
CSEE E6861y
Prof. Steven Nowick

Overview of Fast Prime Generation Handout 17
February 18, 2016

This handout presents an overview of a fast algorithm for recursive prime generation.

Introduction
As with tautology checking and complementation, the fast prime generation algorithm uses a recursive
“divide-and-conquer” approach. Given an initial cover, the algorithm recursively divides the cover into
smaller pieces until termination conditions are met. Results are then returned and reassembled into a final
solution. For prime generation, this solution is the set of all prime implicants of the initial function.

An important aspect of the algorithm, as with the previous recursive algorithms, is that properties of unate
functions are exploited, to simplify the recursion. Therefore, this algorithm is another application of the “unate
recursive paradigm”.

The algorithm below is the one currently used in espresso-exact to generate all prime implicants. It is de-
scribed in Rudell’s thesis, ch. 2.5.1 (Handout #8). However, Rudell’s description is actually for more general
“multi-valued” Boolean algebras so some of his notation may not be clear. This handout describes the same
algorithm, but restricted to the more usual “binary-valued” (0/1) Boolean algebra.

An interesting historical note: The original espresso-exact program used a different prime generation algo-
rithm, described in Rudell ch. 2.5.2. However, that algorithm was replaced by the consensus algorithm below
(also, ch. 2.5.1) around 1987-88. The motivation for the change is described in Rudell ch. 2.5.3: this new
algorithm has much better runtime.

The Prime Generation Problem:
Given a cover F , corresponding to the union of the ON-set and DC-set of a Boolean function f , return the set
of all prime implicants of f .

Definitions.
First, some basic definitions, which will be used in the formulation of the recursive prime generation algo-
rithm.

Given products p1 and p2, the two products differ in a variable x if p1 has literal x and p2 has literal x
(or vice-versa). If both products have literal x, or both have literal x, or if variable x (complemented or
uncomplemented) does not appear in at least one of the products, then the two products do not differ in
variable x. For example, if p1 = abc′ and p2 = acd′, then (i) the two products differ in variable c, and (ii) the
two products do not differ in variables a, b and d.

The distance between two products is the number of inputs where they differ. Intuitively, the distance
between two products indicates how far apart they are in a hypercube (at their closest points). In the above
example, p1 and p2 differ in one variable, so they have distance 1. If p1 = ab′c and p2 = a′b′c′d, then the two
products differ in two variables (a and c), so their distance is 2.

If two products have distance 1 or greater, then they do not intersect, i.e., they have an empty intersection.
If two products have distance 0, then they intersect. In this case, the intersecting cube, q, is formed in the
usual way: If literal x appears in either p1 or p2, then x appears in q. If literal x appears in either p1 or p2,
then x appears in q. If neither x nor x appears in either of the products, then it does not appear in q, either. For
example, the intersection of products abc′ and bd is: abc′ ∩ bd = abc′d. Note that variable d does not appear
in p1, but literal d appears in p2, so the literal d appears in the intersection.

The consensus of two products will be defined if they do not intersect.1 If two products have distance 2 or
greater, their consensus is empty (i.e. no consensus). Otherwise, if two products have distance 1 (that is, differ

1Actually, there is a special definition of consensus when two products intersect, but we will not use this.



in one variable), their consensus is, informally, the product which can be formed to “connect them”. More
formally, suppose p1 and p2 have distance 1, and differ in variable x. Suppose literal x appears in p1 and x
appears in p2, so the two products do not intersect. The consensus of p1 and p2 is formed by (i) deleting x/x
from the two products, then (ii) forming the intersection of the resulting products.

Example. As an example of consensus, suppose p1 = ab′c′ and p2 = bc′d′. Clearly, p1 and p2 do not intersect,
since they differ in variable b. Since they only differ in variable b, p1 and p2 have distance 1. To form the
consensus of p1 and p2, first (i) delete the b variable from both, to get ac′ and c′d′, respectively. Next, (ii)
intersect these two new cubes, to get: ac′ ∩ c′d′ = ac′d′. Intuitively, cube ac′d′ “connects” p1 and p2, in the
region where the two cubes are “adjacent” (i.e., in ab′c′d′ in p1 and in abc′d′ in p2).

The notion of consensus can be generalized from a pair of products to two sets of products. The consensus of
two sets of products, A and B, written consensus(A,B), is simply formed by taking the consensus of each
pair of products, one cube from A and one cube from B. That is, it is the “pairwise” consensus of the two sets
A and B. The set of all resulting products is the consensus of sets A and B.

The Fast Prime Generation Algorithm
We now describe a fast recursive algorithm for prime generation.

Overview
Fast prime generation is based on simple idea. Given a function f and a splitting variable x, each prime
implicant of f falls into one of 3 categories: either (i) it contains literal x, (ii) it contains literal x, or (iii)
it does not contain x or x. Category (i) contains primes in one half of the hypercube of the function (where
x = 1). Category (ii) contains primes in the other half of the hypercube (where x = 0). Finally, Category (iii)
contains primes which span both halves of the hypercube.

As an example, given the Boolean function f with cover F = xyz′ + x′y′ + y′z, then xyz′ is in Category (i),
x′y′ is in Category (ii), and y′z is in Category (iii) (x does not appear in this prime).

Category (i) and (ii) primes can be generated recursively, by finding the primes of two respective cofactors:
Fx and Fx′ (to be described shortly). The key interesting issue is: how to find the remaining primes (Category
(iii)), which span both halves of the hypercube?

The following fundamental theorem provides the answer:

Prime Consensus Theorem. Let f be a Boolean function, with cover F (which covers the entire ON-set and
DC-set). Also, let x be any input variable. Then the prime implicants of f can be partitioned into 3 sets:

(i) P1, which contains primes having literal x;
(ii) P0, which contains primes having literal x;

(iii) P−, which contains primes with no x or x. Each prime p in P− is the consensus of two other primes,
p1 and p0, where p1 is from P1 and p0 is from P0. That is, p = consensus(p1, p0), for some prime p1
in P1 and p0 in P0.

This key theorem states that every prime in category (iii) can be formed as the consensus of some prime in P1
and some prime in P0. Intuitively, such a consensus cube is the shortest “connecting cube” between a pair of
cubes which are distance-1 apart. Thus, if you already have sets P1 and P0, all remaining primes (i.e., those
in P−) can be simply generated as follows:

For each pair of primes, (p1, p0), where p1 is in P1 and p0 is in P0, generate the consensus
cube p1/0 = consensus(p1, p0). The resulting set P1/0 of all such consensus cubes contains all
the primes of P−.

More formally, this is notated as the consensus of the two sets: P1/0 = consensus(P1, P0).

2



Finally, one small adjustment must be made: although set P1/0 contains all prime implicants of P−, P1/0
may also contain some smaller non-primes! These non-primes must be deleted. To do this we introduce a
new clean-up operator, which deletes smaller cubes:

Definition: Single-Cube Containment (SCC). Given any two cubes, c1 and c2, cube c1 is single-cube
contained in c2, if c2 contains (i.e. covers) c1. For example, if c1 = wy′ and c2 = wxy′z, then c2 is
single-cube contained in c1. This definition can be extended to a set of cubes: given a set C of cubes,
{c1, c2, . . . , cn}, then the single-cube containment of set C is the resulting set after applying single-cube
containment to every pair of cubes. For example, if C = {abc, ab′, bcd, ab′d, a′d, a′bcd}, then the single-cube
containment of C (written SCC(C)), is the set {abc, ab’, bcd, a’d}.

Thus, SCC is a “clean-up operator,” which takes a set of cubes and deletes each cube which is completely
contained in another cube in the set. Using SCC, we can now formally state how to generate P−, if we are
given sets P1 and P0:

P− = SCC(consensus(P1, P0))

That is, the set P− is formed by taking the pairwise consensus of all cubes in P1 and P0, then deleting any
resulting smaller (non-prime) cubes contained inside other cubes.

Generating P1 and P0.
The above result indicates how to generate P−, if you are given P1 and P0. Next, we address how to generate
the original sets P1 and P0. Set P1 is the set of all primes which have literal x. To generate P1, we first
generate all primes of a cofactor of cover F : Primes(Fx). Once these primes are generated, each result
is ANDed with literal x. The resulting set contains all primes of P1. However, as before, the set may also
contain some non-primes, which will be contained in P− consensus cubes. These will be deleted later.

Similarly, set P0 is the set of all primes which have literal x′. To generate P0, we first generate all primes of
a cofactor of cover F : Primes(Fx′). Once these primes are generated, each result is ANDed with literal x′.
The resulting set contains all primes of P0. Again, the set may also contain some non-primes, which will be
contained in P− consensus cubes. These will be deleted later.

Fast Prime Generation: Algorithm.
Finally, we now describe the complete prime algorithm used in espresso-exact. The algorithm generates the
set of primes, by producing the 3 sets: P1, P0 and P−. First, it recursively generates primes of the two halves
of the domain, Fx and Fx′ , and then AND’s them with corresponding literals (x and x′, respectively). Once
these are generated, it then uses the Prime Consensus Theorem to produce the set of all consensus cubes, P−,
spanning between pairs of cubes from the two halves. Finally, it removes all non-primes. The result is the
complete set of prime implicants of the original function:

Recursive Prime Generation Theorem. Let f be a Boolean function, with cover F (which covers the entire
ON-set and DC-set). Also, let x be any input variable. Then the prime implicants of f can be generated as
follows:

Primes(f) = SCC(A1 ∪A0 ∪ consensus(A1, A0)),

where A1 = x · Primes(Fx) and A0 = x′ · Primes(Fx′).

This key theorem formally summarizes how the primes of f can be generated recursively, and effectively is
an outline of the algorithm. The problem of finding primes of f is transformed into the problem of finding
the primes of two simpler cofactors, fx and fx′ . These are used to generate A1 and A0. A1 contains all the
primes of P1, but may also contain non-primes which are contained in cubes of P−. A0 contains all the
primes of P0, but may also contain non-primes which are contained in cubes of P−. Once these two results
are returned, a third set is then generated from them, consensus(A1, A0), containing cubes connecting each
distinct pair of cubes from the two sets (i.e. connecting cubes with no x variable). All non-primes are deleted,
using the SCC operator. The resulting set contains precisely all the primes of F.

3



The declarative theorem corresponds directly to an algorithm (i.e. procedure), as follows.

Step #1. Check if F satisfies termination conditions (B1-B4 and U1 below). If so, immediately return the
result, Primes(F ). The algorithm is done.

Step #2. If the algorithm is not done, and none of the termination conditions applies, then the cover is
recursively split in two halves, and the same algorithm is now repeated on each half. A splitting (or branching)
variable, x, is selected. Recursively compute two sets: (i) A1 = x · Primes(Fx), and (ii) A0 = x′ ·
Primes(Fx′). A1 contains the primes of P1 (and possibly some non-primes). A0 contains the primes of
P0 (and possibly some non-primes). Finally, the two resulting sets, A1 and A0, are used to create a third
set, consensus(A1, A0), containing cubes which span between each pair of cubes of these two sets. After
deleting non-primes (applying the SCC operator), the union of the 3 sets is precisely the set of all primes of f .

Choice of Splitting Variable. The choice of splitting is important. The same strategy can be used, as is
described in Handout #11: Overview of Tautology Checking.

Basic Rules for Termination
Basic rules are used to terminate recursion, as in tautology checking and complementation. As in comple-
mentation (and unlike tautology-checking), an actual cover is returned: the set of all primes of the given
function.

B1. Cover F includes the Universal Cube. Here, F is a tautology. Return a cover containing the universal
cube.

B2. Single-Input Dependence. If the function depends on only one input x (i.e., all other input columns
contain only ’-’), and the x column contains both 1’s and 0’s, then the function is a tautology. Return a
cover containing the universal cube.

B3. Cover F is Empty. A cover is empty if it contains no cube. In this case, the function is all 0. Return the
empty cover (contains no cubes).

B4. Cover F contains a Single Cube. In this case, the cube itself must be the only prime of the function.
Return F (which contains the single cube).

Advanced Rules for Termination: Unateness Conditions
A powerful advanced rule can be applied, to terminate early, when a cover is unate. This rule can be used
even if B1-B4 do not apply. The following theorem, presented by Robert Brayton et al., describes the unate
termination condition:

Unate Prime Theorem. Let f be a Boolean function, with cover F (which covers the entire ON-set and
DC-set). If cover F is unate, then it contains all of the prime implicants of function f . In addition, F may
contain some non-primes, which can be deleted. That is:

Primes(f) = SCC(F ).

This theorem presents a remarkable and comprehensive result: if F is any unate cover, then it must contain all
the prime implicants of function f ! In addition, F may also include some non-primes. No further recursion
is necessary. Once the non-primes are deleted using SCC operator, the resulting cover is precisely the set of
all prime implicants of f . Thus, if F is unate, we simply terminate and delete all non-primes, using the SCC
operator. The result is exactly the set of all prime implicants of F . The resulting cover is simply returned:
SCC(F ).

It is beyond the scope of the course to prove this theorem, but some intuition is presented in the class lectures.
This theorem can be formalized into a termination rule:

U1. Unate Cover. If the cover F is unate, then terminate. Return SCC(F ), which is precisely the set of all
primes of F .

4


