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Abstract

Very Large Scale Integration (vLs1) currently allows hundreds of thousands of transistors in a single
application-specific integrated circuit. The trend of increasing levels of integration has stressed the
ability of the designer to keep pace. Traditional integrated circuit design has relied on analysis
tools to measure the quality and correctness of a circuit before fabrication. However, only recently
have synthesis tools been used to assist in the dwign process. The advantages of automatic syn-
thesis include reduced design time, reduced probability of design error, and higher quality designs
because more effort is focused at higher-levels in the design. Automatic placement and routing,
a form of physical design synthesis, has become widely accepted over the last five years; however,
logic design has, for the most part, remained a manual task. Logic synthesis is the automation of
the logic design phase of vLst design; that is, choosing the specific gates and their interconnection
to build a desired function. For digital integrated circuits which are partitioned into control and
data-path portions, design of the control logic is often the most time-consuming. It is generally .
on the critical path for timing, and, because of the complexity of producing a correct description
of the control, it is often on the critical path for completion of the design. Therefore, tools to
assist in logic design will have a large impact on the design of integrated circuits. However, the
benefits of automatic logic desiﬁn are lost if the result does not meet its area, speed, or power
constraints. Therefore, a critical aspect of automatic logic synthesis is the optimization problem
of deriving a high-quality design from an initial specification. This thesis provides a set of logic
optimization algorithms which together form a complete system for logic synthesis in a VLSI design
environment. Efficient, optimal algorithms are proposed for two-level minimization, multiple-level
decomposition, and technology mapping. The techniques described in this thesis have been imple-
mented in a software program called Atls. The design of a commplex digital circuit is included as

part of this thesis to demonstrate the application of logic synthesis to a realistic design problem.
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Chapter 1

Introduction

Logic synthesis addresses the problem of translating a register-transfer level de-
scription of a design into an optimal logic-level representation. This chapter reviews the
process of VLSI design and describes how logic synthesis fits into this process. This is fol-
lowed by a brief history of previous work in optimal logic synthesis. The chapter concludes

with a description of the organization of this thesis.

1.1 Logic Synthesis

Very Large Scale Integration (VvLsi) technology is in wide use in modern digital
systems. vLsI technology currently allows hundreds of thousands of transistors in a single
application-specific integrafed circuit (AsiC), and the level of integration is increasing at
a rapid rate. This trend has stressed the ability of the designer to keep pace with the
advances in technology. In this thesis, vist design refers to the design of a single integratéd
circuit to perform a complex digital function. This includes generic components which are
designed once and manufactured in high-volume (such as microprocessors and mermories),
and integrated circuits built for a specific design (i.e., AsiCs).

visI design proceeds' through a number of distinct phases. The design begins with
an understanding of the purpose of the circuit behavior; i.e., the inputs and outputs of the
circuit and how they are related. The design representation at this level is communicated
using natural languages, timing diagrams, and block diagrams. The first design phase
is called register-transfer level design. A register-transfer level (RTL) representation for a

design describes the registers, thie operations which are performed on the values stored in
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the registers, and the control conditions which sequence these operations. The next phase
is called logic design. This is the task of converting the registers, computation blocks, and
controllers from the RTL description into a logic-level representation using the available
building blocks. The building blocks for digital design are low-level logical operations such
as AND, OR, and NOT, and storage elements. The final phase is called physical design. In
this step, the interconnection of building blocks are translated into a set of integrated circuit
masks. |

In traditional integrated circuit design, a wide range of computer-aided analysis
tools are used to measure the quality and correctness of a circuit before fabrication. This
includes tools for entering and manipulating a design and tools for verifying that the design
meets its functional and performance goals. Tools exist which support the analysis of a
design at the register-transfer level, the logic level, and the mask-layout level, and for veri-
fying that the behavior of the design is the same between the levels. However, only recently
have effective tools for assisting the synthesis of an integrated circuit become available.

The advantages of automatic synthesis in vLsSt design are clear. They include
reduced design time, reduced probability of design error, aud higher-quality designs because
more effort is focused at a higher-level. However, the use of computer-aided synthesis
tools provide an increase in designer productivity only if designs of acceptable quality are
produced.

Successful systems now exist which automate the physical design of integrated
circuits and produce designs of high-quality. These systems are particularly effective for
block-oriented design styles such as gate-array, standard-cell, and sea-of-gates (also known
as compacted-array). The common feature of these design styles is that cells are placed in
- regular rows with metal interconnection between the rows. Gate-array and sea-of-gates are
design styles for implementing a complete integrated circuit. A regular pattern is placed on
the silicon and only the final metal layers are used to customize the circuit. The standard-
cell design style is used for complete integrated circuits, but is also in wide use as part
of full-custom visi design. For example, a large part of the control logic for the modern
microprocessors is implemented using a standard-cell design style.

Despite the success at automating physical design, the problem of translating an
RTL-level description into a logic-level description has remained, for the most part, a manual

task.

The term automatic logic synthesis (or logic synthesis) is used in this thesis to
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describe computer-aided design programs which assist in the logic design of a digital system.
Logic synthesis starts with a register-transfer level description of a design and a description
of the low-level cells available in the target technology and produces an optimal logic-level
representation. The subject of this thesis is the design of algorithms and techniques for
automatic logic synthesis of combinational circuits with special emphasis on the problems
faced in visI design.

The starting point for logic synthesis is a technology-independent representation
of a synchronous digital design at the register-transfer level. One representation for an RTL
design is as a graph of components; that is, storage elements, such as master-slave flip-flops,
and combinational logic elements which implement an arbitrary Boolean logic function. The
design is synchronoﬁs if all cycles in the graph contain at least one storage element and if all
of the storage elements are clocked by a common signal. In combinational logic synthesis,
the placement of the storage elements is assumed fixed; the combinational components are

extracted from the RTL graph resulting in a directed-acyclic graph. The logic synthesis

‘problem is to convert this technology independent representation of the design into an

optimum multi-level net-list in a given technology.

Translating a register-transfer level representation of a design into a logic-level
representation is not difficult; however, straightforward translation leads to designs which
are either too large or too slow, and hence unacceptable. The benefits of automating the
logic design process are lost if the result does not meet its area, speed, or power constraints.
Therefore, a critical aspect of automatic logic synthesis is the optimization problem of
deriving a high-quality design from the initial specification.

The accepted optimization criteria for multi-level logic are to minimize the area
occupied by the logic equations while satisfying the timing constraints placed on the longest
path through the logic. Another criterion which is important for some technologies is to
minimize the power of the final circuit. The area, delay, and power of a design before layout
are estimated using models which predict the effects of physical design based on the cells
and nets in the final design.

An important part of integrated circuit design is the manufacturing test which
determines if a fabricated chip works as expected. A connection is untestable (or redundant)
if replacing the connection with a constant value does not affect the functionality of the
circuit. Despite the observation that a smaller circuit usually results from removing a

redundant connection, there is the further problem that redundancies interfere with the
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production-line testing of the integrated cireuit. Therefore, another goal for logic synthesis
is to produce designs with no redundancies.

The design of the optimal circuit which meets all of these constraints is a difficult
problem due to the tremendous number of potential solutions for even a small set of logic
equations. The size of VLSI circuits makes logic synthesis for vist a difficult optimization
problem.

A paradigm for logic synthesis has emerged in the last five years which separates

the complex problem of building an optimal circuit for a set of Boolean logic functions into
two steps: technology-independent optimization and technology mapping. This approach for
logic synthesis is continued in this thesis.
- Technology-independent optimization derives an optimal structure for the circuit
independent of the gates available in a particular technology. The techniques presented
in this thesis include an a.lgofithm for exact two-level minimization of logic functions and
algorithms for decomposition of a two-level circuit into an optimal multiple-level circuit.

Technology mapping is the optimization step of selecting the particular gates from
the library to implement an optimized logic network. Included in this thesis is an algorithm
for optimal technology mapping based on a transformation of the problem into a graph-
covering problem.

In both technology-independent optimization and technology mapping, special em-
phasis is given to the efficiency of the algorithms. The goal is to apply the techniques to
nonhierarchical designs of tens of thousands of gates; this will allow the techniques to be

applied in a vLsI design environment.

1.2 Previous Work

1.2.1 Two-level Minimization

Research over the last thirty years has led to efficient methods for imnplementing
combinational logic in an optimal two-level form. One technique for physical design of an
optimal two-level form in vLSI uses a Programmable Logic Array (pLA) [30]. The first
algorithms for optimal two-level design were proposed by Quine [55] and improved by Mec-
Cluskey [02] These techniques provide a minimum two-level form and hence are unable to

solve many problems with more than ten inputs. Effective heuristic techniques for two-level
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mi.nimiz‘a.tiongwere introduced by mini (42]. Several other approximate approaches followed ,
including presto (21], pop [70], and espresso [19,59]. The approximate techniques depend on
iterative improvement of a set of equations and give no guarantee as vfo the quality of the
final result. However, large functions can be minimized using this approach. For example,
espresso has been used to optimize PLA’S with fifty inputs and fifty outputs.

The problem with two-level design is that there are many designs for which the
two-level representation is inappropriate. For example, the function which converts an 7 -
bit input string into a log, n-bit count of the number of bits which have value one requires

" — 1 product-terms in its two-level form. Even when a two-level form is reasonable for
‘a given function, there are many cases where a multi-level representation can result in less
area and a faster circuit. Especially for the gate-array and sea-of-gates design styles, the
compact physical implementation provided by a PLA can not be exploited. Finally, two-
level circuits are a special case of general multi-level circuits; hence, a logic synthesis system
should provide tools which can select between two-level and multi-level implementations in

order to trade-off the speed and area of the final design.

1.2.2 Optimum Multi-level Synthesis

Ashenhurst was the first to consider the problem of determining when é. Boolean
function has a nontrivial decomposition [7]. A simple decomposition of a function flz1,...,z,)
is a decomposition into the form F(y1,...,ys, ¢) and ¢(z1,.. ., 2n-,). A synthesis technique
based on simple decomposition uses the heuristic that building F and ¢ will lead to an
efficient implementation of f. The primary problem with this technique is that not all
functions have a nontrivial simple decomposition. Even when a decomposition does exist, it
is difficult to decide whether the decomposition will yield a simpler implementation of the
logic function. Also, this simple approach fails to consider the important problem of deter-
mining subfunctions which are useful to realize multiple Boolean functions. Ashenhurst’s
techniques were later extended and generalized by Curtis (23] to handle other decomposition
forms. However, the complexity of detecting decompositions, and the uncertain nature of
the value of these decompositions, has limited the effectiveness of these techniques.

The first complete multi-level synthesis technique was by provided by Roth and
I\arp (58]. They proposed an algorithm to find the minimum solution to the multi-level logic

synthesis problem. Their technique was a branch-and-bound algorithm based on a gener-
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‘alization of Ashenhurst decomposition. Primitives in the implementation technology were
considered as potential decomposition functions. The possible decompositions were ordered
alphabetically and tried in turn at each step of the algorithm. Trivial lower bounds were
used to bound the search through all possible Boolean graphs. A heuristic algorithm was
proposed which would order the decompositions at each step by a measure of desirability,
but no results are presented for the heuristic algorithm. A program was developed imple-
menting their technique. The initial success of the formulation was immediately followed
by the realization of the infeasibility of solving even small problems.?

Hellerman [40] provided a simple approach for optimum logic synthesis: enumerate
all directed acyclic graphs and test each to see if it implements the desired function. His

- goal was to determine the optimum implementation for each function of three-variables.
For each circuit graph with less than seven gates, the logic function was determined, and
if the graph provided the best realization of the logic function, the solution was recorded.
Twenty-five hours of computer time on an (8M 7090 were used to find the optimum NAND-
gate networks for all three-variable functions. Because of the complexity of this technique
(there are O(2"*) directed acyclic graphs of n nodes), Hellerman was unable to synthesize
functions of more than seven gates.

Gimpel [32] proposed an optimum algorithm for designing three-level NAND-gate
networks (also known as TANT-networks). Normal two-level minimization provides a spe-
cial form of a TANT-network where the first level of gates is restricted to inverters which
feed a cascade of NAND-gates to realize a sum-of-products form. A general TANT-network,
in contrast, allows for arbitrary NAND-gates in the first level of gates, and arbitrary con-
nections between the gates of the first, second, and third levels. Gimpel showed that
a TANT-network can be written as a disjunction of permissible implicants, in analogy to
traditional two-level minimization. A covering problem, called the covering with closures
problem, was formulated using the permissible implicants where the minimum cover yiclds
the optimum TANT network. Procedures to enumerate all permissible implicants and to
solve the covering with closure problem are provided in his paper. A program was written
to implement the synthesis technique, but no results are presented for problems of more
than four variables. However, Gimpel claims to have improved on Hellerman’s technique

Ly creating the optimum TANT-network for the three-variable functions in only one minute.

'Ixarp has referenced the extreme computational complexity of these technicues as a motivation {or his
later work in complexity theory [47].
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Davidson {27] provided an optimal NAND-gate network synthesis algorithm. His
algorithm is similar to the a.lgorithﬁ of Roth and Karp, but uses only NAND-gates as the set
of primitives. His approach was to synthesize the circuit from the output backwards. All
possible partitions of the minterms between the terminals of a bounded fan-in NAND-gate at
the circuit output are examined, and then the functions fdr each input to the NAND-gate are
recursively synthesized in an optimum fashion. Bounding is possible once a best solution is
known. Davidson comments that a six-function nine-variable problem was solved in three

minutes, but that some single-function four-variable problems could not be solved optimally

‘in ten minutes.

1.2.3 Modern Techniques

The techniques described in the previous section provide an optimum solution
to the logic synthesis problem. However, none of these techniques have proven successful
at logic optimization for designs with more than one lhiundred gates. The complexity of
VLSI necessitates using approximate techniques to solve the optimization problem for large
circuits.

One of the first modern developments is the Logic Synthesis System (Lss) from
18M ([26,25]. The target technology for LSs is large gate array designs primarily in ECL.
Lss focused on structuring a lbgic network using a rule-based approach. The technology-
independent representation used was a graph of NAND-gates (or NOR-gates), and local trans-
formations modified the graph into an optimal form.

The Yorktown-Silicon Compiler ('?sc) [15] automatically synthesizes and lays out
cMos domino logic. The structuring and technology mapping phases of vsc are done with
a collection of algorithms for solving a number of localized subproblems. Ysc was the first
system to separate technology-independent optimization from the technology-dependent op-
erations. YSC also introduced the algebraic approximation which is extended and formalized
in this thesis. _

The Socrates system from GE (36] had a target design style of cMOS gate-array and
standard-cell libraries. Socrates relied on work from the University of California, Berkeley
for two-level minimization (ESPRESSO-MV) and work from the University of Colorado for
multi-level structuring (wptv). The contribution of Socrates was a rule-based approach for

solving the technology mapping problem for cMos gate-array and standard-cell libraries,
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with a special emphasis on timing optimization.

1.3 Overview

Chapter 2 describes an exact algorithm for two-level minimization of a set of logic
equations. Two-level minimization is an important step in the design of Programmable
Logic Array’s (PLA), but is also important as a technolbgy-independent optimization for
multiple-level logic optimization. The contribution of Chapter 2 is an exact algorithm
for finding the minimum solution to the two-level minimization problem for two-valued
and multiple-valued logic functions. A large percentage of the PLA optimization problems
~ faced in the actual design of integrated circuits can be solved exactly using the techniques
presented.

Chapter 3 presents new algorithms for solving the problem of finding common fac-
tors in a logic network. This is the primary technology-independent optimization step for
logic synthesis. The techniques presented in Chapter 3 build on the algebraic approximation

“introduced by Brayton et al. The primary contribution is the unification of the algebraic de-
composition techniques as an instance of the rectangle-covering problem. Efficient heuristics
are proposed for solving the rectangle-covering problem.

Clhapter 4 describes a new algorithm for solving the technology mapping problem.
This is the primary technology-dependent optimization step for logic synthesis. The tech-
niques in this chapter build on the work of Keutzer. The new techniques presented include
an exact algorithm for solving the DAG-covering problem and extensions to the techniques
to handle delay optimization.

In Chapter 5 a complete design is described in detail to demonstrate the use of
logic synthesis in a realistic vist design. The design is an implementation of the Federal
Government data encryption standard. [t is entered at a register-transfer level, translated
to a logic-level, optimized at the logic level, and then automatic placement and routing is
used to finish the implementation.

Chapter 6 summarizes conclusions from this work, and suggests future areas for
research in combinational logic synthesis.

The program Mis has been developed which implements tle ideas presented in this

thesis. In Appendix A, the software organization and goals of 1S are briefly described.
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Chapter 2

Two-level Minimization

Two-level minimization remains an important problem in logic synthesis, both for
optimization of Progra&nmable Logic Arrays (PLA) and for multiple-level logic optimization. -
This chapter presents an exact algorithm for solving the two-level minimization problem
for multiple-valued functions. Experimental results for an implementation of this algorithm
show that many functions of more than twenty inputs are minimized exactly using these

techniques.

2.1 Introduction

PLA’S are an important design style for digital integrated circuits (30]. One impor-
tant step in the automatic design of PLA’S is the optimization performed at the logical level.
Logic optimization of PLA’S includes reducing the number of rows in the PLA (without chang-
ing the functions implemented by the PLA) as well as state-assignment, input-encoding,
output-encoding, output phase assignment, and the use of multiple-bit input-decoders [39].
Each of these optimizations attempts to reduce the number of rows in the LA, therebyim-
proving both the area of the pLA, and the delay through the pLa. Two-level minimization
is a fundamental step in each of these optimizations.

Two-level minimization is also important for multiple-level logic optimization. Lo-
cal application of two-level minimization is an effective technique for reducing the coms-
plexity of a multiple-level logic network. In the multiplede?el context, minimization of
incompletely-specified functions is especially important —a don’t-care set is constructed for

a function in a multiple-level network which captures the environment of the function. The



10 CHAPTER 2. TWO-LEVEL MINIMIZATION

function is simplified in two-level form with respect to this don’t-care set [9].

Traditionally, research in two-level minimization concentrated on algorithms for
exact solutions; that is, a cost function is defined for the algebraic representation of a logic
function, and an algorithm is sought which provides a minimum-cost solution. Typically the
cost function is to minimize either the total number of terms or the total number of literals
required to write the set of equations. One problem with these exact algorithms is that they

start from an enumeration of the minterms of the logic function, and hence are limited to
| relatively small problems. Even when the number of minterms (m) is manageable, the best
known solutions to the covering probleui have complexity O(2™). The net result was that
exact two-level minimization of even simple functions, such as a four-bit multiplier with
eight functions defined over eight inputs, had remained unsolved.

Recently, two-level minimization theory has been generalized to multiple-valued
functions [63]. In particular, ESPRESSO-MV (59] is an extension of the Espresso algorithms
to multiple-valued functions. The advantage of this generalization is that single-function
minimization and multiple-function minimization are handled within the same framework.
Multiple-valued functions also capture very naturally the minimizat‘io'n problems for PLA’S
- using input decoders (64], and the optimization problem of input-encoding for a symbolic
variable [59].

An interesting out-growth of the work on ESPRESSO-MV was a new algorithm for
exact minimization of multiple-valued functions (62,59]. The exact algorithm goes under the
name ESPRESSO-EXACT because it borrows from the theory developed for the ESPRESSO-MV
heuristic minimization program. The ESPRESSO-EXACT algorithm is similar to the Quine-

McCluskey algorithm for two-level minimization, except that it has been updated to handle
. multiple-valued functions. However, the algorithm for each basic step is new. This set of new
algorithms has greatly extended the ability of the algorithm to solve large problems. The
advantages of the algorithm include a technique for detecting and eliminating from further
consideration the essential prime implicants and the totally redundant prime implicants,
and a fast technique for generating a reduced form of the prime implicant table. The
minimum cover problem is solved with a branch and bound algorithm using the mazimal
independent set heuristic to control the selection of a branching variable and the bounding.

This chapter reviews the ESPRESSO-EXACT algorithm, and describes some new
techniques which have been added to the algorithm to improve its performance. These

enhancements include a faster algorithm for prime implicant generation, a sparse-matrix
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representation for the prime implicant table, and the addition of a heuristic proposed by
Gimpel (33] to reduce the prime implicant table without branching,

The new algorithm has been tested on the same collection of 134 minimization
problems used for testing ESPRESSO-EXACT and is substantially faster than the previous
version. More interestingly, the new algorithm has solved ten problems which the previous
version was unable to solve. Many of the solved problems in the set have more than twenty
inputs showing that the effective range of exact minimization has been extended for pL A
optimization problems. ‘

This chapter is organized as follows. First the basic definitions of multiple-valued
functions are reviewed. The Quine-McCluskey minimization algorithm is then described.
The details of ESPRESSO-EXACT are given next, including prime generation, prime implicant
table generation, and derivation of a minimum cover of the prime implicant table. The
chapter concludes with experimental results using this exact algorithm on a large collection

of PLA’S.

2.2 Definitions

This section contains the basic definitions for multiple-valued functions and the
two-level minimization problem. Only the most important definitions are included here.

The interested reader is referred to [59] for more details.

Definition 2.2.1 Let p;,i = 1,...,n be positive integers. Define P; = {0,...,pi = 1} for
i=1,...,n,and B = {0,1,+}. 4 multiple-valued input, binary-valued output function, f,

(hereafter known as a multiple-valued function ) i3 a mapping
f:PPxPyx - x P, - D

The function f has n multiple-valued’inputs. Each input variable i assumes one
of the p; values in P;.

Each element in the domain of the function is called a minterm of the function.

The value «+ € D represents a minterm for which the function value is unspecified
(ie., allowed to be either 0 or 1). Hence, functions are allowed to be incompletely specified.

An n-input, m-output switching function can be represented by a multiple-valued

function of n + 1 variables where pi=2fori=1,...,n,and pyy; = m. This special case
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is called a multiple-output function. It is easily proved that the minimization problem for
multiple-output functions is equivalent to the minimization of a multiple-valied function of
this form [65].

The ON-set of a function is the set of minterms for which the function value is
1. Likewise, the OFF-set is the set of minterms for which the function value is 0, and the

DC-set is the set of minterms for which the function value is unspecified.

‘Definition 2.2.2 Let X be a variable taking a value from the set P;, and let S; be a subset
of P;. X' represents the Boolean function

X,-S" =

)

0 if X €S;
1 ifX;eS;

Xf" is called a literal of variable X;.

A product term is a Boolean product (AND) of literals. If a product term evaluates
to 1 for a given minterm, the product term is said to contain the minterm.

A sum-of-products is a Boolean sum (OR) of product terms. If any product term
in the sum-of-products evaluates to 1 for a given minterm, then the sum-of-products is said
to contain the minterm.

A cover of a function is a sum-of-products which contains all of the minterms of
the ON-set, and none of the minterms in the OFF-set. The cover optionally contains points
of the DC-set.

The cost of a product term is a function mapping the set of all product terms onto
the integers. The cost of a cover is the sum of the costs of the product terms in the cover.

The two-level minimization problem is to determine the minimum-cost cover of a
multiple-valued function.

In the definitions which follow, § = X' X;?... X% and T = X[ X . XTn
represent product terms.

The product term S contains the product term T (T C §) if T, C Sifori=1...n.

The complement of the literal X (written —Y-f_‘) is the literal X =5,

The complement of the product term S (3) is the sum-of-products [J%, .-'\’f‘.

The intersection of product terms S and T (SN T) is the product term

SINTy 1 S2NT ~SnNTn
X IR ¢Lac)
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If $;NT; = 0 for some i, then SNT =0 and S and T are said to be disjoint. The intersection
of covers F' and G is the union of fNgforall f€ Fand g€ G.
The distance between S and T (distance(S,T)) is |{i|S:NT; = 0}.

The consensus of S and T (consensus(S,T)) is the sum-of-products

n
U x50, ..X‘.S-'UT-‘ D CLUELE

i=1

If distance(S,T) > 2 then consensus(S,T) = 0. If distance(S,T) = 1 and $;,N7T; = 0, then
consensus(S, T) is the single product term X1t ... X5V ... X 80Tn | If distance(S,T) =
0 then consensus(S,T) is a cover of n terms. If the consensus of S and T is nonempty, it is
the set of ma.:uma.l product terms (ordered by containment) which are contained in SU T
‘and which contain minterms of both S and T. The consensus of two covers F and G is the
union of consensus(f,g) forall f € F and g€ G.

The 'cofactor (or cube restriction) of S with respect to T (S7) is empty if S and T

are disjoint. Otherwise, the cofactor is the product term

XS, x5Vl x5aTw

The cofactor of a cover F with respect to a product term S is the union of fs for
all fe F.

An implicant of a function is a product term which does not contain any minterm
in the OFF-set of the function.

A prime implicant of a function is an implicant which is not contained by any
other implicanf of the function.

An essential prime implicant is a prime implicant which contains a minterm which
is not covered by any other prime implicant.

The product term S can be represented in positional cube notation (also known as

a cube) as a binary vector in the following form:

0.1 _p-1 0.1 . pa-1 0.1 _.pn-1
CICI-..Cl —C2C2...C2 C ...Cn

= Cnlp

where c‘,’ =0ifj ¢S, and c;'- = 1 if j € §;. The terms cube and product term are used

interchangeably. For example, a prime cube is a cube which represents a prime implicant.
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2.3 Exact Minimization Algorithms

In order to simplify the optimization problem, it is customary to place constraints
on the form of the cost function for an implicant. Solving the two-level minimization

problem for an arbitrary cost function is potentially difficult and not of practical interest.
Assumption 2.3.1 A product term costs no more than any product term which it contains.

If this assumption is satisfied, then it is easy to prove that a minimum solution
exists which consists only of prime implicants. (Take any minimum solution, and replace
each implicant with a prime implicant which contains each implicant; the resulting cover
costs no more than the original cover, and hence is also 2 minimum solution.) Hence, the
prime implicants can be used to form a minimum solution, rather than having to consider
all implicants for the minimum solution.

Many useful cost functions satisfy this condition. For example, PLA optimization
attempts to minimize the size of the pLA, which is reflected by assigning the same cost
to each implicant. Another example is the cost function for single-output, binary-valued
minimization used in multiple-level logic optimization. Here the goal is to minimize the
number of literals needed in the Boolean equation; this is reflected by a cost which is the
number of literals in the implicant which are not always 1. In both of these cases, a product
term costs no more than any product term which it contains.

However, there are reasonable cost functions which do not satisfy this assumption.
In a PLA, the process of adding a transistor to the output plane creates a product term
~ which contains the original implicant when viewed as a multiple-valued minimization prob-
" lem. This product term costs more than the implicant which it contains. Hence, the cost
function for minimizing the total number of transistors in a PLA violates Assumption 2.3.1.
Specifically, it may be possible to remove a transistor from the output part of a prime impli-
cant without further expanding the implicant in its input part; all such nonprime implicants
for all combinations of output transistors must be considered as candidates for a minimum
solution to the minimum-literal optimization problem. Fortunately, the number of rows
in the PLA is the most important optimization criteria for a PLA; reducing the number of
transistors in the PLA is only a secondary optimization goal. Hereafter, we assume that

Assumption 2.3.1 is satisfied.
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The Quine-McCluskey algorithm to derive a minimum cover for a function consists

of the following steps:

1. Generate all of the prime implicants.

[

. Form the prime implicant table.

3. Derive a minimum cover of this table.

Many different algorithms have been proposed for solving each of these steps. The
algorithm presented by McCluskey generates the prime implica,n’cs starting from a list of
minterms usiﬁg consensus. The prime implicant table is constructed with a single row for
each minterm and a single column for each prime implicant. For each minterm row, a 1
is placed in a column if the corresponding prime implicant contains the minterm. The
problem of selecting a minimum subset of primes is thus mapped into the problem of
selecting a minimum cover of this matrix. A cover of this matrix is a row vector of 0’s and
1’s such that each row of the matrix shares a 1 in some column with the row vector, and
a minimum cover is one with the fewest number of 1’s. Petrick’s technique for solving the
covering problem..conv’erts a product-of-sums representation of the covering problem into
a sum-of-products expression. Each resulting product term represents a possible solution,
and each corresponding cover is evaluated against the cost function to find the minimum
cost cover. '

' ~ Better algorithms for each of these steps have been proposed. There exist many
techniques for generating all of the prime implicants of a function without starting from an
enumeration of minterms of the function. However, generating the prime implicant table
remains a problem because an enumeration of minterms is required. Algorithms exist which
solve the minimization problem without creating the prime implicant table [24]; however,
these algorithms have difficulty developing heuristics to guide the selection of a minimum
set of prime implicants. Algorithms for the minimum-cover problem rely on a branch and
bound search among the feasible solutions, which is more efficient than Petrick’s technique.
Techniques are used in these algorithms to guide the search toward good solutions quickly
and to trim the search space by deriving lower bounds on the remaining subproblem.

There are many potential problems with an exact minimization algorithm. If the
algorithm requires an explicit enumeration of the minterms at any step, then minimization
of large functions (e.g., more than thirty variables) is not feasible. Even if the prime impli-

cants are derived without enumerating minterms, there exist functions with an exponential
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number of prime implicants as a function of the number of implicants in a minimum cover
[53]. Hence, there will always be functions for which the enumeration of all of the prime
implicants is infeasible. Finally, the minimum-cover problem is NP-complete (31} implying
that no efficient algorithm is known to solve this optimization problem. The size of the
minimum-cover problem is related to the number of prime implicants; hence, even when it
is feasible to enumerate all prime implicants, it may not be feasible to derive a minimum
cover for the prime implicant table.

The hope for exact minimization algorithms is that the problems faced in practice
do not exhibit the worst case behavior. An exact minimization algorithm should not a priori
disallow functions of thirty variables just because some thirty variable functions cannot be
minimized. Interestingly, as is shown in Sectio_n 2.9, experimental results indicate that a
large percentage of PLA optimization problems taken from integrated circuit designs do not
exhibit an exponential worst-case behavior. The fact that many large PLA optimization
problems can be solved exactly indicates that PLA'S, as designed for actual circuits, are
quite special - they have characteristics much different from random functions of the same
number of variables. Often they do not have a large number of prime implicants, and they
generate prime implicant tables which are sparse and easy to solve.

Given the existence of effective heuristic minimizers and the fact that there will
always be practical minimization problems which cannot be solved exactly, a good question
is, "Why is exact minimization of interest ?”. First, there is the theoretical interest of
determining how far exact algorithms can be pushed while solving fundamentally difficult
problems. Second, and more important, is that the result from an exact minimization is the
best indicator of the quality of a heuristic minimization algorithm. Comparisons of mod-
ern heuristic algorithms against exact solutions have shown that minimization algorithms
such as ESPRESSO-MV provide solutions which average within one percent of the minimum
solution [$9]. Of course, the performance of the heuristic minimizer is known only for those

problems which can be solved exactly.

2.4 ESPRESSO-EXACT

ESPRESSO-EXACT starts with a cover for the ON-set F and the don’t-care sct D

of a multiple-valued function. The algorithm procceds as follows:

1. Generate all prime implicants P of the function F U D,
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2. Partition P into the essential primes (E), the totally redundant primes (R ), and the
partially redundant primes (R,).

3. Create a reduced prime implicant table (4) from R,.
4. Find a minimum cover for A.

5. Select the primes in the cover for the solution.

These steps are covered in the subsequent sections.

2.5 Prime Generation Algo'rithrh

Two techniques are presented here for prime generation for multiple—va.lued func-
tions.
The first is based on the unate recursive paradigm and the operation of consen-
sus. The unate recursive paradigm was introduced in [19] and extended to multiple-valued
functions in [59]. This algorithm starts with the ON-set and DC-set of the logic function
to generate the prime implicants.
The second algorithm is related to the blocking-matriz used in Espresso to guide the
selection of a prime implicant during the EXPAND operation [19]. This algorithm starts from
the OFF-set of the logic function and forms a logic function describing the characteristics

of a prime for the logic function.

2.5.1 Prime Generation using Consensus

A function f can be decomposed according to its Generalized Shannon Expansion

(65] as:
f=li+rf
where INr#0and lur =1.

A prime which contains minterms in both If; and rf, must be formed from the
consensus of a cube ¢; € [f; and a cube ¢; € rf,. Therefore, the set of primes for f
1s contained in the union of the primes of {f;, the primes of rf,, and the product terms
resulting from the consensus of the primes of /f; and the primes of rf,. Not all of these
product terms are prime, so it is necessary to perform single-cube containment on this set
to derive the set of primes for f (that is, delete any cube contained in another cube in the

cover). The primes of {f; (rf.) are the primes of f; (f.) intersected with [ ().
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This leads to a recursive algorithm for generating the primes of a function. The
set of primes for each of the cofactors f; and f, is computed recursively, and then the results
are merged to generate the primes for f. The recursion ends when the function is a single
product term, for which the set of primes is merely the product term.

This is the basic structure for the unate recursive paradigm [19]. Rather than
cofactoring the function until only a single cube remains, a stronger condition can be used
to end the recursion. If a cover of a function f is strongly-unate [59] then the set of prime
implicants for the function can be derived by performing single-cube containment on the
cover. Hence, in this case, it is possible to identify all prime implicants by inspection and

‘terminate the recursion immediately.

2.5.2 Prime Generation from the Off-Set

Let R be a cover for the off-set of the function. If the OFF-set of the function is
not available, it may be computed using a fast multiple-valued complementation algorithm
[63,59] starting with the function F U D.

In order for a cube ¢ to be an implicant of F, ¢ must not intersect each cube
. " € R. This can be expressed by writing a Boolean expression. Let c’; be a Boolean
variable representing the condition that part k of variable j of cube c be set to 1. Let (r%)%
have the value of 1 if part k of variable j of the cube ri is a 1. The following Boolean

expression asserts that ¢ does not intersect the off-set of the function:

IR n Pj=l —
r=AU N (5+4)
i=1j=1 k=0

Note that the values for each cube r (written as (r‘)’;-') are known values of either
0 or 1, and that the variables in the above equation are cé‘

To form a sum-of-products representation of I requires that the product-of-sums-
of-products expression be multiplied-out; that is, repeated intersection of sums-of-products

covers. However, using DeMorgan’s law, it is possible to directly write an expression for T:

| n Pj=1
N U ((95eh)
1l j=1 k=0

X

|
T=

An implicant of the function I corresponds to an assignment of {0, 1} to the

variables cf which results in an implicant of f. Further, a prime implicant of I corresponds
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to an assignment of {0, 1} to the variables cf which is maximal in the sense that no other
variable which is 0 can be made a 1; therefore, a prime implicant of I corresponds to a prime
impﬁcant of f. By construction, the logic function I is a two-valued unate logic function.
Hence, any prime cover for I consists of all of the prime implicants for I {19, Prop 3.3.7]
This construction proposes two techniques for generating all of the prime impli-
cants of a function: one which involves repeated intersection of sum-of-products forms and
one which involves the complementation of a2 sum-of-products form. The first formulation
is equivalent to the technique outlined by Roth (57, Chapter 1] for generating all of the

prime implicants of a multiple-output logic function.

2.5.3 Comparison of Prime Generation Techniques

These prime generation techniques have been implemented as part of ESPRESSO
and compared for efficiency. The OFF-set algorithm uses repeated intersection to generate
the primes. The efficiency of the two implementations is similar so that the results are
directly comparable.

The comparison was performed with the 134 functions from the Berkeley PLA
Test Suite (see Section 2.9 for more information on this test set). Each algorithm was given
ten hours on a DEC MicroVax-II to compute all prime implicants for each function.

Using the OFF-set prime generation, the prfme implicants were found for 113
examples. Using the unate-recursive paradigm, the prime implicants were found for 118
examples. In no case was the OFF-set algorithm able to complete for an example where the
unate-recursive paradigm failed. For the problems both were able to solve, the total time for
the OFF-set algorithm was 31.3 hours, and the total time for the unate recursive paradigm
was 14.5 hours. There was a wide range in the run-time between the two algorithms; the
ratio of the OFF-set algorithm run-time to the unate-recursive algorithm run-time ranged
from .65 to 121. For 8 examples the OFF-set algorithm was faster. The unate recursive
paradigm was substantially faster for those problems which had a small ON-set and a large
OTFF-set.

For this benchmark set, the unate-recursive paradigm technique for prime genera-
tion is favored both in total run-time, and the ability to complete more examples. Therefore,

this is the algorithm used by ESPRESSO-EXACT.
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2.6 Essential and Partially Redundant Primes

The primes P are partitioned into the essential set E, the totally redundant set
R, and the partially redundant set R, according to the following rules:

E={cePlcg (P~0)
Ry={c€(P=-E)lcC (EuUD))}
R,=P -(EUR)

The cubes of E must belong to any cover of the function because they cover some
minterm not covered by any other prime. E is the set of essential prime implicants. No
cube of R; can belong to a minimum cover of F because it is contained by the set of
essential prime implicants. R,vis the set of prime implicants dominated by the essential
prime implicants. The cubes of R, are partially redundant because, although any single
cube of R, can be removed, it is not possible to simultaneously remove all of the cubes
of Rp while maintaining a cover of F. R, causes the most difficulty in trying to extract a
minimum subset of ‘P. _

| The separation of P into the covers E, R,, and R, is accomplished with é, fast
multiple-valued tautology algorithm [66,59]. The basic test ¢ C H is done by forming
the cofactor H., and testing if H. is a tautology (i.e., if the function evaluates to 1 for all
inputs). The fast tautology algorithms use the Generalized Shannon Cofactor to successively
decompose the tautology question for a function into a tautology question on each of its
cofactors. The recursion ends when the function is such that the tautology question can be
answered by inspection. In particular, when the function becomes weakly-unate (59], it is

possible to answer the tautology question by inspection.

2.7 The Reduced Prime Implicant Table

The technique for forming the reduced prime implicant table is now described. The
key to the algorithm is a simple modification of the multiple-valued tautology algorithm.
Rather than testing whether the function is a tautology, the subsets of cubes which would
have to be removed to prevent the function from becoming a tautology are enumerated.

For each cube ¢ € Ry, form H = EU R, - ¢ and use a multiple-valued tautology

algorithm to determine if H, is a tautology. By definition of E and R, H. must be a
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tautology because every cube of R, is covered by the union of E and the other cubes of
Rp. At each leaf in the tautoloéy algorithm where the cover is weakly-unate, it is trivial to
determine which cubes are required to make the function a tautology [39]. A cubein the
partial function contributes to make the function a tautology if, and only if, it covers all of
the minterms in this subspace. ,

Therefore, if a cube from £ or D covers all of the minterms in this subspace, then
no cubes of Ry, are needed to cover this part of the function. That is, this leaf is a tautology
independent of the cubes of R, which are discarded. Otherwise, all of the cubes of R, which
cover all of the minterms in this subspace must be removed in order to avoid H. = 1 in this
leaf. This is equivalent to szﬂying that H will fail to cover ¢ if and only if all of the cubes
of Rp which are the universe in this leaf are discarded. In this way, all of the subsets of R,
which fail to cover the original function are enumerated.

A {0,1} matrix is formed where each cube of R, is associated with a column. At
each leaf in the tautology algorithm where no cube from E is the universal cube, a row is
added to the matrix wfth a 1 in each column j where a universal cube in this leaf came
from (Rp). If any prime in this row is retained in the cover, then H. will be ta.utology in

this leaf if no primes in this row are selected, then H. will not be a ta.utology in ¢

Hence the selected set of primes will fail to cover some minterm of the original fun_ ion
no prime in this row is selected. A minimal cover of this matrix corresponds to a rri,h;;_i,mal
. subset of the primes of R, which must be retained in the cover for F.

The algorithm proceeds by forming H. for each ¢ € R,, and calling a modified
version of the TAUTOLOGY procedure called FIND_TAUTOLOGY. Note that after determining
how ¢ can be covered, ¢ can be moved to D because it is then known how all of the minterms
of ¢ can be covered by selecting primes from R,. This leads to an improvement in the
performance of the algorithm.

The matrix formed in this way is related to the prime implicant table of the
Quine-McCluskey algorithm. This matrix is a reduced form of the prime implicant table;
rather than each row of the matrix corresponding to a minterm of the function, each row
corresponds to a collection of minterms (i.e., a larger subspace) all of which are covered by
the same set of prime implicants. In the worst case, the tautology algorithm will terminate
at each of the minterms of the function, thus producing exactly the prime implicant table.
However, in practice, the algorithm is terminated much more quickly, leading to efficient

creation of a reduced prime implicant table. A key to terminating the recursion as quickly
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as possible makes use of weakly-unate functions.

2.8 Solving the Minimum Cover Problem

The minimum cover problem is stated as follows:

Minimum Covering Problem: Giveh a binary matrix 4, and a cost ¢
for each column of the matrix, find a binary row vector x such that 4.xT >
(1,1,...1)T and T, zjc; is minimum.

The constraint 4-xT > (1,1,...1)7 is understood as saying that each row of the
matrix must have at least one 1 in some column where x has a 1. In this case, the row is
said to be covered by the particular column of x, and the goal is to cover all rows with a
vector of minimum weight.

A minimum cover problem can also be represented as a covering ezpression. This
is a Boolean expression written in conjunctive normal form. Each column of the covering
matrix 4 has an associated Boolean variable a;. Each row represents a clause corresponding
to the disjunction of the variables for the nonzero elements in the row. A satisfying assign-

: mé'nt (i.e., an assignment of 0 or 1 to the variables a; fbr which the expression evaluates to

1) is a cover for the matrix, and the problem is to find the cover with lowest total cost.

Example 2.8.1 Consider the matriz:

ay G a3 a4 as das
1 1 0 0 0 O
0 1 1 0 1 0
1 0 1 0 1 1
o 01 1 0 1

The corresponding covering ezpression is

(ar + az)(az + a3 + as)(ay + a3 + as + ag)(az + aq + as)

A cover for this matriz i x = 1 1 0 1 0 0 which corresponds to the satisfying assignment
ay =1, a; =1, ay = 1 with all other variables 0. If the cost for each column is 1, then a
minimum cover 18 X = 1 0 1 0 0 0 which corresponds to the satisfying assignment a; = 1,

a3z = 1 with all other vafjables 0.

The decision problem for minimum cover is NP-complete (31, page 222] so that any

algorithm which solves this problem can be expected to have a bad worst-case complexity.
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The standard branch-and-bound solutjon to the minimum cover problem involves

the following steps:

1. Apply reduction algorithms to reduce the size of the matrix.

2. If the size of the current solution equals or exceeds a bound (e.g., the size of the best
solution seen so far) return from this level of the recursion. If there are no elements
left to be covered, declare the current solution as the best solution recorded so far.

3. Select a Branching column.

4. Add the branching column to the selected set and solve the covering problem for the
submatrix resulting from deleting this column and all rows which are covered by this
column. Then, solve the covering problem for the submatrix resulting from deleting
this column without adding it to the selected set. :

2.8.1 Covering Table Reduction Steps

There are some well-known results which are of interest in reducing the size of a
given covering problem: , _
Partitioning: If the rows and columns of matrix 4 can be permuted to yield a

block structure of the form:

A, ] 0
0 | 4,

where O represents an appropriately sized block of all zeros, then a minimum cover for 4 can
be written as the union of a minimum cover for 4,, and a minimum cover for A,. Detecting
a block partition of this form is easily done by choosing an initial row and placing it in the
partition for 4;. Then all rows which are connected to this row (i.e., all rows which have
a lﬂ in some column of 4,) are added to the partition for A,. This continues until no rows
rema:m, in which case no partition exists, or untll all of the remaining rows are disjoint from
the set’*of rows in 4.

Essential columns: Any row of the matrix 4 which has only a single 1 identifies
an essential column. The solution vector ¢ must have a 1 in the essential column in order
to cover the row singleton. After placing a 1 in the essential column, any other rows which
become covered are removed from consideration.

Row dominance: If row i of 4 contains row Jof 4 (i.e.,, row ¢ contains a 1 for
all columns in which row j has a 1), then row 7 can be removed from the matrix 4 without

changing the minimum solution. Clearly, once row j has been covered, then row i will
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automatically also be covered, and hence row i is providing redundant information in the
covering problem.

Column dominance: If column i of 4 contains column j of 4 (i.e., column i

conta.im a 1 for all rows in which column j contains a 1), then column j can be removed
from the matrix A without changing the minimum solution. Clearly, there could be no
advantage to choosing column j because choosing column ¢ instead would cover the same
set of rows, and perhaps more. Hence, column j is not needed for a minimum solution.
VWhen a cost is associated with a column, this reduction can be performed only if column j
costs the same or more than column 4. _
_ Note that, by construction, the reduced prime implicant table does not have any
essential elements. This is because the essential primes are detected before the prime
implicant table is created. However, during the branch and bound procedure, essential
elements can be created. The operations of row and column dominance, which possibly
delete rows and/or columns, also have the possibility of introducing essential columns.

Therefore, the strategy to reduce the size of the matrix is:

1. Look for a block paitition. Recur for each subproblem if a block partition exists.

©

Apply row dominance and column dominance to the matrix.

3. Identify essential columns and add them to the covering set; delete rows which are
covered by these essential columns.

4. Repeat steps 2 and 3 until no new essential columns are detected.

2.8.2 Gimpel’s Reduction Step

Another heuristic for solving the minimum cover problem which lias proven effec-
tive is one suggested by Gimpel [33]. Gimpel proposed a reduction step which simplifies the
covering matrix when it has a special form. This simplification is possible without further
branching, and hence is useful at each step of the branch and bound algorithm. In practice,
Gimpel’s reduction step is applied after reducing the covering matrix to minimal form, that
is, after applying the reduction steps of removing essential columns, and deleting dominated
rows and columns.

Gimpel’s reduction is best described in terms of the covering expression for a

covering table. The covering expression is examined to see if any clause has only two
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literals of the same cost. For example, assume the expression has the form:
p= R(C1 + c2)(c1 + 51) .. .(C1 +'5n)(62 + T]) - .(Cz + Tm)

where ¢, and ¢ are single variables with a cost ¢+, §;,i=1...nand Tj,j = 1...m aresums
of variables not containing c; or ¢z, and R is a product of sums of variables not containing
c1 or ¢z. Because the covering table is assumed minimal, if there is a clause (¢; + ¢2), then
m>1,n > 1, and none of S; or T is identically zero.

Note that with the expression written in this form, each parenthesized expression
corresponds directly to a single row in the covering table. By applying Boolean algebra

manipulations to this expression, it can be re-written as:
p= R(ciea+ 1T + ¢2S)

where § = [[lwy Si, and T = [[Z,; Ti.
A second covering problem is derived from the original covering problem with the
following form: '
o= Rla+S5+T)
n m
= R[[[I(ca+Si+T))
i=1 j=1

The main theorem of Gimpel is:

Theorem 2.8.1 Let M, be a minimum cover for p. A cover for p can be derived from
M, according to the rule: if S is covered by Ay then add ¢; to M, to derive a cover of p;

otherwise, add ¢; to M, to derive a cover of p. The resulting cover is a minimum cover for

D.

Proof. Let |p| represent the cost of a minimum cover for p. The rule stated
in the theorem derives a cover for p by adding either ¢; or c¢; to the cover for p;. It is
easy to see that the set of variables created by this rule generates a cover for p, and hence
Ipl < |p1] + cx. Next, let M be a minimum cover of p. If ¢; is in 3/, remove it to create
M,; otherwise, remove ¢, to create Af;. (Bither ¢; or ¢; must be in Af.) The variable
set Af, is a cover for p; as can be verified by examining the covering expressions for p and

pi; hence, |p| = c* > |pi|. Therefore, |p| = |p1|+c*and the cover is a minimum cover for p. O
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Note that with this reduction the -expression c; + S + T is not a simple sum of
variables; it is first expanded into a product of sums of products as shown above. The
resulting covering e.‘{preséion has nm — n — m — 1 more clauses, but depends on one less
variable. When n < 2 orm < 2 orn = m = 2, this leads to a covering problem with fewer
clauses. The reduction technique is clearly beneficial when both the number of clauses
and variables in the covering matrix is reduced. However, it is potentially advantageous
to allow the number of clauses to increase by applying the reduction step. This is because
the number of variables (and hence the number of potential branching columns) is reduced
by one. Also; the covering table formed by this reduction step may be further reduced by
applying the reduction steps described in Section 2.8.1.

An important special case is worth noting. If n is 1 and the cost of ¢ is greater

than or equal to the cost of any element of Sy, then the covering expression simplifies to
) m
n = RH(C'Z + 51+ Ty)
J=1

R ﬁ(51 + Tj).

j=1

The second equality follows from the observation that c; is dominated by every column
of Si. Therefore, variable c; is also deleted from the covering expression. The resulting
expression has one fewer clause than the original covering expression and it depends on two
fewer variables. »

Gimpel refers to the general reduction step as identifying a reducing column of
the second kind, and the special case as identifving a reducing column of the first kind.
Gimpel’s reduction step was originally stated for covering problems where each column had
cost 1. Robinson and House {44] showed that the reduction remains valid even for weighted

covering problems if the cost of the column ¢; equals the cost of the column c¢o. This is the

form presented here.

2.8.3 Maximal Independent Set

An important feature of the proposed covering algorithm is the use of the maximal
independent set. This routine finds a maximal set of rows of 4 all of which are pairwise
disjoint (i.e., they do not have 1's in the same column). It is clear that the number of rows

in this independent set is a lower bound on the solution to the covering problem, because
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a different element must be selected from each of the independent rows in order to cover
these rows. Hence, this lower bound can be used to terminate the search if the size of the
current solution pllus the size of the independent set is greater than or equal to the best
solution seen so far. Additionally, the size of the independent set at the first level of the
recursion is a lower bound for the final minimum cover. Hence, by recording this value, the
search can be terminated if a solution is found which meets this lower bouhd,

The major drawback of this technique xs that the problem of finding a maximum
independent set of rows is itself an NPacbmplete problem. But this is not a limitation —
finding 2 maximal independent set of rows can be solved heuristically while still providing
a correct lower bound on the size of the final solution. In general, finding the maximum
independent set provides the best bound; other minimal solutions provide less precise, but,
nonetheless, correct lower bounds. Hence, even though ‘this problem is itself difficult, a
fast heuristic algorithm for finding a maximal independent set of rows is sufficient for this
application. '

To find a large independent set of rows, a graph is constructed where the nodes
correspond to rows in the matrix, and an edge is placed between two nodes if the two
rows are disjoint. The problem is now equivalent to finding a maximal clique (a maximal,
completely connected subgrapl) of this graph. To solve this problem, a greedy algorithm
is used:

1. Initialize the clique to be empty.

2. Pick the node of largest degree (and not already in the current clique), and add this
node to the clique. Break ties by choosing the node which is connected to the most
other nodes of maximum degree.

3. Remove all nodes and their edges from the graph which are not connected to the
current clique.

4. Repeat if there are nodes in the graph not in the current clique.

The node of largest degree in step 2 corresponds to the row which is disjoint with
the maximum number of other rows of the matrix. The tie-breaker attempts to preserve as
many of the remaining nodes of maximum degree as possible.

Thus, the bounding in the branch and bound algorithm is modified by bounding
the search if the size of the fnaximal-independent set plus the size of the current partial
solution equals or exceeds the best known solution. The goal is to terminate unprofitable

searches as early as possible.
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Beside the fact that the problem of finding a maximum independent set of rows
is NP-complete, there is the further difficulty that the bound provided by the maximum

.i_ndependent set may not be sharp. For example, consider the matrix:

1 1
1 0
01

- - o

A maximum independent set of rows for this matrix contains only a single row, but a
minimum cover requires at least two columns. The size of the maximum independent set
remains a lower bound on the size of a minimum cover; however, the search may not be

terminated as early as possible.

2.8.4 Choice of the Branching Column

v Good heuristics for choosing the branching column are important to the speed of
the branch and bound algorithm. The goal is to find a good solution quickly, so that inferior
parts of the search space may be discarded as early as possible.

To choose a branching column, a weight W; is computed for a each column j as:

m

"VJ = Z ‘4‘-1'11].'

i=1

-1
wi = (Z A.‘j) -1 .
i=1

It is assumed each row has two or more elements, hence w; is well-defined. Note

where

that if w; were 1, then W; would be the cardinality of each column. Choosing an element
which intersects a large number of rows is reasonable since these rows are removed when
this element is selected.

To understand the effect of w; as defined lere, assume that a row Las only two
elements. Then each element contributes w; = 1 to the réspective column weights. On the
other hand, if a row has nine elements, then each element in the row contributes w; = .125 to
each column where it has a 1. This has the tendency to favor columns with a large number
of 1's, but also favors columns with a large number of 1's in rows with a few elements. The
larger rows are thought of as easier to cover while the smaller rows are harder to cover.

The heuristic tries to force a selection from one of the harder to cover rows. Cloosing an
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element from a small set also creates more essential elements in subsequent levels of the
recursion. |

A unique element from each set of the independent set of rows must be in the min.-
imum solution. This suggests limiting the selection of a braaching column to the elements
in these rows. Hence, as a final refinement, the column of maximum weight W, which is

also in some element of the maximal independent set is chosen as the branching column.

2.8.5 Implementation Details

~ Itis known that given an arbitrary binary matrix, there is a Boolean function which
creates that matrix as its prime _implicant. table [33]. This is the basis of the proof that the
two-level minimization problem is NP-complete when starting from all prime implicants for
the function. However, in practice, the prime implicant table tends to be very sparse. This
influences the choice of data structure for the prime implicant table. Two common data
structures for representing a binary matrix are the bit-matriz and the sparse-matriz,

A bit-matrix uses one bit to store each element of the matrix. Thirty-two adjacent
‘columns in the matrix are packed into a single thirty-two bit machine word. This allows for
a constant-factor improvement (when operating on the elements of a row in the matrix) over
the more straightforward approach which uses one machine word for each element in the
matrix. For example, comparing two rows for containment is thirty-two times faster because
a few machine instructions suffice to compare thirty-two adjacent columns for cbntaiﬁment.

A sparse-matrix, on the other hand, only stores the nonzero elements in the matrix.
A structure is used for each nonzero element, and it is linked to both the next and previous
row in the same column, and the next and previous column in the same row. This allows
for efficient traversal of only the nonzero elements in the matrix. For example, in ann by m
matrix with at most d elements per row, only d elements need to be examined to determine
if one row contains another. This is in contrast to the O(n) comparisons needed when using
a bit-matrix.

An important factor in deciding which data structure is best is the choice of the
most efficient algorithm for each data structure. Consider the problem of detecting row
dominance in the matrix and deleting all rows which contain another row. Assume that
the matrix is square and of size n by n. Further, assume that there are at most d nonzero

elements in any row or column.
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On the bit-matrix, a straightforward row dominance algorithm is the most efficient.
This algorithm compares each row against all other rows and deletes the row if it contains
another row. This algorithm requires O(n?) row comparisons, each of which has complexity
O(n). Using the bit-matrix data structure allows for an efficient check to see if one row
contains another - only four machine instructions are needed to compare two 32-bit words to
see if one contains the other (including loop overhead). Therefore, the machine instruction
complexity for the bit-matrix implementation of the straightforward algorithm is estimated
as §nd.

However, if the matrix is sparse and a sparse-matrix is used as the data structure,
there is a more efficient algorithm for detecting row dominance. For each row of the matrix,
.consider the columns which have a 1, and select the column with the fewest total number of
1's. The 1’s in this column identify the set of rows which can possibly contain the original
row; a row outside this set cannot contain the original row because it fails to contain at least
this column. This algorithm requires only O(nd) row comparisons rather than O(n 2). Each
row comparison requires examining the O(d) elements in the two rows. However, the basic
operation of comparing two rows in a sparse matrix to see if one contains another is more
complex in terms of machine instructions. Examining compiler-generated code indicates
that approximately ten machine instructions (including loop overhead) are needed for each
element in the row. As a result, the machine instruction complexity of the sparse matrix
implementation is 10nd?. .

Therefore, the bit-matrix implementation is superior when d/n.> .11; that is,
when the matrix is more than 11% dense. If the matrix is less than 11% dense, the sparse-
‘matrix implementation is superior. As the matrix becomes more sparse, the sparse matrix
implementation begins to look much better. For example, the modified row dominance
algorithm on a sparse-matrix with one percent nonzero elements (i.e., d/n = .01) is eighty
times faster than the straightforward algorithm on a bit-matrix. In the limit of a constant
numnber of nonzero elements per row, the complexity has been reduced from O(n®) to O(n).

Therefore, a sparse-matrix implementation of the basic operations of row domi-
nance and column dominance is expected to be superior to the same operations implemented
using a bit-matrix if the prime implicant table is sufficiently sparse. Other operations, such
as finding a block partition if one exists or finding a maximnal independent set of rows, also

benefit in a similar manner from the sparsity of the matrix.
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Density of the Prime Implicant Table

The density of the prime implicant table is defined as the number of nonzero
elements divided by the product of the number of rows and columns in the table.

» A test was performed to measure the density of the prime implicant table over
a collection of PLA minimization problems. The comparison was performed with the 134
functions from the Berkeley pLA Test Suite (see Section 2.9 for more information on this
test set). The prime implicant table was generated for 117 of the 134 examples. The average
density over all of the examples was .37%. Considering only tables with more than 100 rows,
the dens'ity of the table ranges from .07% to 8.35%. Hence, this supports the conjecture
that the prime implicant tables are sparse.

As the size of the table increases, the maximum density tends to decrease sig-
nificantly. For this reason, the épa.rse-ma.trix implementation for the covering algorithm
provides a significant advantage for larger problems. For example, the largest prime impli-
cant table was 4,640 rows by 5,202 columns, but only .07% dense. Performing the operations
of row and column reduction for this matrix required only 92 seconds on a DEC MicroVax-IT
when # sparse-matrix data structure was used. The same operations did not complete in

ten hours using the bit-matrix implementation of ESPRESSO Version 2.2.

2.9 Experimental Results

The techniques outlined in this chapter for exact minimization of multiple-valued
functions have been implemented as an option to the program EsPrESSo. The algorithm
ESPRESSO-EXACT is the ezact option to Version 2.3 of the ESPRESSO program. Version
2.3 improves upon Version 2.2 by the new techniques described in this chapter; namely,
prime generation based on the unate recursive paradigm, and the use of sparse matrices
and Gimpel’s reduction of the first kind when solving the minimum-cover problem,

ESPRESSO-EXACT has been tested on a large set of multiple-output minimization
problems. Each minimization problem is first classified as to its degree of difficulty. Then
results are presented on the performance of ESPRESSO-EXACT when attempting to solve
these problems and the results from ESPRESSO-EXACT are compared to the previous version
of ESPRESSO-EXACT and the exact minimization program MCBOOLE [24]. |

The results and run-times in this chapter were collected on a pDEC MicroVax-I1.
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This machine is roughly equivalent to a DEC VAX 11/780 for integer applications such as
ESPRESSO. The DEC vax 11/780 is often called a one MIP machine. The machine was

equipped with 8 megabytes of memory.

2.9.1 Classification of the Benchmark Set

In order to compare minimization algorithms, a set of 134 PLA’S have been collected
at Berkeley. Most of these PLA’S (111) come from industry and University chip designs.
The remaining 23 PLA’S are mathematical functions which have commonly been used as
standard minimization problems. The characteristics of the PLA’S, including the number of
inputs, outputs, product terms and presence of a don’t-care set, are listed in a table at the
end of the chapter.

One easily determined measure of the complexity of two-level minimization for
‘a function is the number of minterms in the function. A single-output n- mput function
has 2" minterms and an n- mput and m-output function has m2" minterms. Hence, it is
reasonable to consider minimization of an n-input m-output function equal in complexity to
the minimization of a n + log,(m) single-output problem. This provides a simple measure
of the complexity of the different multiple-oufput minimization problems.

By this measure, 14 (10%) of the examplés have more than thirty inputs, 31 (23%)
have more than twenty inputs, and 95 (71%) have more than ten inputs. Hence, a large
percentage of the examples would be considered unsolvable by exact methods according to
the rule of thumb given in [19][page 8):

Since the number of elements in the covering problem may be proportional to
the exponential of the number of input variables of the logic function, the use of

these techniques is totally impractical even for medium sized problems (10-15
variables).

However, this simple metric, or other measures such as the number of product
terms or prime implicants (when known) can provide a misleading measure of the complexity
of two-level minimization for a specific example. In order to circumvent this problem, each
function has been classified as either trivial, noncyclic, cyclic-solved, cyclic-unsolved, or too
many primes. These classifications were determined by allowing ESPRESSO-EXACT torun for
up to ten hours for each example. The result of the minimization is examined to determine

the classification, as follows:
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Class Tofal Solved |

trivial 9 9

noncyclic 56 56
cyclic-solved 49 | 49
cyclic-unsolved 3 0
too many primes 17 0
Totals 134 114

Table 2.1: ESPRESSO-EXACT results for the PLA test set.

trivial A solved problem is trivial if all primes in the minimum cover are essential. These
are the easiest problems to solve because any minimal solution is the minimum solu-
tion. '

noncyclic A solved problem is noncyclic if the prime implicant table has no rows in its
reduced form. For these problems, the covering problem can be solved in polynomial
time even though generating the prime implicants or forming the prime implicant
table is still potentially difficult. ‘

éyclic A solved problem is cyclic if the prime implicant table has more than one row in
its reduced form. These problems require a branch and bound algorithm to derive a
minimum cover for the prime implicant table.

cyclic-unsolved An example is called cyclic-unsolved if ESPRESSO-EXACT was able to gen-
erate all prime implicants and the prime implicant table, but was unable to complete
the minimum covering problem.

too many primes An example is classified as too many primes if ESPRESSO-EXACT was
unable to enumerate the set of prime implicants or if ESPRESSO-EXACT was unable to
gencrate the prime implicant table.

Table 2.1 summarizes the results of ESPRESSO-EXACT for each problem class. Re-
call that the computer time was restricted to ten hours on a one MIP machine. ESPRESSO-
EXACT was able to solve 114 of the 134 examples. 16 examples failed during prime implicant
generation, 1 failed during the prime implicant table generation, and 3 failed trying to find
the minimum cover for the prime implicant table. Most of the problems that failed, did so
because of an excessive number of prime implicants.

_ It is interesting to examine the results of ESPRESSO-EXACT as compared to the
size of each problem in terms of equivalent inputs. ESPRESSO-EXACT solved only 1 of the

14 problems with more than thirty inputs, 14 of the 17 problems with between twenty and
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thirty inputs, and 61 of the 64 problems with between ten and twenty inputs. All of the
problems with less than ten inputs were solved.

This success for industrial functions should be contrasted with the results from
two randomly generated functions of ten inputs and tem outputs. These examples, (ez
and ez1010), which are not included in the benchmark set, remain unsolved by ESPRESSO-
EXACT. These functions have a large number of don't-care points and have large, dense
covering tables. Hence, minimization of some functions with only thirteen equivalent inputs
remains intractable.

The previous version of ESPRESSO-EXACT (Version 2.2 of ESPRESSO) was able to .
solve only 104 of the 134 examples given the same constraint of ten hours of computer time.
For the 104 examples which both programs could solve, Version 2.2 required 36.4 hours and
Version 2.3 required 17.5 hours. However, the difference on some problems is much greater.
For example, on mip4, Version 2.2 required 4,700 seconds while Version 2.3 required only

490 seconds. Note that the minimum solution for mip4 is 121, and not 119 as given in [62].
| The prime generation of Version 2.2 uses the OFF-set algorithm. The prime gen-
eration technique of Version 2.3 uses the unate recursive paradigm. As mentioned earlier,
Version 2.2 required 31.3 hours to generate the prime implica.nts for 113 examples, and
Version 2.3 required only 14.3 hours for the same set of examples. For the 104 examples
solved by Version 2.2, 18.9 hours were spent in prime generation by Version 2.2, and 3.8
hours were spent in prime generation by Version 2.3. Hence, 13.1 hours of the 18.9 hour
difference between the two algorithms is accounted for by the cha.nge in the prime genera-
tion algorithm. However, the remainder of the performance improvement, and the ability of
Version 2.3 to solve ten more problems, is due to the use of a sparse-matrix data structure

for the covering table and the inclusion of Gimpel's reduction step.

2.9.2 Comparison with McBoole

MCBOOLE is an exact minimization algorithm developed at the University of McGill
(24]. MCBOOLE is also based on the Quine-McCluskey algorithm. MCBOOLE uses a recur-
sive algorithm for prime generation based on the binary-valued Shannon Cofactor and the
consensus operation. During the prime generation, a tree structure is maintained showing
where a cube is generated; this improves the prime generation algorithm by reducing the

number of pairwise consensus operations. MCBOOLE does not generate the prime impli-
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Class | Count | Espresso | McBoole
trivial ' 9 9 -9
noncyclic 56 56 56
cyclic-solved 49 49 21
cyclic-unsolved 3 0 0
too many primes 17 0| 0
Totals 134 114 86

Table 2.2: Comparison of Espresso-Exact and McBoole.

cant table; instead, it uses a directed. graph, constructed during the prime generation, to
represent the covering problem. The minimum cover is extracted direc_tIy from this graph.

The MCBOOLE prime generation algorithm is similar to the unate recursive paradigm
prime generation algorithm given in Section 2.5.1. However, it is not clear whether McCBOOL E
uses unate functions in order to terminate the recursion eatly. Also, it is not described in
(24] how MCBOOLE generates multiple-output prime implicants.

In this section, the results of a comparison between MCBOOLE and ESPRESSO-
EXACT are presented. Each program was allowed ten hours of computer time to solvé each
of the 134 benchmark examples. The number of problems solved by each program is shown
in Table 2.2.

MCBOOLE was able to solve 86 of the problems as compared to 114 solved by
ESPRESSO-EXACT. For the 86 problems which both programs solved, the run-time for
MCBOOLE was 27.9 hours, and the run-time for ESPRESSO-EXACT was 20.1 hours. Both
programs solved all of the trivial and noncyclic examples. MCBOOLE solved 21 of the cyclic-
solved examples versus the 49 solved by ESPRESSO-EXACT. ESPRESSO-EXACT holds an
advantage for these difficult problems due to the generation of the prime implicant table
and the techniques used to solve the covering problem.

MCBOOLE generated the prime implicants for 117 of the examples and ESPRESSO-
EXACT generated the prime implicants for 118 of the examples. For a subset of the problems
solved by both algorithms, the prime generation time for MCBOOLE was 36.5 hours and the
prime generation time for ESPRESSO-EXACT was 9.7 hours. The reasons for this differ-
ence are not clear, as the algorithms are similar. MCBOOLE uses a technique to reduce the
number of pairwise consensus operations which is not present in ESPRESSO-EXACT. How-

ever, ESPRESSO-EXACT terminates the recursion at weakly-unate functions and handles the
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multiple-output nature of the problem uniformly using multiple-valued functions. Also,
differenca in implementation between the two progta.mé cannot be discounted as a reason

for this difference.

2.10 Conclusions

Two-level minimization is an important step for both PLA optimization and multiple-
level logic synthesis. Effective heuristic techniques have been developed which provide so-
lutions for large minimization problems in a reasonable amount of time. However, these
heuristic algorithms provide no measure of assurance as to the solution quality. Exact
algorithms for two-level minimization can always be expected to fa.ii in some situations;
“however, it is interesting to explore where the boundary between those problems which can
be solved and those which cannot lies. As a side-benefit, an exact algorithm provides a
measure of the solution quality for the heuristic algorithms, for those problems which can
be solved exactly. v

This chapter has presented an exact algorithm for two-level minimization of multiple-
valued functions. This algorithm is based on extensions to the ESPRESSO-MV algorithm and
is called ESPRESSO-EXACT. Experimental results for this program show that, although
ESPRESSO-EXACT is unable to solve some probl;ems in a reasonable amount of time, it is
able to solve a large percentage of the PLA minimization problems which appear on inte-
grated circuits. Hence, the effective range of two-level minimization for these functions has
been greatly extended.

Two interesting questions arise from this work.

First, the functions which are built in PLA form are are quite special. Almost all
functions of n variables have O(2") product terms in their minimum representation and
yet PLA’S are routinely built with more than fifty inputs and only several hundred product
terms. In what way can we understand the characteristics of these functions and use these
characteristics to improve heuristic algorithms for minimization ?

Second, many of the PLA'S in the Berkeley benchmark set have noncyclic covering
problems. This means that the selection of a minimum number of prime implicants does
not involve any clioice. An interesting question is whether an efficient algorithm can be
devised to solve a noncyclic minimization problem which does not require enumerating all

prime implicants or forming the prime implicant table. Techniques are known to derive
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the essential prime implicants without ge'_nera.ting all prixhe implicants; the difficult part is
devising an algorithm to find the secondary essential prime implicants efficiently (secondary
essential primes are prime implicants which become essential once the totally dominated
- prime implicants are removed). This algorithm should also detect when an exact minimum

is not reached.

2.11 PLA Test Set Classification

The following table summarizes the results for the classification of the 134 PLA
examples in the Berkeley PLA test set. The number of inputs, outputs, and initial product
terms are given for each example. The initial number of product terms is marked with an
asterisk if the PLA contains a don’t-care set. Each PLA is identified as either indust or math.
The origin for an indust example is an industrial or ﬁniversity integrated circuit design.
The math examples are arithmetic functions (e.g., adder, multiplier). The classification for
each example (trivial, noncyclic, cyclic-s, cyclic-us, primes) is shown in the table. Then the
number of prime iﬁlplica.nts, the number of essential prime implicants, and the minimum
solution-are given. For the unsolved examples, upper and lower bounds are given on the

" minimum solution.
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name |[in/out terms | type  class primes essen | solution
alul 12/8 19 | indust  trivial 780 19 19
bed.divd 4/4 *9 | math trivial 13 9 9
clpl 11/5 20 | indust  trivial 143 20 20
| col4 14/1 14 | math trivial 14 14 14
max46 9/1 46 | indust  trivial 49 46 46
newapla2 6/7 7 | indust  trivial 7 7 7
newbyte 5/8 8 | indust trivial 8 8 8
newtag 8/1 8 | indust  trivial 8 8 8
ryy6 16/1 112 | indust  trivial 112 112 112
add6 12/7 1092 | math noncyclic 8563 153 3335
1 adr4 8/5 255 | math noncyclic 397 35 75
al2 16/47 103 | indust noncyclic 9179 16 GG
. alcom 15/38 47 | indust noncyclic 4657 16 40
alu2 10/8 * 87 | indust noncyclic 434 . 36 63
alu3 10/8 * 63 | indust noncyclic 540 27 G4
apla 10/12  * 112 | indust noncyclic 201 0 25
b4 33/23 * 54 | indust noncyclic 6455 40 54
bll - . 8/31 * 74 | indust noncyclic 44 22 27
b2 16/17 110 | indust noncyclic 928 54 104
b7 8/31 * 74 | indust noncyclic 44 22 a7
b9 16/5 123 | indust noncyclic 3002 48 119
bc0 26/11 419 | indust noncyclic 6596 37 177
bca 26/46  * 301 | indust noncyclic 305 144 130
beb 26/39  * 299 | indust noncyclic 253 137 133
bed 26/38  * 243 | indust noncyclic 172 100 117
brl 12/8 34 | indust noncyclic 29 17 19
br2 12/8 35 | indust noncyclic 27 0 13
del 4/7 15 | indust noncyclic 22 3 9
dc2 . 8/7 58 | indust noncyclic 173 18 39
dk17 10/11 * 57 | indust noncyclic 111 0 13
ex? 16/5 123 | indust noncyclic 3002 43 119
exep 30/63  * 149 | indust noncyclic 538 32 108
exp 8/18 * 89 | indust noncyclic 238 30 36
inl 16/17 110 | indust noncyclic 928 34 104
in3 35/29 75 | indust noncyclic 1114 44 T4
ind 24/14 62 | indust noncyclic 1067 53 G2
ing 33/23 54 | indust noncyclic 6174 40 54
in7 26/10 84 | indust noncyclic 2112 31 54
life 9/1 140 | math noncyclic 224 36 S4
luc 8/27 27 | indust noncyclic 190 14 26
ml 6/12 32 | indust noncyclic 59 6 19
newapla 12/10 17 | indust noncyclic 113 9 17
newaplal 12/7 10 | indust noncyclic 31 0 10
newcond 11/2 31 | indust noncyclic 72 18 31
newcepla2 7/10 19 | indust nouncyclic 38 14 19
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name in/out terms | type class primes essen | solution
newcwp 4/5 11 | indust noncyclic 23 7 11
newtpla 13/5 23 | indust noncyclic 40 16 23
newtplal 10/2 4 | indust noncyclic G 3 4
newtpla2 10/4 9 |indust noncyclic 23 4 9
newxcplal 9/23 40 | indust noncyclic 191 18 39
p82 5/14 24 | indust noncyclic 48 16 21
proml 9/40 502 | indust mnoncyclic 9326 182 472
radd 8/5 120 | math noncyclic 397 35 73
rekl 32/7 96 | math noncyclic 302 6 32
rd53 5/3 31 | math noncyclic 51 21 31
1d73 7/3 147 | math noncyclic 211 106 127
risc 8/31 74 | indust noncyclic 46 22 28
sex 9/14 23 | indust noncyclic 99 13 21
sqn 7/3 84 | indust noncyclic 75 23 38
t2 17/16  * 128 | indust mnoncyclic 233 25 52
t3 12/8 148 | indust noncyclic 42 30 33
t4 12/8 * 38 | indust noncyeclic 174 0 16
vg?2 25/8 110 | indust mnoncyclic 1188 100 110
vtxl 27/6 110 | indust noncyclic 1220 100 110
xldn 27/6 112 | indust noacyclic 1220 100 110
x9dn 27/7 120 [ indust noncyclic 1272 110 120
24 7/4 127 | math noncyclic 167 33 59
Z5xpl 7/10 128 | math  cyclic-s 390 8 63
29sym 9/1 420 [ math  cyclic-s 1630 0 84
addm4 9/8 480 | math  cyclic-s 1122 24 189
amd 14/24 171 | indust  cyclic-s . 457 32 66
b10 153/11  * 135 |indust cyclic-s 938 51 100
b12 15/9 431 | indust  cyclic-s 1490 2 41
b3 .32/20 * 234 | indust  cyclic-s 3056 123 210
bee 26/45  * 245 | indust  cyclic-s 237 119 137
chkn 29/7 153 | indust  cyclic-s 671 36 140
cps 24/109 654 | indust  cyclic-s 2487 57 157
dekoder 4/7 * 10 | indust  cyclic-s 26 3 9
dist 8/5 255 | math  cyclic-s 401 23 120
dk27 9/9 * 20 | indust  cyclic-s 82 0 10
dk48 15/17 * 42 | indust  cyclic-s 157 0 21
exps 8/38  * 196 | indust cyclic-s 852 36 132
f51m 8/8 255 | math  cyclic-s 561 13 76
gary 15/11 214 | indust  cyclic-s 706 60 107
in0 15/11 135 | indust  cyclic-s 706 60 107
in2 19/10 137 | indust  cyclic-s 666 35 134
in4 32/20 234 | indust  cyclic-s 3076 118 211
inc 7/9 * 34 | indust  cyclic-s 124 12 29
intb 15/7 064 | indust  cyclic-s 6522 136 629
1err 8/8  *1233 | math  cyclic-s 142 13 50

39
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name | in/out terms | type class | primes essen | solution
lin.rom 7/36 128 | indust  cyclic-s 1087 8 128
log8mod 8/5 46 | math  cyclic-s 105 13 33
m181 15/9 430 | math  cyclic-s 1636 2 41
m2 8/16 96 | indust cyclic-s 243 7 47
m3 8/16 128 | indust cyclic-s 34 4 62
m¢ 8/16 256 | indust cyclic-s 670 11 101
markl 20/31 * 23 | indust cyclic-s 208 1 19
max128 7/24 128 | indust cyclic-s 469 6 78
max512 9/6 512 | indust cyclic-s 535 20 133
| mlp4 8/8 225 | math  cyclic-s 606 12 121
mp2d 14/14 123 | indust  cyclic-s 469 13 30
newcplal 9/16 38 | indust  cyclic-s 170 22 33
newill 8/1 8 | indust cyclic-s 11 5 8
opa 17/69 342 | indust cyclic-s 477 22 77
| pope.rom 6/48 64 | indust  cyclic-s 593 12 | 59
root 8/5 255 | math  cyclic-s 132 9 57
spla 16/46 * 2296 | indust cyclic-s 4072 33 248
sqré 6/12 63 | math cyclic-s 205 3 47
syml10 10/1 837 | math  cyclic-s 3150 0 210
tl 21/23 796 | indust cyclic-s 15135 7 100
tial 14/8 640 | math  cyclic-s 7145 220 | 575
| tms 8/16 30 | indust cyclic-s 162 13 30
wim 4/7 * 10 | indust  cyclic-s 25 3 9
x6dn 39/5 121 | indust  cyclic-s 916 G0 81
exs 8/6G3 256 | indust. cyclic-us 2532 28 62/67
max1024 10/6 1024 | indust cyclic-us 1278 14 | 249/261
prom?2 . 9/21 287 | indust cyclic-us 2635 9 | 276/287
accpla 50/69 183 | indust  primes ? 97 97/175
ex4 128/28 620 | indust primes 7 138 | 138/279
ibm 48/17 173 | indust  primes ? 172 | 173/173
jbp 36/57 166 | indust primes ? 0 0/122
mainpla 27/34 181 | indust  primes ? 29 29/172
misg 56/23 75 | indust  primes ? 3 3/69
mish 94/43 91 | indust  primes ? 3 3/82
misj 35/14 48 | indust  primes ? 13 13/33
pdc 16/40 * 2406 | indust  primes I 2 2/100
shift 19/16 100 | indust  primes - ? 100 { 100/100
signet 39/8 124 | indust  primes ? 104 | 104/119
soar.pla 83/94 529 | indust  primes ? 2 2/352
ti 47/72 241 | indust  primes ? 46 46/213
ts10 22/16 128 | indust  primes ? 128 | 128/128
x2dn 82/56 112 | indust  primes ? 2 2/104
x7dn 66/15 622 | indust  primes ? 378 | 378/538
xparc 41/73 351 | indust  primes 15039 140 | 140/254




