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!WE CAN DIVIDE the evolution of high-level synthesis

into three generations, plus a prehistoric period: the

current generation is the third, and there is the pros-

pect of a fourth generation to come. Chronologically,

prehistory was the 1970s; the first generation covered

the 1980s and the early part of the 1990s; the second

generation, the mid-1990s until early in the 2000s; the

third generation, the early 2000s to today (and perhaps

the next few years); and the fourth generation will pos-

sibly emerge from the current (third) generation.

From a technical and use model viewpoint, the first

generation was the era of research and datapath-

domain-specific by-products of research. The second

generation was the first age of commercial EDA,

behavioral-synthesis tools driven by hardware descrip-

tion languages!!and it was a commercial failure. The

most recent generation is that of C-based high-level

synthesis (HLS), which is mostly oriented to datapath

applications. The fourth generation may arrive with

multidomain HLS tools that provide good results for

both control and datapath domains.

In this article, we discuss the history of HLS, pri-

marily from a commercial tool and practical user per-

spective. For an excellent summary from a research

point of view, see the work of Gupta and Brewer1

and of Coussy and Morawiec.2

Prehistory: Generation 0 (1970s)
The 1970s saw some very early research work in

both synthesis and high-level synthesis at a time

when the only commercial EDA industry

products were the physical layout

machines offered by companies such

as Calma, Applicon, and Computervi-

sion. One of the pioneering groups

was at Carnegie Mellon University, with

early work by Dan Siewiorek, Don Tho-

mas, Mario Barbacci, Alice Parker, and

others. This research focused on design specification,

simulation, and synthesis at both the RTL and algorith-

mic level!!for example, see the work of Parker and

colleagues3!!using input languages such as ISP

(Instruction Set Processor), ISPL (Instruction Set Pro-

cessor Language), and ISPS (Instruction Set Processor

Specification).

The prehistoric work was groundbreaking research

but had very little impact on industrial design. Pre-

VLSI, and before the emergence of a commercial EDA

software industry (as opposed to complete hardware-

software EDA systems for mechanical CAD/CAM and

for PCB and IC layout), there was no chance to transfer

this research to industrial use except possibly in very

large electronics companies, most of which were still

adopting early CAD systems at the time.

Generation 1 (1980s!early 1990s)
Generation 1 of HLS was primarily a research gen-

eration. Many basic concepts of early HLS were

explored and a number of seminal research papers

written and presented that had a strong impact on

the field’s development. For example, the work by

Pierre Paulin and John Knight at Carleton University

produced results in force-directed scheduling for

HLS that has, together with other results from the re-

search and conference presentations of their work,

been cited more than 1,000 times in subsequent

years.4 Other important work was done by Dan Gajski

and colleagues,5 Giovanni De Micheli,6 and Raul
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Camposano and Wayne Wolf,7 all of whom published

books on the topic.

Other domain-specific, DSP-oriented research proj-

ects were the Cathedral, Cathedral-II, and succeeding

research done by Hugo de Man and others at IMEC in

Belgium.8 This work illustrated two aspects of first-

generation HLS research: first, it used a domain-

specific input language!!in this case, Silage, oriented

to describing DSP algorithms!!and second, the at-

tempt to commercialize the research ultimately

failed, although it took a long time to do so. Indeed,

the Cathedral work has set a record for longevity, hav-

ing been commercialized first in the Mentor Euro-

pean Development Center, next as Frontier Design’s

A/RT Builder, then in Adelante Technologies, and fi-

nally ending up as the OptimoDE tool within ARM.

During that long commercialization history, the tech-

nology changed input languages, application scope,

and user interfaces many times. Time may have run

out on this technology; ARM no longer seems to be

promoting OptimoDE as a stand-alone technology, al-

though the company might still be using it internally.

Why Generation 1 failed
Although vital in laying the research foundation that

found an outlet in later commercial tools, this first HLS

generation failed the commercial and use tests. The rea-

sons can be summed up as four: need, input languages,

quality of results, and domain specialization.

During the mid-1980s to early 1990s, design tech-

nologies for integrated circuits were undergoing sig-

nificant change. Automatic placement and routing

technologies were revolutionizing back-end design.

Adoption of RTL synthesis was just beginning.

Under these circumstances, when most designers

were just learning how to use RTL synthesis effectively

or had not yet even started to use it, the idea that be-

havioral synthesis could fill a design productivity

need was an unlikely one.

The second reason Generation 1 failed was that

the type of input languages for these early tools pre-

sented great difficulties. At a time when most design

teams were just moving from schematic capture to

standard hardware description languages (HDLs) at

the RTL, adopting new and obscure input languages

such as Silage for a new and unfamiliar design

approach was a considerable hurdle.

The third reason was the inadequate quality

of results. These early tools had simple architectures,

expensive allocation, and primitive scheduling, and

the resulting designs were difficult for designers to

accept.

Finally, the domain specialization of some of these

early tools!!focused on DSP design!!was not appro-

priate for the vast majority of early ASIC designs, which

concentrated on control logic rather than dataflow

and signal processing. Most processor design was

still highly customized, and early ASIC designs focused

on integrating rather unstructured random logic.

Generation 2 (mid-1990s!early 2000s)
Generation 2 of HLS was the period in which the

major EDA companies!!Synopsys, Cadence, and

Mentor Graphics!!offered commercial HLS tools.

As it dominated the RTL synthesis market, Synopsys’

excursion into HLS with Behavioral Compiler

attracted the greatest interest.9 However, Cadence’s

Alta group for system-level design tools offered Visual

Architect (based on the SYNT tool from Synthesia),

oriented to signal-processing implementations, and

Mentor Graphics offered the Monet tool. An overview

of this area can be found in the book by John

P. Elliott.10

Generation 2 attracted a good deal of interest

but was a commercial and user failure. The technology

was tried out seriously by a number of users but was

found wanting in many respects.

Why Generation 2 failed
Several reasons underlie the failure of Generation 2:

! Mistaken assumptions about who would use HLS.

These tools assumed that the users of behavioral

synthesis would be current RTL synthesis users. It

turned out, however, that these designers would

only switch to new tools that provided substantial

improvement in quality of results (area, perfor-

mance) at the same effort, or substantial reduction

in effort with the same quality of results, andwith a

gentle learning curve. The Generation 2 HLS tools

did not satisfy any of these criteria. Attempting to

substitute HLS for working (and improving) RTL

synthesis failed.

! Requiring designers to synthesize all the way down

to gates. Instead of complementing RTL synthesis

by building a flow that would use both HLS and

RTL synthesis, tools such as Behavioral Compiler

required synthesizing all the way down to gates.

This was not true of some of the other tools,

such as Visual Architect.

19July/August 2009

[3B2-8] mdt2009040018.3d 17/7/09 13:42 Page 19

Authorized licensed use limited to: Columbia University. Downloaded on January 7, 2010 at 18:39 from IEEE Xplore.  Restrictions apply. 



! Wrong input languages. Behavioral HDLs were

used as inputs, thus squarely competing with exist-

ing RTL synthesis tools and keeping the user base

narrowly defined as RTL synthesis designers. Algo-

rithm and software designers did not find the pros-

pect of learning an HDL and a new set of tools

very inviting, and if they tossed their algorithm

specs over the wall to RTL designers, then HLS

would not be used in any case.

! Poor quality of results. In general, HLS results were

often widely variable and unpredictable, with

poorly understood control factors. Learning to

get good results out of the tools seemed a poor in-

vestment of designers’ time.

! Hard-to-validate results. RTL code resulting from

HLS might produce the same outputs as the behav-

ioral model but in significantly varying time inter-

vals (that is, which cycle outputs would be

produced was highly variable). This made it hard

to validate that correct synthesis had occurred.

And, of course, no formal methods were available

at this time.

! Not enough attention paid to intermediates and inter-

faces. Block synthesis often made poor use of

memory and registers to store intermediate results

and could not optimize across block boundaries.

! Flow issues. Cadence Alta Visual Architect was

driven by dataflow libraries as a link to implemen-

tation, but use of atomic actor dataflow models

often led to poor quality of results. (For example,

for 2D visual data, one block would write out a 2D

array row-wise, but the next block would read it

column-wise, resulting in huge intermediate

tokens and a poor use of memory.)

! Failure to recognize the difference between data-

flow and control, and serious marketing overhype

(especially of Behavioral Compiler). RTL synthesis

could be used for both dataflow and control,

but HLS produced poor results for control-

dominated branching logic as opposed to data-

crunching algorithms. (Prior to the early 2000s,

designers often used specialized datapath com-

pilers in conjunction with RTL synthesis, espe-

cially to better optimize the physical layout).

When designers applied HLS to control, the results

they obtained were poor, and this discredited the

tools. Dataflow and signal processing produced

better results, but this was a niche market and

the overmarketing of some of these tools over-

shadowed any good results.

In Generation 2, simulation times were almost as

long as with RTL synthesis, since HDL was used for

input specification, and HDL simulation was used in

the design process. Moreover, HDL use meant that it

was impossible to exploit advanced research in

compiler-based language optimization (for example,

various advances in C compilation, especially across

module boundaries). Finally, Generation 2 tools

failed to expand the market for HLS by not offering

tools to algorithm and software developers.

Generation 3 (from early 2000s)
The third-generation tools include those that have

been offered by several vendors since the early 2000s.

The list of vendors is rather long, and some of the

tools have already moved from one company to

other. Among these tools are Mentor Catapult C Syn-

thesis, Forte Cynthesizer, Celoxica Agility compiler

(sold in 2008 to Catalytic, which renamed itself Agility

Design Solutions), Bluespec, Synfora PICO Express

and Extreme, ChipVision PowerOpt, NEC CyberWork-

Bench, AutoESL AutoPilot, Xilinx AccelDSP (which

started as the product of an independent company,

AccelChip) and SystemGenerator, Esterel EDA Tech-

nologies Esterel Studio, Synopsys Synplicity Synplify

DSP, and, just announced in the summer of 2008,

Cadence C-to-Silicon (C2S) compiler. Recent changes

in the market include Mentor’s acquisition of the

Handel-C synthesis technology from Agility Design

in January 2009 (this was the ex-Celoxica Agility com-

piler). Some of these tools primarily target ASIC and

ASSP (application-specific standard product) design;

others primarily target FPGA design, and still others

target both. Some are very clearly aimed at the data-

flow and DSP domain, a few at control (for example,

Esterel Studio), while others claim capabilities suit-

able for both dataflow and control (for instance, Blue-

spec and Cadence C-to-Silicon). Most of these tools

use a variation of C, C++, or SystemC as input (for ex-

ample, Celoxica used a special dialect of C called

Handel-C), but this is not universal. Esterel Technolo-

gies used graphical state machine capture and Esterel

as an intermediate language. Bluespec has relied on

certain constructs in SystemVerilog (after using the

Haskell programming language as input when it was

an MIT research project), although they also offered

a SystemC input mechanism. Some of the DSP-

oriented tools are driven by the MathWorks Matlab

and Simulink software, although potentially using C

as an intermediate format.

High-Level Synthesis
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The ability to handle both dataflow and control

domains is arguably a characteristic of future,

fourth-generation HLS tools, and thus some of the

third-generation tools may be evolving to offer

fourth-generation capabilities.

Why Generation 3 is succeeding
Although HLS lacks publicized comparative

benchmarks for the various tools, and there are few

industrial successes that have been objectively writ-

ten about (free of vendor marketing), indications

are that Generation 3 of HLS tools is achieving

some reasonable success, especially in Japan and

Europe. (Of course, tool vendors often restrict publi-

cation of benchmarking results, and legacy issues

can make comparisons more difficult.)

There are several reasons why this generation of

tools is doing better than the second generation.

! Focus on domain of application. With some excep-

tions, most of these tools are focused on dataflow

and DSP design domains, and achieving reason-

ably good quality results there. By not being overly

hyped as suitable for all design styles, the tools are

being applied in domains where they are expected

to have a higher probability of success.

! Focus on algorithm and system designers with the

right input languages. With only a few exceptions,

by focusing on dataflow, DSP, and algorithm design-

ers, and offering them the languages with which

they are comfortable (C variants and Matlab), the

tool vendors have correctly identified a good mar-

ket niche that wants to quickly explore and imple-

ment complex algorithms into either ASIC or FPGA

forms. The vendors are not asking these designers

to learn unfamiliar HDLs and unusual language

constructs beyond simple pragmas.

! Improved quality of results. This generation of tools

can take advantage of research into compiler-

based optimizations, driven as it is by variations

of software languages rather than relying only on

HDL-driven improvements. By all accounts, these

tools are enabling designers to achieve improved

design outputs.

! Design domains that have shifted. Many products

are incorporating significant amounts of signal

and multimedia processing, and require blocks to

be implemented in hardware to accelerate portions

of these algorithms. Thus, a greater proportion of

designs can take advantage of at least some HLS.

! The rise of FPGAs. When a team wishes to quickly

map an algorithm into an FPGA implementation,

the measurement criteria are different than they

are for an ASIC or ASSP. The design has to ‘‘fit’’

into the FPGA!!since FPGAs come in discrete

sizes, the size in which the design fits might

have many spare gates. And the design has to

work fast enough!!but if this is well within the

FPGA speed and size capacity, the size-speed

trade-off is different than for ASICs. Using high-

level synthesis with FPGA targets is a perfect way

of quickly getting an algorithm into hardware.

The chart in the sidebar ‘‘High-Level Synthesis:

Commercial Progress’’ illustrates both the rise and

fall of Generation 2 HLS tools, and the current rise

of Generation 3.

Who is using Generation 3?
Obtaining detailed information on the usage of

EDA and electronic system-level (ESL) tools is not

easy: it often takes many years before enough mean-

ingful user experiences are documented in technical

papers, and it also has been tool vendors’ practice to

restrict their users from publicly discussing compara-

tive benchmarks. So to get an idea of where Genera-

tion 3 HLS tools are being used, we must rely more

than we would like on tool marketing information.

Nevertheless, we can derive some useful information

from these sources. In addition, some user compara-

tive experience is reported on websites such as John

Cooley’s DeepChip (http://www.deepchip.com).

Examining technical publications from Mentor

Graphics on Catapult C Synthesis, we find Nokia

using HLS to generate hardware implementations of

DSP algorithms for wireless communications; the flow

started with floating-point algorithms captured in Mat-

lab, and included blocks for clock tracking, frequency

offset correction, and equalization. Alcatel Space also

applied Catapult to DSP blocks for power, frequency,

and timing recovery. Ericsson evaluated Catapult on

DSP blocks on three different design projects: wide-

band code-division multiple access (W-CDMA) third-

generation modem design; on implementations of in-

verse discrete cosine transforms (IDCTs) in 2D graphics

applications; and on algorithms for GSM (Global Sys-

tem for Mobile Communications), the mobile phone

standard. Fujitsu used Catapult on communications al-

gorithm blocks. Finally, Toshiba used Catapult for QR

decomposition using alternatives to Cordic (for
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coordinate rotation digital computer) algorithms

for multiple-input, multiple-output communications!!
again, more DSP-style design.

From Forte’s website, we see acknowledgments

that Toshiba used the company’s Forte Cynthesizer

for H.264 multimedia design, Seiko-Epson used it for

communications devices, Oki for system LSI, and

Sanyo for consumer electronics.

When Cadence announced its C-to-Silicon com-

piler in summer 2008, it cited Hitachi and Renasas

as early users, albeit without identifying specific prod-

uct domains.

John Cooley’s Deepchip website had some com-

ment on the relative advantages of Mentor Catapult

C Synthesis and Forte Cynthesizer: in a posting

dated 23 June 2006, users from Prime Gate Ltd.,

STMicroelectronics, Nokia, Casio Computer, Motorola

Labs, Pioneer, and some anonymous companies

commented on Catapult, Cynthesizer, or both tools.

Applications reported included image processing

and dataflow, wireless receiver algorithms, JPEG

encoding, and YUV transformation. In general, this

(very limited) set of comments revealed a lot of sup-

port for Mentor Catapult C.

More recent postings on Deepchip (for example,

20 November 2008, and 2 February and 2 April

2009) include some active commentary on a variety

of HLS tools, including vendor discussions of Mentor

Catapult C Synthesis and Synfora PICO, and user

experiences with Catapult C (two anonymous discus-

sions) and Cadence C-to-Silicon versus other HLS

tools (Micronas). All the user experiences discussed

High-Level Synthesis

High-Level Synthesis: Commercial Progress
In tracking the commer-

cial adoption of high-level

synthesis, we find that HLS

adoption mirrors the tech-

nology’s various phases.

The years 1994 to 1996

were the experimental years

(see Figure A); 1997 to 1999

were the years of Synopsys’

Behavioral Compiler, and

of its rivals from Cadence

and Mentor Graphics. This

isGeneration 2 as described

in the main text.

The Behavioral Compiler

was actually the first of

the fast algorithmic design

compilers, and had a good

reputation with that market segment. Synopsys’ problem

was that it oversold the product; consequently, the nega-

tive reports from ASIC designers, who should never have

purchased the product in the first place, killed it. That

negative view of HLS coupled with the 1990s’ recession

resulted in the low sales volume numbers in 2001

to 2003.

The fast algorithmic design compilers, now called C to

RTL or high-level FPGA compilers, were responsible for

the market taking off in 2004, as Generation 3 emerged.

The years 2004 to 2007 have been fairly evenly split be-

tween the algorithmic C compilers and the SoC SystemC

compilers. It will be interesting to see the interplay be-

tween these completely different markets, and whether

a fourth generation will emerge in the next few years.

As of 2008, the market for HLS tools sees Mentor

Graphics as the leader in the C to RTL SoC design mar-

ket, and in the C to FPGA market. Forte leads in the Sys-

temC to RTL area for SoC design. As noted in the main

text, Mentor Graphics acquired the Agility Design Han-

del-C to FPGA synthesis technology in January 2009,

which strengthened it in the C to FPGA area. With its

showing in both the SoC and FPGA HLS domains, Men-

tor Graphics is the overall HLS market leader.
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were on realistic design benchmarks or real designs,

and the write-ups included both good features of the

latest wave of tools as well as areas for improvement.

The net conclusion of all three users was that, going

forward, HLS would be a part of their design flow.

In general, the past couple years have seen many pos-

itive user experiences with Generation 3 tools, and

real adoption of them.

Summarizing these user experiences, we can see a

lot of interest in using HLS for DSP blocks for wireless

and wired communications and for image processing.

In Japan, there’s been particularly strong interest in

the technology. The emphasis on DSP fits in well

with the overall perception that third-generation HLS

is particularly suitable for signal-processing domains.

AS WE’VE MENTIONED, SOME third-generation HLS tools

claim good effectiveness in both dataflow (algorithm)

and control. We can also see synthesis tools coming

from the configurable-processor domain, such as

the extensive research by Paolo Ienne, Laura Pozzi,

and colleagues11 and the Tensilica XPRES tool12 that

map C into gates using RTL synthesis. The form of

the gates, however, is in terms of a configured

extended processor. We also see technologies being

applied to both ASIC and FPGA styles.

All of this points to the rise of a possible fourth-

generation multidomain HLS toolset. However, none

of these tools is comprehensive in targeting all the

domains: control and dataflow; FPGA and ASIC; ran-

dom logic and processor-based; and hardware, soft-

ware, and mixed hardware-software forms. As a result,

these tools do not let designers explore the design

space in even a semiautomated format without chang-

ing toolsets and investing a lot of work in tracking and

optimizing various branches of the design tree. If some-

one is capable of offering a true design space explora-

tion and implementation tool that covers all targets

and forms with effective synthesis algorithms, we

would then be on the threshold of true system-level syn-

thesis: a longtime dream, but one that is not yet close to

full realization. That would make the fourth generation

of HLS tools a generation truly to be reckoned with-

and one thatwould lead to radical changes in the future

mainstream design technology. !
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