
CSEE E6861y
Prof. Steven Nowick

Overview of Tautology Checking Handout 11
February 4, 2016

This handout presents an overview of the tautology checking problem. Tautology checking is used in several
steps in espresso. In addition, some of the techniques will be the foundation for designing fast algorithms
for recursive complementation, prime generation, and identifying all essential prime implicants.

Note: Some of the material below appears in H/S ch. 5.2, or refers to pages of this book, i.e. see Handout
#10. (“H/S” refers to “Hachtel/Somenzi book”.)

The Tautology Problem:
Given a cover F of a Boolean function, determine if F is a tautology.

Note: We will focus mainly on single-output functions, but also give some indications of how to handle
multi-output functions. The H/S readings gives some of the extensions to the multi-output case – see pp.
199-200 as well as solved problems in pp. 206-218.

Definitions.
First, some basic definitions. The universal cube or 1 cube is a cube whose input fields are all ’-’ (i.e.,
don’t-cares). That is, the universal cube spans the entire input domain.

A cover is positive unate in a variable x if x does not appear in any cube in the cover. That is, in each
cube, x either is uncomplemented or x does not appear. A cover is negative unate in a variable x if x does
not appear (uncomplemented) in any cube in the cover. That is, in each cube, x is either complemented or
x does not appear. If a cover is positive or negative unate in variable x, the cover is said to be unate in
variable x. If a cover is unate in every variable, it is called a unate cover.

Rules for Detection a Tautology.
A number of rules can be applied, to determine immediately if F (i) is, or (ii) is not, a tautology.

A. Basic Rules for Detecting a Tautology.

B1. Cover F includes the Universal Cube. For a single-output function, if the cover includes the uni-
versal cube, then the function is a tautology. (For a multi-output function, if the cover contains the
universal cube, then each output function to which it contributes, i.e. where the output field is 1, is a
tautology.)

B2. Input Column of All 1’s/All 0’s. For a single-output function, if an input column contains all 0’s
(complemented literal) or all 1’s (uncomplemented literal), then the function is not a tautology. (For
a multi-output function, if an input column contains all 0’s, or all 1’s, then the multi-output function
is not a tautology.)

B3. Single-Input Dependence. For a single-output function, if the function depends on only one input x
(i.e., all other input columns contain only ’-’), and Rules B1 and B2 do not apply (i.e., the x column
contains both 1’s and 0’s), then the function is a tautology. (For a multi-output function, a similar
result holds for each output function, if the above rule holds for the rows which contribute to that
output.)

B4. Cover F is Empty. A cover is empty if it contains no cube. In this case, the function is all 0. For a
single-output function, the function is not a tautology. (For a multi-output function, then the multi-
output function is not a tautology.)



B. Advanced Rules for Detecting a Tautology: Unateness Conditions
Advanced rules can be applied, to determine if F (i) is, or (ii) is not, a tautology, using properties of unate
covers.

U1. No Universal Cube. (H/S Theorem 5.2.3) For a single-output function, if the cover is unate, and the
cover does not include the universal cube, then the function is not a tautology. (For a multi-output
function, a similar result holds for each output function, if the above rule holds for the rows which
contribute to that output.)

C. Miscellaneous Rules for Detecting a Tautology
Miscellaneous rules can be applied, which take advantage of special case conditions. Some of these rules
are easier to implement in a CAD program, than to do manually. (We will not focus much on these rules.)

M1. Small Functions. (H/S bottom p. 197) If the number of inputs is less than 8, then a truth table can be
generated, and tautology checking can be done by inspection. The rationale is that if the number of
inputs is small enough, the problem can be answered quickly without recursion (see later in handout).

M2. Insufficient Vertex Count. (H/S bottom p. 197) This rule is a fast heuristic to check if the current
cover is too small to be a tautology. The vertex count of a cube is the number of vertices (i.e.,
minterms) which it contains. If a cube contains d don’t-care inputs (’-’), then that cube covers 2d

minterms. It is very difficult to compute exactly how many minterms are covered by a cover F , so an
approximation is computed quickly: the upper bound. In particular, for each cube ci in the cover, if
it has di dashes (don’t cares) in the cubical representation, it covers 2di minterms. Therefore, if cover
F has m cubes, c1 to cm, then an upper bound on the vertex count (i.e. minterms covered) by F is:
Σi=1 to m(2di).

Next, compute how many minterms are in the entire input space (domain). If the function has n
dimensions (inputs), then there are 2n minterms in its input space.

Finally, check if the upper bound on the number of vertices covered by F is insufficient: is Σi=1 to m(2di)
less than 2n? If so, cover F cannot be a tautology.

The Tautology Checking Algorithm.
Tautology checking of a cover F is performed by a recursive algorithm. The basic idea is as follows.

Step #1. Apply the above rules, to determine if F (i) is a tautology, or (ii) is not a tautology. (We will usually
ignore rules M1 and M2.) If the result is (i) or (ii), the algorithm is done.

Step #2. If the algorithm is not done, the cover is recursively split, in two halves, and the same algorithm is
now repeated on each half.

More details on the recursion: Recursion is based on a fundamental theorem, called Shannon Decomposition
or Boole’s Expansion Theorem. Given a splitting variable x1, the theorem states (see H/S p. 192):

f = x1 · fx1 + x′1 · fx′
1

In words, the theorem indicates how a function can be examined, by cofactoring with respect to both x1 and
x′1, and combining the results.

We will explore Shannon decomposition in more detail shortly. For tautology, Shannon decomposition
reduces to a very simple form: A function f is a tautology if and only if fx1 and fx′

1
are both tautologies

(see H/S p. 194). More formally:

(f = 1) ≡ ((fx1 = 1) and (fx′
1

= 1)).

2



Summary of Step #2: If Step #1 cannot determine if the cover is, or is not a tautology, then recursion is
performed. A splitting (or branching) variable, x1, is selected. Check if (i) fx1 is a tautology, and (ii) fx′

1

is a tautology. If both are tautologies, f is a tautology, and the algorithm is done. If at least one is not a
tautology, then f is not a tautology, and the algorithm is done.

Choice of Splitting Variable. The choice of splitting variable is important. A key goal is to select a variable
that is likely to create unate subproblems. The heuristic of Brayton et al. is therefore to select (i) a binate
variable, which (ii) has the most implicants dependent on it. A binate variable x is one which appears in both
complemented and uncomplemented form. An implicant depends on the variable, if the variable appears in
the implicant (complemented or uncomplemented). In case of a tie, the heuristic choose a variable mini-
mizing the difference between number of occurrences with positive polarity and the number of occurrences
with negative polarity. The rationale is to keep the recursion tree as balanced as possible.

Rules for Pruning/Simplifying the Recursion Step.
A number of rules can be applied, to avoid unnecessary recursion. The first (U2) is a key rule, which uses
properties of recursive functions. The second (M3) is a special-case speedup (we will not usually focus on
M3).

U2. Unate Variable. (H/S pp. 196-197) For a single-output function, the recursion can be simplified if the
cover is unate in some variable x. In this case, if the cover is positive unate in x, then it is sufficient
to check if fx′ is a tautology. Alternatively, if the cover is negative unate in x, then it is sufficient to
check if fx is a tautology. (This is a pruning step: in each case, one of the two recursive calls is not
necessary. See H/S pp. 196-197 for the justification.)

M3. Disjoint Variables. (H/S bottom p. 198-199) The final technique is partitioning. Suppose the cover F
can be divided into two subsets of cubes, G and H , where G and H cubes depend on disjoint inputs.
That is, if an input x appears as 0 or 1 in a cube of G, then x is ’-’ for every cube of H . In this case,
F is a tautology if and only if either G or H is a tautology. (We will not focus on this rule; if you are
interested in details, see H/S bottom p. 198-199.)

3


