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C3EF 0861 Handout of Examples
Prof Steven Nowick

This handout gives detailed examples to illustrate some of the basic routines used in espresso, including:
cofactor, tautology, complementation, and containment (application = identifying essential primes).

1. COFACTOR

Intuitively, the cofactor of a cover is the restriction of the cover 10 a smaller region of interest. The cofactor
of a cover with respect to a literal, can be thought of as only considering the cover in one half of the original
hypercube (where the literal is true). The cofactor of a cover with respect to a cube, can be thought of as
only considering the cover in the region bounded by the cube.

Cofactoring is useful in splitting a complicated cover into smaller picces, where results on the smaller pieces
are casier to obtain (e.g. complement, primes, etc.). These small results can then be reassembled into a sin-

gle final resulh.

- Cofactor with Respect to a Literal.

Consider the following function f and cover F. There arc 3 common representations: (i) kypercube repre-
sentation, (iiy . algebraic representation, and (1) PLA represemiation.
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Problem: Find the cofactor of F with respect to literal = (called F, ).
A

Solution:

The cofactor can be computed directly. Eix«‘cn any of the 3 representations. First, consider the PLA repre-
sentation. A PLA representation of literal =
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To obtain Fj, do row deletion and column deletion.

Row Deletion Rule: For each row 7 in F":

(i) if r disagrees with =, delete row r;
(i) if r agrees with =, keep row r.

A row r disagrees with a literal, if in some column, r has a 1 and the literal has a 0, or 7 has a 0
and the literal has a 1. In the above example, row 1 disagrees with literal z. Rows 2 and 3 agree
with literal z. Result: delete row 1.

Column Deletion Rule: Delete every column where z has a 1 (or 0).

In this example, column z is deleted. The final PLA representation of £y is:
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Next, we show how the cofactor can be computed algebraically. The initial cover F' = z'2+yz+zy.
To compute Fy, cofactor each cube of F with respect to literal z. The cofactor of z'z with respect
to z is empty, since they disagree in z. (This corresponds to deleting a row of the PLA.) The
reason that this cofactor is empty is that 2’z does not intersect z, i.e., cube 2’z does not intersect
the z = 1 half of the hypercube. For the remaining 2 cubes: yz cofactored with respect to z is yz
(they agree on z), and zy cofactored with respect to z is y (they agree on z; delete z).

That is, given cover F = z'z + yz + zy, and literal z, F; can be computed algebraically as follows.

For each cube in F:
¢ +y=:F
(i) if the cube disagrees with z, delete the cube; (QK\K* b \‘j{ 3 ¥

(i) if the cube agrees with x, keep the cube; delete any x which appears in it.

Finally, an equivalent hypercube representation of F; is shown below. It is simply formed by
restricting the original hypercube to the z = 1 plane. It describes a function of only 2 variables:
y and z (z does not appear). The cofactored cover is F = yz +4. Intuitively, F, describes the



portion of cover F which intersects the 2 = 1 plane of the hypercube.
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Cofactor with Respect to a Cube.

The cofactor of a cover with re is a simple generalization of 1(a). Counsider the
same f and F, described above.

Problem: Find the cofactor of F with respect to cube z'y’ (called Fyry/).
Solution:

A PLA representation of cube z'y’ is:
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. The PLA representation of F' (as before):
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To compute Fy,y, use a simple generalization of the rules in 1(a).
Row Deletion Rule: For each row r in F:

(i) if r disagrees with cube z'y’, delete row r;

(ii) if r agrees with cube z'y’, keep row 7.
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A row r disagrees with a cube, if in some column, 7 has a 1 and the cube has a 0, or r has a 0 and the cube
hasal.

In this example, row 1 agrees with cube z'y’. Rows 2 and 3 disagree with cube z'y’. Therefore, delete rows
2 and 3.

Column Deletion Rule: Delete every column where the cube (2'y) hasa 1 or 0.

In this example, columns z and y are deleted. Result:
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As before, the same result can be computed algebraically. Given the cover F' = z'z + yz + zy, the goal
is to find Fys,s. This is again a simple generalization of 1(a). First, delete yz and zy, since they disagree
with cube z'y’. (yz disagrees with cube z'y’ in variable y; zy disagrees with cube 2y’ in variables  and y.)
Keep 2’2, since it agrees with cube z'y’. Next, delete variable z from the remaining cubes (i.e., from z'2).
The result is: Fpry = 2.

Finally, the same result can be constructed directly in the hypercube. Here, Fy1y is the restriction of F
to the cube z'y'. To obtain Fy,, simply restrict F to the portion of the original hypercube bounded by
z'y’. The result is a 1-dimensional hypercube, where z is the only input variable. That is, the original
hypercube has been restricted to the region of z'y’. Only products in F which intersect 2y’ appear in the

new hypercube, In this example, only 2’z intersects z'y’, so it appears in the final hypercube. In the final
hypercube, z'z simply becomes z, since there are no z and y variables.
[Note: For extensions of cofactor to multi-output functions, see the Hachtel/Somenzi ch. 5 assigned reading.]




2. TAUTOLOGY

The algorithm for tautology checkingis in the Tautology Handout. For examples, see Hachtel/Somenzi
chapter 5 (including some solved problems in the exercise section at the end of the chapter). An example is

worked out below.

3. COMPLEMENTATION

See Complementation Handout. An example is included below.

4. CONTAINMENT

A common problem in espresso algorithms is the containment problem: Given a cube ¢ and a cover C,
does C cover cube ¢? (see Hachtel/Somenzi ch. 5). (Usually, ¢ is not a cube in cover C.) That is, do the
cubes of C completely cover, or overlap, the region of ¢? ‘

The containment problem arises in many algorithms in espresso, such as irredundant and essentials.

A key insight is that the containment problem is equivalent to a tautology problem. Intuitively, the con-
tainment problem asks if C' covers every minterm in cube c. This is equivalent to asking: is C, “restricted”
to the region of cube ¢, all 1’s? Recall that the restriction of a cover to a region, is a cofactor operation.
Therefore, more formally, this problem is identical to a tautology check on C; (the cofactor of cover C with
respect to cube c¢): is C;; a tautology?

This problem is solved in two steps. First, the cofactor C;. of cover C with respect to cube c is computed, us-
ing the procedure described in Section 1 above. Second, one checks if C. is a tautology, using the procedure
in the Tautology Handout.

(See the next section for an application and example.)

5. CONTAINMENT: 1st Application ~ Identifyinjessential primes, given the
J =
set of all primes

An important application of containment is to identify essential prime implicants. This 1st application of
“containment” is a simple one: given the set of all prime implicants of a Boolean function, identify which

ones are essential prime implicants.

Below is a 4-variable Karnaugh map of a function f, with inputs w, z, y, and z. The set P of all prime
implicants is shown. The formal notation is as follows:

E={ceP:cL (P-{c})}

In words, “the set E of essentials is the set of all prime implicants ¢ in P, where c is not covered by the
remaining prime implicants (P — {c})”. (The ’-* operation is set difference, and means that prime c is



subtracted or deleted from the set P; the < operator means “is covered by”, i.e., in this case, if ¢ is not
completely covered by the other cubes in P, then it is essential.) Intuitively, a prime c is essential if, when
you remove it from the set of all primes P, it is not completely covered by the remaining prime implicants.
In this case, there is some minterm covered by ¢, which is not covered by any other prime. (This is a “dis-
tinguished minterm”, discussed in the Quine-McCluskey handout.)

Identifying essential implicants is a containment problem. Suppose that the set of all primes, P, has already
been generated. To check if a prime c is essential, do the following. First, produce a new cover C' = P—{c},
which is the set of all primes except for ¢, which is removed. Second, ¢ is essential if and only if ¢ is not

contained in C.

More formally, to check if ¢ is essential, do the following:

(i) Delete ¢ from P, to obtain a new cover, C = P — {c}.

(ii) Check if c is contained in C, i.e., ¢ < C. To check for containment, do the following

(a) compute the cofactor C, of C' with respect to cube c; ‘

(b) check if C, is a tautology.

An example is worked out in detail, below.
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