# **CSEE 6861 CAD of Digital Systems Handout: Lecture #1**1/21/16

Prof. Steven M. Nowick nowick@cs.columbia.edu

Department of Computer Science (and Elect. Eng.)
Columbia University
New York, NY, USA

## **Overview of Design Flow**

### **Key Synthesis/Optimization Steps: at 3 Levels**

1. Architectural Synthesis (also, "High-Level Synthesis" [HLS])

**Starting point:** behavioral system specification

Steps: scheduling, resource allocation (sharing) and binding

**Outcome:** register-transfer level (RTL)] optimized design for block-level datapath + FSM controller specification

2. Logic Synthesis

Steps:

sequential synthesis: FSM optimization

combinational synthesis: (i) 2-level logic minimization, (ii) multi-level logic optimization

technology mapping: optimal mapping of gates to VLSI "library" cells

Outcome: mapped gate-level circuit

3. Physical Design

Steps: circuit partitioning, chip floorplanning, place-and-route ("P&R")

... + late timing correction/optimizations, etc.

Outcome: complete chip layout → ready for fabrication

#3

### **Architectural Synthesis**

High-Level Specification: Differential Equation Solver (diff-eq) Custom Unit

Figures courtesy of: G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill (1994)













| <b>Logic Sy</b> | ıthesis                                                                          |    |
|-----------------|----------------------------------------------------------------------------------|----|
| •               | mized Combinational Function Block: "ope<br>utputs → 2119 gate inputs (literals) | 1" |
|                 | 11.1001                                                                          |    |
|                 |                                                                                  |    |
|                 |                                                                                  |    |







## **Physical Design**

### Optimal Circuit Partitioning: Kernighan-Lin Algorithm



Fig. 1. Partitioning of 412-cell circuit into groups of size  $\leq 8$ .

Figure courtesy of: A.E. Dunlop and B.W. Kernighan, "A Procedure for Placement of Standard-Cell VLSI Circuits", IEEE Trans. On Computer-Aided Design (Jan. 1985)

#15

### **Physical Design**

#### Optimal Place-and-Route



Figure courtesy of: A.E. Dunlop and B.W. Kernighan, "A Procedure for Placement of Standard-Cell VLSI Circuits", IEEE Trans. On Computer-Aided Design (Jan. 1985)

## **Physical Design**

Final Chip Layout



FIGURE 1.3
One of AT&T's Application Specific Standard Product chips. The chip was designed and laid out us AT&T CAD tools, with a standard cell design style. (Courtesy of AT&T.)

17

## Review: Basic Definitions (2-Level Logic Minimization)

### **Review: Basic Definitions**

Literal: a variable (x) or its complement (x')

Product: an "AND" of literals (e.g. xy'z, a' bcd')

Cube: a product (another equivalent name)

Implicant: a cube/product which contains no OFF-set minterm (i.e. 0 value)

Note: implicants do not need to contain any ON-set minterms (i.e. 1 values), but they usually do

Prime Implicant (PI, prime): a maximal implicant (i.e. not contained in any larger implicant)

Essential Prime Implicant (essential): a prime which contains <u>at least one</u> ON-set minterm (i.e. 1 value) not contained in any other prime

Sum-of-products (SOP, disjunctive normal form):

a sum of products ("AND-OR" 2-level circuit)

Cover: a set of primes (SOP) which together contain all ON-set minterms (i.e. 1 values) of a function

Complete Sum: a cover containing all possible prime implicants of the function

#19

### **Review: Basic Definitions**

The 2-Level Logic Minimization Problem: given Boolean function f,

(i) Find a minimum-cost set of prime implicants which "covers" (i.e. contains) all ON-set minterms of function f (and possibly some DC-set minterms)

or (...equivalently):

(ii) Find a minimum-cost cover F of function f

## 2-Level Logic Minimization: Definitions + Design Space Exploration

### **2-Level Logic Minimization: Example**











## **Exact 2-Level Logic Minimization: Quine-McCluskey (QM) Method**

### **Quine-McCluskey Method: Examples**

Example #1: f(A,B,C,D) = m(0,4,5,11,15) + d(2,6,9)[m = ON-set minterms, d = DC-set minterms]

| CD           | <b>AB</b><br>00 | 01 | 11 | 10 |
|--------------|-----------------|----|----|----|
| <b>CD</b> 00 | 1               | 1  | 0  | 0  |
| 01           | 0               | 1  | 0  | -  |
| 11           | 0               | 0  | 1  | 1  |
| 10           | -               | -  | 0  | 0  |





### **Quine-McCluskey Method: Examples**

Example #2: f(A,B,C) = m(0,1,2,6) + d(5)[m = ON-set minterms, d = DC-set minterms]



More complex example: illustrates "table reduction step" using column dominance

#31



Example #2: f(A,B,C) = m(0,1,2,6) + d(5)[m = ON-set minterms, d = DC-set minterms]



🕏 = distinguished minterm

Prime Implicant Table



= essential prime

<u>Initial PI Table</u>









## **Heuristic 2-Level Logic Minimization:** the "Espresso" Method









