at least one ON-set minterm (i.e. 1 value)
not contained in any other prime

Sum-of-products (SOP, disjunctive normal form):
a sum of products (“AND-OR” 2-level circuit)

Cover: a set of primes (SOP) which together contain all ON-set minterms (i.e. 1 values) of a function
Complete Sum: a cover containing all possible prime implicants of the function

#19
The 2-Level Logic Minimization Problem: given Boolean function f,
(i) Find a minimum-cost set of prime implicants which “covers” (i.e. contains)
all ON-set minterms of function f (and possibly some DC-set minterms)
or (...equivalently):
(ii) Find @ minimum-cost cover F of function f
#20

10

2-Level Logic Minimization:
Definitions + Design Space Exploration

2-Level Logic Minimization: Example

AB
00 01 11 10
CD

00! 1 0 0

01

11

10

#22

11

2-Level Logic Minimization: Example

’ Solution #1: All Primes = 5 Products (AND gates) ‘

AB
D 00 01 1 10
A —
D' —
= -
010 H mﬁ 0 =
B — :Df
1 0 0 E%Z D g::) —
A —p
o |o o o E_’}
10 A —p
Ene
D—>

“Complete Sum”: corresponding 2-level implementation
cover containing all prime implicants

#23
2-Level Logic Minimization: Example
’ Solution #2: Subset of Primes = 4 Products (AND gates) ‘
AB | Locally sub-optimal solution |
D 00 01 1 10 a
—_—
ool [I> o o S :’.}
A -=
w® T N
B‘ — Byt f
110 |0 @ 1 5= D_|=:>D
=
0 0 0 0 D
10 s =
=
D —>
“Redundant Cover”: corresponding 2-level implementation
can remove a product and still have legal cover
#24

12

2-Level Logic Minimization: Example

’ Solution #3: Subset of Primes = 4 Products (AND gates) ‘

Locally optimal solution:
AB

.. but globally sub-optimal = "LOCAL MINIMUM"

op %0 01 11 10 X
00 _I@i o 0 : }
010 \1/ 1\ 0
10 |0 @CD

0 0 0 0

|

10

O OW> OO AT O
[|
111
1
1
1
)
M

“Irredundant Cover” (but globally sub-optimal):
cannot remove any product and still have legal cover

corresponding 2-level implementation

#25
2-Level Logic Minimization: Example
’ Solution #4: Subset of Primes = 3 Products (AND gates) ‘
AB | Globally-optimal solution |
o 00 11 10 .
ool [I> o o S :’.}
A -
T I R
B — [B4
40 o a1 =)‘_!--;:'D_'f
A -- .
B - -
0 0 0 0 D --%
10 A —p
:=D-
D —
corresponding 2-level implementation
OPTIMAL SOLUTION (also irredundant) |
#26

13

Exact 2-Level Logic Minimization:
Quine-McCluskey (QM) Method

Example #1: f(A,B.C,D)= m(0,4,5,11,15) + d(2,6,9)

[m = ON-set minterms, d = DC-set minterms]

AB
00 01 11 10
cDh
00 1 1 0 0
010 1 0
110 0 1 1
10 |~ 0 0

#28

14

Example #1 (cont.)

AB I
00 01 11 10
CD\l 0 0
[ﬂ&@(
0 1 0 -\ P4
pr UPZ \
1 0 0 1 1
P3
10 \ 0 |0

! \

I Generate all prime implicants

#29

|Prime Implicant Table |

Example #1 (cont.)

prime implicants

X

AB
00 01 11 10 ®0
o 1 0 0
fﬂ &ﬂ(E 4% S
Q
0\ 10 |-\pa £ X
P1 01 \7P2 \ §®5
110 0 1® 1 - X X
P3 °u
- - ®
10 \ o |0 15 X
I \ O = essential prime
® = distinguished minterm Approach: remove & save essentials

{p1, p2, p3}, and delete intersecting rows
... empty table: nothing left to cover. 43p

15

Example #2: f(A,B,C) = m(0,1,2,6) + d(b)

[m = ON-set minterms, d = DC-set minterms]

A
C 0
B
w0ll |0
011
410 o
ol 1

More complex example: illustrates
“table reduction step” using column dominance

#31
Quine-McCluskey Method: Examples
Example #2: f(A,B,C) = m(0,1,2,6) + d(B)
[m = ON-set minterms, d = DC-set minterms] | Prime Implicant Table |
A prime implicants
|0/ 1 Pt (P2) P3 P4
00 }QJ 0 X X
P1 Y
01 - > s [x X
P3 P g
0 0 £
11 § 2 X X
P4 v
10 @FD@ 8 ®6 X
—
O = essential prime
® = distinguished minterm
| Initial P Table
#32

16

Example #2: f(A,B,C) = m(0,1,2,6) + d(5)

[m = ON-set minterms, d = DC-set minterms]

prime implicants

prime implicants

Pt (P2) P3 P4 PL P3 P4
g
0 X X § 0 X X

g X X E X X

§ 1 51

t |

£ Z

£

: 2 X X (¢)

zZ ® X

© Reduced PI Table (a)

O-

essential prime

’ Initial PT Table

Approach: remove & save essential p2,
and delete intersecting rows.

#33

Example #2: f(A,B,C) = m(0,1,2,6) + d(B)

[m = ON-set minterms, d = DC-set minterms]

ON-set minterms

P1

prime implicants

P3

P4

prime implicants

P1

X

X

X

X

X

Reduced PT Table (a)

Reduced PI Table (b)

“Column Dominance”:

- column p1 ‘column-dominates’ column p3
- column p1 ‘column-dominates’ column p4

..delete dominated columns {p3,p4}

#34

17

Example #2: f(A,B,C) = m(0,1,2,6) + d(5)

o X - column pl has now become ‘essential
1 X
Approach: remove & save secondary essential pl,
) 4 ol ori and delete intersecting rows.
@' secondary essential prime | empty table: nothing left to cover.

[m = ON-set minterms, d = DC-set minterms]

prime implicants

“Secondary Essential Primes”:

| Reduced PT Table (b)

Final solution: {p1,p2} |

#35

Example #3: f(A,B,C)= m(0,2,3,45,7)

P6

[m = ON-set minterms, d = DC-set minterms]

| O/pg 1

00¢ 1
P2
o1 |° @XP‘?’
pPA
i

1
P5

o] |

and (i) resulting “cyclic core”

] More complex example: illustrates (i) no reduction possible,

FOR EXACT SOLUTION: can use Petrick’s Method (or more advanced techniques)
SEE QUINE-MCCLUSKEY HANDOUT

#36

18

Heuristic 2-Level Logic Minimization:
the “Espresso” Method

Example #1: Basic “Expand” Step

Function f(x,y,z):

expand A delete B
B B
Y Y
A A’ A

ILYX c c c

I Initial cover (“seed”)

#38

19

z

G

Example #2: Basic “Expand” + “Irredundant” Steps

Function f(x,y,z):
expand A& C delete B

c c

@
aiEyiaits!
/

(o &

XA A A

“ “

I Initial cover (“seed”) Expand” Step IRRED” Step

#39
Introduction to ESPRESSO: Examples
Example #3: “Expand”/”Irredundant”/”Reduce” Iteration
Function f(x,y,z): expand
E E E
=
< D D >
Al wty | o
Y | >)
z
y B |
ILXC/C A /' ~ N\ E——
c A’ A
I Initial cover (“seed”) I
|:> ‘ C fully contained in A’: delete €
#40

20

Example #3 (cont.): “Expand”/”Irredundant”/”Reduce” Iteration

.6

By

20

“irredundant”:

E
Py

D)

/

A!

(copied)

Result of “expand” step

no change

e

reduce

B)

Ve

@)

c

AL

#41
Introduction to ESPRESSO0: Examples
Example #3 (cont.): “Expand”/”Irredundant”/”Reduce” Iteration
expand (2nd time!)
E E E
D D D
8 v
’ "’ ‘ ’ b Wo@ ’
Vge g QI o
z
(L (o (L
*"¢ A’ A’
Result of “reduce” step
(copied)
I:N D'’ fully containedin A’"’: delete D'’
#42

21

