An Introduction to
Hazard-Free Logic Synthesis
(Fundamental Mode)

Steven M. Nowick
Columbia University

(nowick@cs.columbia.edu)
July 15, 2002

Goal

Given: a Boolean function
Design: a hazard-free circuit implementation

Hazard-Free
Combinational
Logic

Goal

Given: a Boolean function
Design: a hazard-free circuit implementation

- correct
- ...optimal!

Hazard-Free
Combinational
Logic

QOutline

Basics: Hazards
Part I. 2-Level Logic

Part II. Multi-Level Logic and
Technology Mapping

Conclusions

- 2-level
- multi-level

Basics

1) “Input Transition”
= “multiple-input transition”, “multiple-input change” [MIC]

= a change from one input vector to another

(s

Assume: “clean” input transitions => no glitches!

Basics

2) Circuit Model
Assume an “unbounded wire delay” model
.. gates and wires may have arbitrary (finite) delays!

Combinational Logic

The Goal

Given a specified input transition, synthesize a circuit
< impltn. with no “combinational hazards” for this

transition (i.e. no possible glitch on outputs!

Combinational Logic

OW> UOW TW>

... assuming above circuit & environmental models....

The Goal

Given a specified input transition, synthesize a circuit
< impltn. with no “combinational hazard” for this

transition (i.e. no possible glitch on outputs!) 7

Combinational Logic

OW> UOW TW>

Hazard-Free

... assuming above circuit & environmental models.... .

Basics

3) Environmental Model

Assume “generalized fundamental mode”
... after an input transition, no new inputs may arrive until
the circuit has stabilized!

Combinational Logic

= aN &
DL
E Sl

A!
B
D
B
C!
D
.
B
C

Key Differences from
“QDI” Hazard-Free Design

1. Combinational Circuit Model: now more robust!
- circuits correct for arbitrary gate + wire delays
- ... V5. QDI: uses “isochronic fork” assumption

2. Environmental Model: “generalized fundamental mode
- now, timing assumptions on environment (1-sided

- ... vs. QDI: “input/output mode” (= none)

Basics: Combinational Hazards

Two types of combinational hazards:
1. Function Hazard:

- inherent in combinational function
2. Logic Hazard:

- inherent in circuit implementation

Function Hazards

Non-monotonic changes

on output function

during an input transition
(i.e., >1 change on output!)

Function + 4 input transitions

Function Hazards

Non-monotonic changes

on output function
during an input transition

(>1 change on output!)

function hazard-free

Function Hazards: Summary

Function hazards: cannot be removed

e inherent in function itself
e cannot guarantee glitch-free logic implementation [Unger]

Therefore, only consider function hazard-free transitions:
» most “specified behaviors” = naturally monotonic (not glitchy)

Sequential synthesis methods:
e must not introduce function hazards

Burst-mode: uses ...

e constrained ‘state minimization’ + ‘state assignment’ steps

¢ always succeeds: no undesired function hazards introduced....
14

Logic Hazards
Now, assume function hazard-free input transitions....

Logic Hazard = property of a given circuit implementation

Def. Logic Hazard: Given combinational function f,
circuit implementation C, and an input transition t.

If fis function hazard-free for input transition t,

but implementation C may glitch during transition t,
then circuit C has a logic hazard for transition t.
Otherwise, circuit C is logic hazard-free for transition t.

15

Logic Hazards

“input change”: D: 1-->0
(ABC=011)

Logic Hazards

“input change”: D: 1-->0

A Different Implementation (ABC=011)

Part I

Two-Level Logic

Part I: Outline

Problem #1: Eliminating Logic Hazards for

One Input Transition

Problem #2: Eliminating Logic Hazards for

Several Input Transitions

2-Level Hazard-Free Logic Minimization:
a Complete Example

Existence of a Hazard-Free Solution

An Alternative Approach: Using GC-Elements

PROBLEM #1: Eliminating Logic Hazards
for One Input Transition

Given: a combinational function f,
and a function hazard-free input transition t.

Goal: find a 2-level (AND-OR) implementation of f
which is logic hazard-free for input transition t.

10

SUMMARY:
Eliminating Logic Hazards
for One Input Transition

Eliminating Hazards:
“Static Transition” (0->0)

“input change”: BC: 10-->01
(AD=11)

11

Eliminating Hazards: 0->0 Transition

s >

D |—>
¢ E._OI

3

If no function hazard,
then every 2-level implementation

is free of logic hazards [Unger]

23

) =B

Eliminating Hazards:
“Static Transition” (1->1)

“input change”: D: 1-->0
(ABC=011)

12

Eliminating Hazards: 1->1 Transition

13

Eliminating Hazards: 1->1 Transition

14

Eliminating Hazards: 1->1 Transition

15

Eliminating 1->1 Hazard: Summary

“required cube”: must be completely
contained in some product

Eliminating Hazards:
“Dynamic Transition” (1->0 or 0->1)

“input change”: AC: 00->11
(BD=11)

16

Eliminating Hazards: 1->0 Transition

Problem #1: 1-to-1 “partial transition” is hazardous:
- violates 1->1 covering requirement

Eliminating Hazards: 1->0 Transition

Problem #1: “required cube” for partial transition
- ... nhot covered by any product!

17

Eliminating Hazards: 1->0 Transition

A!
B
D
B
C!
D
A!
B
C

Problem #2: entire dynamic 1-to-0 transition still hazardous!

18

Eliminating Hazards: 1->0 Transition

A!
B
D
B
C!
D
A!
B
C

1->0 Transition

'

OW> UOW TW>

19

Eliminating Hazards: 1->0 Transition

-
R

|
q

g 0

D |

B 0
s—)"—

D .
A

B

C

*,.

20

Eliminating 1->0 Hazard: Summary

-

|
’

“illegal
intersection”

Eliminating 1->0 Hazard: Summary

'

’

no “illegal intersection”

TUOW> UOW UW>

21

Eliminating 1->0 Hazard:
“Privileged Cubes”

“start point” (function is 1)

“privileged cube”

- The entire dynamic transition is
called a “privileged cube”

- No implicant can intersect any
“privileged cube” unless it also
contains its “start point”

Eliminating 1->0 Hazard: Summary

hazard-free

legal intersection

“privileged cube”: must not be
illegally intersected by any product

22

FINAL SUMMARY:
Eliminating Logic Hazards
for One Input Transition

must be covered by some implicant

each must be covered by some implicant

must not be illegally intersected

PROBLEM #2: Eliminating Logic Hazards
for Several Input Transitions

13

2-Level Hazard-Free Logic Minimization Problem”
Given:
¢ a Boolean function
» a specified set of input transitions

Find:

¢ a minimum-cost 2-level implementation which is
hazard-free for each specified input transition (i.e,
guaranteed not to glitch)

Goals and Assumptions:
e produce hazard-free combinational circuit:

—guaranteed glitch-free, regardless of gate+wire delays
e inputs: assumed to be glitch-free

23

2-Level Hazard-Free Logic
Minimization Problem

Equivalent Goal

Find a 2-level circuit implementation, where:

 no privileged cube is “illegally intersected” by a product; and
e each required cube is completely contained in some product.

“Dynamic Hazard-Free (DHF)
Prime Implicants”

NOT DHF-Prime:
has illegal
intersection

DHF-Prime
Implicant:
no illegal

a maximal implicant which intersections

has no “illegal intersections”
with any privileged cubes

DHF-Prime Implicant =

24

2-Level Hazard-Free Logic
Minimization Problem (cont.)

Revised Goal (version #2):

Find a 2-level circuit implementation:
e ... using only DHF-prime implicants,

e ... where each required cube is completely covered
by some product.

2-Level Logic Minimization: a Comparison
(Classic vs. Hazard-Free)

In each case, solve a “covering problem”:
< , “covering objects” >

m Classic (Quine-McCluskey method, espresso-exact, ...):
< , prime implicants>

m Hazard-Free (Nowick/Dill [92]):
< , DHF-prime implicants>

25

2-Level Logic Minimization: a Comparison

Classic Method: Non-Hazard-Free
Step 1: Generate All Prime Implicants
Step 2: Generate Prime Implicant Table

Step 3: Solve Covering Problem

New Method: Hazard-Free [Nowick/Dill ‘92]
Step 1: Generate All DHF-Prime Implicants
Step 2: Generate DHF-Prime Implicant Table
Step 3: Solve Covering Problem

2-Level Hazard-Free Logic Minimization:
a Complete Example

[from: Nowick/Dill, ICCAD’ 92;
IEEE Trans. On CAD Aug.’ 95]

Boolean Function +
4 (function hazard-free) input transitions

26

2-Level Hazard-Free Logic Minimization:
a Complete Example

Required Cubes:
Each required cube must

be completely contained
in some product

2-Level Hazard-Free Logic Minimization:
a Complete Example

Privileged Cubes:
If any product intersects a

privileged cube,
it must also intersect its start point

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Approach: 2 steps
- Generate All Prime Implicants

- Reduce to DHF-Prime Implicants

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Approach: 2 steps
Generate All Prime Implicants

- Reduce to DHF-Prime Implicants

Total: 7 Prime Implicants

28

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Approach: 2 steps
- Generate All Prime Implicants

Reduce to DHF-Prime Implicants

E] = privileged cube
Y4

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Approach: 2 steps
- Generate All Prime Implicants

Reduce to DHF-Prime Implicants

Some primes have
no illegal intersections

=> they are DHF-primes

29

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Approach: 2 steps
- Generate All Prime Implicants

Reduce to DHF-Prime Implicants

Some primes have
no illegal intersections

=> they are DHF-primes

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Approach: 2 steps
- Generate All Prime Implicants

Reduce to DHF-Prime Implicants

Other primes have
illegal intersections

=> they must be

30

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

First reduction of prime implicant

2-Level Hazard-Free Logic Minimization:
a Complete Example
Step 1: Generate All DHF-Prime Implicants

Second reduction of prime implicant

31

)

Other primes have
illegal intersection
S

xample

Reduce to DHF-Prime Implicants
Generate All DHF-Prime Implicant

.
o
2
©
N
E
—
=
=
(o)
o
1
Q
)
|
L

a Complete Example
a Complete E

Level Hazard

Generate All DHF-Prime Implicants
Approach: 2 steps
- Generate All Prime Implicants
1
=> they must be
2-Level Hazard-Free Logic Minimization

First reduction of prime implicant

2
Step 1:
Step 1:

32

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Final Result:
6 DHF-Prime Implicants

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 2: Generate DHF-Prime Implicant Table

33

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 3: Solve Covering Problem : :
= pick all essential
DHF-primes

2-Level Hazard-Free Logic Minimization:
a Complete Example

Final Hazard-Free Circuit (minimum-cost):

AT

[N
S el

©> UOwW O» O> Un

5 DHF-Prime Implicants

34

2-Level Hazard-Free Logic Minimization:
a Complete Example

Final Circuit (minimum-cost):

ab

00 01 11 10
cd

00

4 Prime Implicants
69

2-Level Hazard-Free Logic Minimization:
Another Example

min cost = 3 products min cost = 3 products

35

Existence of a Hazard-Free Solution

Challenge: a hazard-free 2-level implementation
does not always exist!

New Example: add 1 more
input transition

Existence of a Hazard-Free Solution

Every implicant containing the new required cube
also has an illegal intersection!

11 /10

36

Existence of a Hazard-Free Solution

DHF-Prime
Implicant Table| pHF-prime 1mplicants
PI P2 P3 P4 P5

not
covered!

Existence of a Hazard-Free Solution

Conclusion:
¢ asynchronous sequential synthesis methods:

must produce functions for which hazard-free
implementations exist!

Burst-Mode Synthesis Methods: impose constraints on
¢ state minimization
e state assignment

... to generate Boolean functions where all logic hazards
can always be eliminated

Always guarantee a hazard-free solution exists

37

An Alternative Approach:
using “Generalized C-Elements”

Alternative to 2-Level Logic
Target = “Generalized C-element (GC)”:

o {—

— I R

Hazard-Free Logic Using GC-Elements

gC-Based Mapping:

an Example 2-level:

o> O» @m» O»go>

Function

38

A Reading List

Hazard Basics:

¢ S. Unger, Asynchronous Sequential Switching Circuits, Wiley Interscience, 1969

o J. Beister, “A Unified Approach to Combinational Hazards”, IEEE Transactions
on Computers, vol C-23, no. 6, 1974

e S.M. Nowick, Automatic Synthesis of Burst-Mode Asynchronous Controllers,
PhD Thesis, Stanford University, March 1993 (revised technical report,
Stanford Computer Systems Lab CSL-TR-95-686, Dec. 1995).

e S.M. Nowick and D.L. Dill, “Exact Two-Level Minimization of Hazard-Free
Logic with Multiple-Input Changes”, IEEE Transactions on Computer-Aided
Design, vol. 14, pp. 986-997, August 1995

Two-Level Hazard-Free Logic Minimization:

Basic Method: (first complete solution) exact hazard-free minimization

e S.M. Nowick and D.L. Dill, “Exact Two-Level Minimization of Hazard-Free
Logic with Multiple-Input Changes”, IEEE Transactions on Computer-Aided
Design, vol. 14, pp. 986-997, August 1995

A Reading List (cont.)

Two-Level Hazard-Free Logic Minimization (cont.):

HEMIN: binary & symbolic (exact) hazard-free minimization

e R.M. Fuhrer and S.M. Nowick, Sequential Optimization of Asynchronous
and Synchronous Finite-State Machines: Algorithms and Tools.
Kluwer Academic, 2001.

Recent Methods: Exact Solutions

e “IMPYMIN”: M. Theobald and S.M. Nowick, “Fast Heuristic and Exact
Algorithms for Two-Level Hazard-Free Logic Minimization”, IEEE Transactions
on Computer-Aided Design, vol. 17, pp. 1130-1147, November 1998

e C. Myers and H. Jacobson, “Efficient Exact Two-Level Hazard-Free Logic
Minimization”, Async-01 Symposium (IEEE Int. Symp. On Advanced Rsrch.
In Asynchronous Circuits and Systems), pp. 64-73, March 2001

e J. Rutten, M. Berkelaar, et al., “An Efficient Divide and Conquer Algorithm for
Exact Hazard-Free Logic Minimization”, Design, Automation and Test in
Europe Conference (DATE), pp. 749-754, February 1998.

Recent Methods: Heuristic Solutions

e “ESPRESSO-HF”: M. Theobald and S.M. Nowick, “Fast Heuristic and Exact
Algorithms for Two-Level Hazard-Free Logic Minimization”, IEEE Transactions
on Computer-Aided Design, vol. 17, pp. 1130-1147, November 1998

78

39

Part II

Multi-Level Logic
and Technology Mapping

Goal: Hazard-Free Multi-Level Logic

Strategy
Start with: hazard-free 2-level logic

Apply: hazard-non-increasing multi-level transformations

Hazard-Free
Hazard-Free Multi-Level
2-Level Logic [% — Logic

safe transformations

40

Hazard-Non-Increasing
Multi-Level Transforms

A Large Menu of “Safe Transforms”: [Unger, Kung]
Associative Law
Factoring
DeMorgan’ s Law

... Many others:

e Kernel & Cube Factoring

¢ Dual Global Flow

¢ Double Inversion

e Tree Decomposition of a Gate

Associative Law (1)

Example: decomposing large fan-in gates

41

Associative Law (2)

Example: decomposing large fan-in gates

42

C’
D!
A
C’
A!
C
B
C
D
A!
B

DeMorgan’ s Law

85

43

Summary

Hazard-Non-Increasing Transforms:
m Allow hazard-free decomposition into simple gates (always!)

m Wide & flexible range of safe transforms:
* much overlap with ‘scripts’ of Synopsys Design Compiler

m Less restrictive than QDI or speed-independent transforms:

e many safe “fundamental mode” multi-level transforms fail with QDI
[e.g. associative law]

Hazard-Free Technology Mapping

1. Basic approach:
* Siegel, De Micheli [DAC’ 93]

2. For improved “average-case performance”:
e basic: Beerel et al. [Async’ 96]
o transistor-level optimization: James, Yun [Async’ 98]

3. For complex CMOS gates:
e Kudva et al. [DAC’ 96]

44

A Reading List
Hazard-Free Multi-Level Logic:

¢ S. Unger, Asynchronous Sequential Switching Circuits, Wiley Interscience, 1969
¢ D. Kung, “Hazard-non-increasing gate-level optimization algorithms”,
IEEE International Conference on CAD (ICCAD), pp. 631-634, Nov. 1992

e B. Lin and S. Devadas, “Synthesis of Hazard-Free Multi-Level Logic Under
Multiple-Input Changes from Binary Decision Diagrams”, IEEE Transactions
on Computer-Aided Design, vol. 14:8, pp. 974-985, August 1995

Hazard-Free Technology Mapping:

¢ P. Siegel, G. De Micheli, and D. Dill, “Automatic Technology Mapping for
Generalized Fundamental Mode Asynchronous Designs,” IEEE Design
Automation Conference (DAC), pp. 61-67, June 1993

e P.A. Beerel, K.Y. Yun, and W.C. Chou, “Optimizing Average-Case Delay in
Technology Mapping of Burst-Mode Circuits”, Async Symposium (IEEE Intl.
Symposium on Advanced Research in Async. Circuits and Systems),
PP. 244-259, March 1996.

A Reading List (cont.)

Hazard-Free Technology Mapping (cont.):

e K. James and K.Y. Yun, “Average-case optimized transistor-level technology
mapping of extended burst-mode circuits”, Async Symposium (IEEE Intl.
Symposium on Advanced Research in Async. Circuits and Systems),

PP. 70-79, April 1998.

e P. Kudva, G. Gopalakrishnan, H. Jacobson, and S. Nowick, “Synthesis of
Hazard-Free Customized CMOS Complex-Gate Networks Under Multiple-Input
Changes”, IEEE Design Automation Conference (DAC), pp. 77-82, June 1996

45

