
CSEE E6861y
Prof. Steven Nowick

Homework 3 Handout 19
February 18, 2016

This homework is due at the beginning of class on Thursday, March 3.

NOTE: A correct answer without adequate explanation or derivation will have points deducted. To get full credit,
(a) write legibly/type, and (b) show all work (label relevant items, show deriviations, include explanations).

1. (10 points) Essentials #1: given the set of all primes. You are given a single-output binary-valued function
f , given by the following cover F :

v w x y z f

1 1 0 1 - 1
0 1 - - 0 1
1 - 0 - 0 1
1 1 - 1 0 1
1 - 0 1 0 1

Assume this cover is the ON-set of the function, and that the DC-set is empty. You are to determine if the
cube, vwyz′, listed as the second-to-last row in this PLA file, is essential.

Follow the “containment” approach outlined in Sections 4 and 5, and the later complete example, in Hand-
out #12. Once you formulate the problem as a tautology-check problem, you do not need to work through
the recursion tree. Simply present the formulation, and give the final answer by inspection with a clear
justification.

2. (10 points) Essentials #1: given the set of all primes. In Handout #12 (sections 3-5, and the written
example), it was shown that if one is given the set of all primes P , one can determine the set of essential
primes E by the following the formula:

E = {c ∈ P : c 6≤ (P − {c})}

Effectively, this formula treats the problem of whether a prime c is essential, as a “containment” problem
using the cofactor and tautology operations.

One limitation of the above formula is that it ignores don’t-cares: it only gives a correct answer if the
DC-set is empty. If the DC-set is not empty, the above formula will classify a prime c as “essential” if
it is the only one to cover certain DC-set minterms. However, by our definitions, this is not essential: an
“essential” must cover at least one ON-set ’distinguished minterm’ covered by no other prime.

In this problem, you are to fix the above formula, to accurately define essential primes when the DC-set
is not empty.

What to Do: Given a function f , its set of primes P , and a DC-set FDC , (i) rewrite the above formula to
correctly produce the set of essentials, now properly taking into account the don’t cares; (ii) explain in 3-4
sentences what the new algorithm is for finding the essential primes, that is, translate your new formula
from (i) into a step-by-step procedure for finding the essentials.



3. (10 points) Fast Complementation. You are given the following cover F for a single-output binary-valued
function f :

a b c d f

0 - - 0 1
1 0 1 - 1
1 1 1 0 1

Assume that cover F contains both the ON-set and DC-set of the given function f . For this problem you
are to compute a cover F ′ for the complement of the function, which is the OFF-set of the function, fol-
lowing the procedure described in Handout #15, and as illustrated in the example on Handout #12. Follow
these handouts closely, using: (i) Basic Rules for Termination (B1-B4) (whenever possible); (ii) Recursive
Complementation Theorem to guide the recursion; and (iii) Rule U1 to simplify recursion. However, you
do not need to use the “cube merger” optimization.

For choice of splitting variable, follow the guidelines in Handout #11 (Tautology Handout). Show your
work for each step: clearly draw the resulting recursion tree, indicating splitting all variables, and showing
the results derived and returned at each step.

4. (15 points) Fast Prime Generation. You are given a single-output binary-valued function f , given by the
following cover F :

v w x y z f

1 1 0 1 - 1
0 1 - - 0 1
1 - 0 1 0 1
1 1 - 1 0 1
1 - 0 - 0 1

Assume the function has only ON-set (described by the PLA file above) and OFF-set, and that the DC-set
is empty.

For this problem you are to compute the set of all prime implicants of the function. Follow the approach
in Handouts #17 and #18. Use: (i) Basic Rules for Termination (whenever possible), (ii) Unate Rule for
Termination (whenever possible), (iii) Prime Consensus Theorem to guide the recursion, (iv) SCC (single-
cube containment) operation to eliminate non-primes. To select a splitting variable, follow the guidelines
on Handout #11 (Tautology Handout).

Show all your work: clearly draw the resulting recursion tree, indicating splitting all variables, and labelling
the results derived and returned at each step. Once completed, also write out algebraically the list of final
primes.

5. (15 points) Essentials #2: not given the set of all primes. You are given the following cover of a 4-input
single-output function f :

f(a, b, c, d) = a′b + ab′ + bc′d′ + a′c′d + acd

This cover consists of 5 prime implicants. Note that it does not contain all prime implicants of f ! Assume
that f only has an ON-set and OFF-set; the DC-set is empty. You are to use the technique presented in
class and assigned reading to evaluate if two of the primes are essential.

What to Do: (a) Draw the K-map of the function with the given cover F ; (b) set up the problem formulation
for evaluating if two of the primes (ab′ and a′c′d) are essential (see below for details).

In particular, for part (b), you should use the results presented in class to transform this problem into
a tautology checking problem. Simply show all the steps to take the initial problem and recast it as a
tautology checking problem on a particular new cover, which you should derive and write out in PLA
representation. Once you have formulated the problem as a tautology check, you can stop: do not solve
this problem using the tautology check algorithm! Simply indicate the answer (if either of the above 2
primes (ab′ and a′c′d) is essential by inspection. Also, once you are done, you can check the cover drawn
in the corresponding K-map to confirm your results. Show all work.

2



6. (15 points) Espresso: EXPAND/IRRED/REDUCE Steps. In this problem, you are to manually perform
the key 3 steps of espresso, iterating on a given cover until an optimal solution is reached.

Note: This problem should not be a lot of work! However, it does require care in performing each step
accurately. One of the goals is that you observe the iterative transformations (i.e. morphing) of one
implementation into another as the algorithm is applied, converging stepwise from a suboptimal to an
optimal solution. Refer to the class assigned reading and slides for this problem.

The starting point is an incompletely-specified 3-output function, given by the following minterm expan-
sions:

f1(x, y, z) = Σm(5, 7) + Σd(3, 4, 6)

f2(x, y, z) = Σm(0, 1, 5) + Σd(3, 7)

f3(x, y, z) = Σm(0, 1, 3, 7 + Σd(4)

Assume your starting point is a cover F for the above multi-output function, that has been derived through
an earlier partial run of espresso (i.e. assume several steps have been run, and F is the current solution, but
is not yet optimal):

x y z f1 f2 f3
1 - - 1 0 0
- 0 1 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 - 1 0 0 1
1 1 1 0 0 1

Using the above F as a starting point of this problem, you are to iterate the three key steps of espresso in
order — expand, irredundant, reduce — to reach a minimum-cost solution. At each step, as in class, you
will be drawing 3 different “views” of the cover — in a hypercube, as a digital circuit, and as a PLA file
representation —, where in each you will highlight the changes produced by the step.

Note: Follow the directions below carefully; they give you guidelines on assumptions for performing each
step, such as on cube ordering, etc. Also, refer not only to assigned reading, but also to class lecture slides
(available online) and your lecture notes, for details of steps.

(a) Given Cover F . Given the above 3-output function, and corresponding given cover F , neatly draw
three different views: (i) hypercube representation, clearly showing the 3-output function, annotated
with ON-set minterms (black dots) and DC-set minterms (X’s) (you can omit the OFF-set minterms to
avoid clutter), as well as the implicants of the given multi-output cover F clearly marked; (ii) multi-
output 2-level digital circuit, showing the AND-OR circuit for this 3-output function based on the
given cover F , properly indicating all sharing of AND gates; and (iii) multi-output PLA file for F ,
which is given to you above, so simply copied here.

(b) EXPAND Step (#1). You are now to perform the expand step on the given cover F of part(a). To
avoid a lot of extra calculation, I am simplifying some of the steps, but others will still be done
rigorously as presented in class. Be sure to follow the directions carefully.
Cube Ordering. In class, we covered a systematic algorithm to weight the cubes, and determine their
final order for expansion. Here, ignore that algorithm. Instead, expand the cubes in the order they
appear in the given PLA file above, from top to bottom.
Expansion Direction. In class, we covered a systematic approach to determine the direction to expand
each cube. For a given cube, there are 3 steps to follow in order: (i) expansion to fully-contain the
most other cubes; (ii) further expansion (1 variable at a time) to partially-overlap the most possible
other cubes; and (iii) further expansion into a maximal prime. For this problem, for each cube in
order, follow these 3 steps in order, but do them by inspection!. That is, unless you want, you do not
need to write out all the details of each step. Just do the right thing, but by examination.

3



What to Show: Once you have completed the above expand step, neatly show 3 representations of the
resulting new cover (as you did in part(a) above, following the same directions): (i) hypercube rep-
resentation, (ii) 2-level representation, and (iii) PLA file representation. Clearly mark the differences
from the corresponding representations in part(a).

(c) IRRED Step (#1). You are now to perform the irredundant step on the resulting cover of part(b). You
do not need to draw out the detailed prime implicant table for this step – you can solve the problem
by inspection. However, you must produce the optimal irredundant solution.
What to Show: Once you have completed the irredundant step, neatly show 3 representations of the
resulting new cover (as you did in part(b) above, following the same directions): (i) hypercube rep-
resentation, (ii) 2-level representation, and (iii) PLA file representation. Clearly mark the differences
from the corresponding representations in part(b).

(d) REDUCE Step (#1). You are now to perform the reduce step on the resulting cover of part(c). For
“cube ordering”, use the order of the cubes in the PLA file of part(c), from top to bottom.
What to Show: Once you have completed the reduce step, neatly show 3 representations of the result-
ing new cover (as you did in part(c) above, following the same directions): (i) hypercube representa-
tion, (ii) 2-level representation, and (iii) PLA file representation. Clearly mark the differences from
the corresponding representations in part(c).

(e) EXPAND (#2). Repeat part(b), starting with the resulting cover from part(d), and show the results in
the three representations.

(f) IRRED (#2). Repeat part(c), starting with the resulting cover from part(e), and show the results in
the three representations.

(g) “MAKE-SPARSE”. You will now apply a simplified version of the “make-sparse” step to reduce the
cost of your final multi-output cover, if possible.
What to Do: In particular, examine each AND-gate (i.e. implicant) which is shared by two or more of
the outputs (i.e. is connected to two or more OR gates). If any of the connections (i.e. wire fanouts)
of such an AND-gate to an OR gate can be removed, and still result in a valid cover, then remove such
a connection. Follow this simple procedure on all such AND-gates. Follow this ’reduce-output-part’
step by any possible ’expand-input-part’ step, as elaborated on Lecture #5 slides.
What to Show: Once you have completed this simplified make-sparse step, neatly show 3 repre-
sentations of the resulting new cover (as you did in part(f) above, following the same directions):
(i) hypercube representation, (ii) 2-level representation, and (iii) PLA file representation. Clearly
mark the differences from the corresponding representations in part(f).

7. (25 points) Unate Recursive Paradigm: Boolean AND.

In this problem, you are to use your experience with unate recursive algorithms to design a new algorithm:
to compute the Boolean-AND of two Boolean functions, f and g.

Overview: In tautology-checking and complementation, a unate recursive paradigm is used. Each algo-
rithm begins with a cover F of a function f . A divide-and-conquer approach is then used, where the cover
is split recursively using splitting variables in some order. The recursion terminates when certain termina-
tion conditions are satisfied. These termination conditions are different for each of the above algorithms.
The results are then combined together into a solution. In this homework problem, you will also return a
single cover, but your starting point will now be two covers, F and G, not one cover.

Review: Boolean AND. Given two (single-output) Boolean functions f and g, each having the same input
variables (i.e. same size K-maps), the Boolean AND, f · g, is defined as 1 at each minterm where functions
f and g are both 1. For all other minterms, the resulting Boolean AND is 0.

Assumption: Assume that both f and g are fully-specified functions, i.e. have no don’t cares (DC-set is
empty).

4



What To Do: As usual, you will not be given functions, but rather covers F and G (for functions f and g,
respectively). Your algorithm will take F and G, and eventually return a single cover H for the ON-set of
the Boolean AND f · g. Sketch clearly and precisely a unate recursive algorithm to compute this Boolean
AND of two functions, f and g.

In particular, your answer should be concrete and clear, addressing the following issues.

(i) Give a short overview (1-2 paragraphs) of your proposed approach.

(ii) Briefly, how does algorithm handle two covers, instead of one? (how is splitting performed, how are
results assembled?)

(iii) What termination rules do you propose? (these can be simple, but must still allow early termination).
For each termination condition, what result is returned? You should try to find a varied and powerful
set of termination conditions, including simple basic ones, as well as more sophisticated ones.
Note: your conditions should be easy to apply, and should improve the search rather than making it
more complicated or slower. Follow the guidelines of the existing algorithms, and see if you can also
come up with new conditions, too.

(iv) What form of Shannon decomposition will you use? Write out the new Shannon decomposition
equation for returning the resulting cover H (i.e. Boolean-AND result), given the two initial covers
F and G.

(v) Can you exploit unateness properties in (a) forming termination rules, or in (b) directing and simpli-
fying the search? (By analogy, for tautology check, note that the unateness condition resulted in Rule
U1 for (a), and for Rule U2 for (b); see if you can come up with analogous conditions for (a) and (b)
for Boolean AND.)

(vi) What criteria do you propose to select a good splitting variable, given that the algorithm handles two
covers instead of one?

Note: If you provide a solid basic solution (which is correct and not trivial), which is well-documented,
you will obtain 15 points. The remaining points will be awarded for more creative and effective solutions.

5


