CSEE 686 Gicherd L. Rudel
Multi -valied fogic M zafqm 2y FLA
S‘ymlt..zs‘is‘ Maslecs ‘thesis, (1€ Beckeley 1788

chs. ¢.7— &8

Pf. Steves Nowik

4.7. L.AST_GASP and SUPER_GASP

The basic iteration of Espresso-ll (REDUCE, EXPAND, IRREDUNDANT) faces the fol-

lowing obstacles: (1) The EXPAND step uses heuristics 10 cbovose one prime implicant (from
all of the prime implicants which cover a cube) to replace each cube in the cover: and (2)
the REDUCE algorithm is cube-order dependent so that cubes which are reduced first tend
to reduce more than cubes which are reduced later. Different minimization algerithms
have managed these problems in different ways. For gxample, MINI uses the reshape

operation in order to sidestep these problems. and Prestol-11 uses the change_ shape opera-




§4.7 75

tion (twice in succession) in order to escape these problems. I describe here the Espresso-II
strategy LAST_GASP and the Espresso-MV strategy SUPER_GASP for improving the basic

minimization algorithm.

4.7.1. LAST_GASP

This algorithm first computes the maximal reduction of every cube of the ON-set
cover F and creates a new cover G. If a cube cannot be reduced it is ignored. A modified
version of the EXPAND algorithm expands eac‘h of the cubes of G. The EXPAND procedure
is modified so that: (1) the expansion of a cube is stopped as soon as it is determined that
it cannot cover any other cubes; the cube is removed from G in the case that it cannot
expand to cover any other cubes; and (2) all of the cubes are expanded even if they are
covered by the expansion of a different cube. As shown in [BMH84], those cubes that
succeed in cov;:ring some other reduced cube are potentially useful primes for reducing the
cardinality of the cover. These new primes_ are simply added to the cover F, and the
IRREDUNDANT proce&ure then extracts a minimal subccl)ver. | Because the nuﬁber of
reduced cubes which can expand to cover other reduced cubes tends to be very small, this
technique is applicable to a wide range of problems. In pafticular, I have not foun& any

examples for which the running time of the algorithm is dominated by the LAST_GASP

operation.

4.7.2. SUPER_GASP

Espresso-MV also has an optional routine SUPER_GASP. This algorithm computes
the maximal reduction of each .cube of the cover F and then generates all of the prime
implicants which cover the cube (rather than only a single prime implicant which covers
the cube). In order to generate all of the prime implicants which cover a cube, the algo-
rithnll given in Section 4.3 (EXPAND) is used. By sorting this set of prime implicants,
duplicate prime implicants are easily detected. IRREDUNDANT then extracts a minimal
subcover from the remaining 'set of prime implicants. Note that if IRREDUNDANT returns

the minimum number of cubes necessary to implement the function, then no single



§4.7.2 - 76

iteration of REDUCE, EXPAND, and IRREDUNDANT can do any better from the same start-
ing point.

Of course, the process of generating all of the primes which cover the maximally
reduced cubes may greatly expand the size of the cover. (In particular, if the original
cover were all minterms, the generation of all of the primes covering each minterm would
be an inefficient way to generate all of the primes for the function.) The program
Espresso-MYV is careful to terminate the generation of all of the primes in the case there
are too many primes, in which case the LAST_GASP strategy is used instead. In practice,
the SUPER._GASP can be selected optionally when the program Espresso-MV is run. In

Chapter 6, I report experimental results with this option.

4.8. MAKE_SPARSE

Vi’hen the outer loop of the Espresso-MV algorithm terminates, the solution consists
of an irredundant cover of prime implicants which represents the original function. How-
ever, depending on the final implementation of tlhe rn.ultiple-valued fuﬂction, we may
desire a final cover which does not necessarily consist of prime implicants. One goal is to
reduce the number of transistors needs to implemeﬁt each literal of a cube. -This depends
on the number of O's and 1's in the literal. but it also depends ;)n the type of variable as

shown in Table 4.8.1:

Variable Type Number of transistors Comment
binary-valued variable count number number of zeros sparse
multiple-valued variable count number of zeros sparse

(for a two-bit decoder)

multiple-valued variable count number of ones dense
(for the output part)

multiple-valued variable count number of ones dense
(for the input encoding problem) . (unless literal is full)

Table 4.8.1. Transistors per Literal in a PLA

For example, if the function being minimized represents a two-level multiple-output

PLA function, then each O in the cube for a binary-valued variable corresponds to a




§4.8 : 77

transistor in the AND-plane of the PLA, but each 1 in the multiple-valued output variable

corresponds to a transistor in the OR-plane of the PLA.

Another example is minimizing a multiple-valued function for the state-assignment
program KISS. For these functions, it is preferred that the multiple-valued variables have

as few 1's as necessary (which will lead to fewer constraints for the embedding problem).

Hence, the binary-valued variables and multiple-valued variables resulting from a
bit-paired PLA are desired to be dense (i.e.. have many 1's), and the multiple-valued vari-
able resulting from the output-part of a PLA are desired to be sparse (i.e., have few 1's).
Finally, the multiple-valued variat;les resulting from a symbolic variable (as in KISS)
should be sparse unless the cube does not depend on this particular variable. With these
observations we define, for each variable, whether the variable is to be a sparse variable

or a dense variable. The MAKE_SPARSE procedure then attempts to satisfy these goals.

MAKE_SPARSE consists of two steps: LOWER_SPARSE removes redundant parts from
the sparse variables and RAISE_DENSE attempﬁs to add parts to the dense variables (which
may be possible following LOWER_SPARSE because the cubes are no longer prime impli-
cants). These two.algorithms are iterated until there is no more reduction of any sparse
‘ variablei. or until there is no more expansion of any dense variable. This algorithm is
iterated in Espresso-MV (as opposed to Espresso-Il which only executed each step once)

because the total literal reduction is worth the extra expense.

During the first iteration of LOWER_SPARSE and RAISE_DENSE the cardinality of the
cover cannot decrease (because the cover is an irredundant, and consists of prime impli-
cants). Hov;/ever, in extreme cases, it is possible for the cardinality to decrease in subse-
- quent iterations. In fact, the procedure MAKE_SPARSE can be viewed as a complete
minimization algorithm. (The pop program from Berkeley [Sim83] uses essentially this
simple algorithm, but without the powerful techniques for each of the basic steps as in
MAKE_SPARSE. However, this minimization algorithm is restricted in. the size of the set of

prime implicants which it can explore.)



[oiredeo e oSSt

LR S e e
= USRI LS TR

s

TR W

fiC T

§4.8 ‘ 78

In the discussion that follows, we assume, as usual, that F is a cover for the ON-set.

D is a cover for the DC-set and R is a cover for the OFF-set.

4.8.1. LOWER_SPARSE — Reduce the Sparse Variables

The goal of LOWER_SPARSE is to remove parts from the sparse variables so as to
reduce (if possible) the number of 1's in these variables for each cube. This procedure can
be viewed as cube reduction applied to each cube with the reduction retained only fof the
the multiple-valued ;/ariables. However, this technique suffers from the same problem as
REDUCE, namely that the order in which the cubes are processed can greatly affect the

total amount of reduction possible.

Instead, the IRREDUNDANT routine is used to select, for a particular part. which
cubes are redundant; this part is set to O for the redundant cubes. This way the cube ord-
ering problem is avoided, and the more powerful heuristics of IRREDUNDANT are used to

find a good reduct_ién of the sparse variables.

For each value j of a sparse variable X;, define e} to be the cube of X;'/'. By

finding an irredundant cover for (F UD)C,_ we can determine which cubes of F can have
. 7

part j removed. If a cube does not belong to the irredundant subcover of (FUD) , then
J

the part in the cube is redundant and can be removed. These parts are removed. and, after

all parts for a variable have been processed, the next variable is processed.

Note that by using the IRREDUNDANT algorithm rather than REDUCE. the order in
which the cubes are examined in part j of variable X; is immaterial. (Further, the order4
in wi:ich the parts of any variable is processed is also immaterial.) But, the order in which
the sparse variables are processed does influence the reduction of variables which are not
processed first. In Espresso-MV, LOWER_SPARSE is applied to sparse variables
corresponding to multiple-valued variables resulting from the input-encoding problem.
This is done to simplify the rconstraims which arise from the multiple-valued parts. The
last variable processed is the multiple-output variable. Admittedly. this heuristic is a lit-

tle crude.




§4.8.1 79

4.8.2. RAISE_BV — Expand the Dense Variables

As mentioned earlier, we desire that the binary-valued variables, and the variables
resulting from bit-pairing be dense. After reducing the multiple-valued variables with
LOWER_SPARSE, the resulting set of cube is no longer prime. Hence, we can try to expand
this set of cubes by expanding only the dense parts of each cube. This is done with a
modified version of EXPAND which removes all of the sparse parts from the free set (cf.
sec 4.3) before finding the expansion of a cube. Hence. r-xone of the sparse parts will be

expanded.

Interestingly, EXPAND will still check for cubes which, when limited to only the
dense variables, can expand to cover another cube. As mentioned earlier, on subsequent
iterations of MAKE_ SPARSE it is possible for the cardinality of the cover to decrease. If it
is possible for a cube io be covered, EXPAND will expand the dense variables so as to cover

the cube.





