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A Procedure for Placement of Standard-Cell
VLSI Circuits

ALFRED E. DUNLOP, MEMBER, IEEE, AND BRIAN W. KERNIGHAN, MEMBER, IEEE

Abstract—This paper describes a method of automatic placement for
standard cells (polycells) that yields areas within 10-20 percent of care-
ful hand placements. The method is based on graph partitioning to
identify groups of modules that ought to be close to each other, and a
technique for properly accounting for external connections at each level
of partitioning. The placement procedure is in production use as part
of an automated design system; it has been used in the design of more
than 40 chips, in CMOS, NMOS, and bipolar technologies.

I. INTRODUCTION

MAIJOR problem in VLSI is: given the logical design of
a circuit, position the components and route the connec-
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tions between them to minimize the area required. Sometimes
this is done to minimize the number of chips necessary to realize
a function; more often it is to get as many instances of a chip
as possible on a wafer.

The specific variant of this problem that we are considering
arises when the components of the circuit are “standard cells”
or “polycells.” Standard cells are typically designed so as to
fit together in rows. Common signals like power, ground and
possibly clocks run through the cells horizontally at fixed posi-
tions. Each cell has terminals on its top and/or bottom; the
circuit is wired by connecting these terminals with wires
that run in channels between and around the rows of cells.
Feedthroughs may be used to make connections that span more
than one row. Horizontal and vertical connections are on dis-
tinct layers so there is no electrical connection at a crossing
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unless one is explicitly created. These notions are illustrated
in the following figure:
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As an aside, it is common to use standard cells for much of
the logic of a circuit, but also to use larger building blocks like
PLA’s, memories and register banks.

Standard cells have many advantages as a design style; in par-
ticular, design time can be quite short and layout is straight-
forward if there is enough area. Unfortunately, however, in
most circuits, a high fraction of the area (50-70 percent is not
uncommon) is devoted to the wiring between the cells. Thus
it is important to develop procedures that will perform efficient
placement to minimize routing area. In this paper, we will be
concerned only with placement; routing is left to some other
program, although our placement is intended to make routing
in a small area an easier job.

One class of placement heuristics might be called “construc-
tive.” One starts with one or a few “seed” cells and adds others
that seem to be closely related to what has gone before. The
intent is to keep objects that are connected close to each other
so that the wires between them are short and thus require as
little area as possible.

A second broad class is “iterative improvement.” An arbi-
trary placement is created without regard to quality it is then
improved in stages, often by rearranging small groups of cells,
until no further improvement can be found. This process can
be repeated as many times as desired; each new initial place-
ment leads (af least potentially) to a different and perhaps bet-
ter final placement.

Of course it is possible to use these two strategies together,
most often by using an iterative technique to polish a carefully
constructed original placement. Our method is such a combina-
tion. It uses graph partitioning to identify clusters, i.e., groups
of cells that are closely related. The idea is that cells within a
cluster ought to appear close to each other in the final place-
ment, so as to waste little area routing among them. Clusters
are then assigned to adjacent rows, preserving nearness of re-
lated cells. Finally, other tools (not part of the discussion in
this paper) are used to polish the solution: an iterative cell-
exchange program such as PRO [1] is used to improve each
row in isolation; a channel router like Deutsch’s [2] does the
final routing within the channels.

Identifying clusters is intuitively appealing, and various forms
of this attack have been reported in the literature for many
years, under names like partitioning, nested bisection, and min-
cut placement [3]-[7].

One distinguishing feature that appears to contribute mark-
edly to the success of our method is a novel way to do “terminal
propagation,” that is, to use information like the positions of
external connectors and estimates of the positions of unplaced
cells to guide subsequent partitioning. Our terminal propaga-
tion uses Steiner trees to approximate the effect of external
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Fig. 1. Partitioning of 412-cell circuit into groups of size <8§.

connections. Other algorithms have been based on a force anal-
ogy [8] or routing length [9].

II. THE PROCEDURE

We begin with the logic description of a circuit (to which
cells must be electrically connected), but no geometry. The
idea is that the cells are partitioned first into two groups, then
into four, then into eight, and so on, until there are only a few
elements in each group. Suppose that horizontal rows of cells
are desired. Then the first step of partitioning divides the n
cells into two sets of n/2 cells like this:

The number of cells in each side is the same; the area of each
half is proportional to the area of the cells included in it.

The next step of partitioning is to divide each of these groups
in two, this time on the other axis:

R ——

This process continues until there are only a few cells in each
group (typically half a dozen). The effect is that at each level
cells are localized to the region in which they ought to be finally
located, but their actual placement is not fixed. Fig. 1 shows a
partitioning of a circuit of 412 cells into 64 groups of size <8.

At this point, it is possible to assign the cells in each group
to rows, keeping those cells that ought to be together (as deter-
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mined by the partitioning) either close together in the same
row or nearby in an adjacent row.

But layouts obtained merely by partitioning cells and assigning
them to rows are not nearly as good as they might be. A second
major component of the procedure, then, is to take into account
any positioning information that may be present, such as the
locations of external pin connections and the probable locations
of cells in the final placement. This is called terminal propaga-
tion; it is done concurrently with partitioning,.

Partitioning

The original graph partitioning problem is: given n nodes con-
nected by edges (possibly with weights greater than 1), partition
the nodes into two subsets of size #/2 such that the sum of the
weights on the edges connecting the two subsets is minimum:

T

minimize

The graph partitioning problem for circuits is very similar.
The nodes are circuit elements, and the edges become nets that
connect two or more elements. A net is said to be cut if it con-
nects elements in one subset to elements in the other. The cost
of a partition is the number of nets that are cut.!°

Graph partitioning, in either form, is NP-complete [11] but
there are good heuristics, such as the one developed by Ker-
nighan and Lin [12], [13]. The strategy is iterative improve-
ment. Given an arbitrary initial partition into two sets 4 and
B, there is some number of elements of 4 and an equal number
of elements of B that are “out of place,” in the sense that if
they were interchanged, the resulting partition would be opti-
mum. The Kernighan-Lin procedure tries to identify these
out-of-place elements sequentially.

Let ¢ €4 and b € B, and let NV be a net. If a is the only ele-
ment of N in 4, then moving @ to B reduces the number of
nets cut by 1. Let £, be the number of nets touching a for
which 4 is the only element in 4.

Similarly, if all elements of a net are in one set, say A4, then
moving one element of the net to B causes the net to be cut
and thus costs 1. Let /, be the number of nets touching
which have all their elements in A.

Clearly, 1, measures how strongly « is connected to 4, while
E, measures how strongly it is attracted to B. ThenD, = E, - I,
is a measure of how out of place a is: the larger D, is, the more
likely that @ belongs in B instead of 4. We define Dy, similarly.

The gain g obtained by exchanging ¢ and b is simply

g=Dy+ Dy~ cyp

where ¢, is a correction that avoids double counting if 2 and
b are both on some net.
The procedure is as follows:

repeat {

A'=A;B' =B

fori=1ton/2{
compute D values for alig €4’ and b € B’
find a; and b; that maximize g; = Dy, + Dy -

Cab;

move g; to B and b; to A
remove g; and b; from further consideration this

pass
}
find k that maximizes gqax = 2 ;‘=l 8i
if gmax >0
exchange a,,- -+ ,a, with by, -, b

}untilgax =0

Each time a pair @ and b is selected, they contribute to the gain
so far, which is just Zg;. Notice that once a pair has been se-
lected, the elements are set aside and are not eligible to be se-
lected again on this cycle. The value of k, 1 <k < n/2, which
makes the sum of gains as large as possible determines whether
an improvement has been made. If there is a gain, g, will
be positive; in that case, a;,- -, @; are exchanged with b, ,
+++, by and the process is attempted again. If the improve-
ment gmax iS zero, the resulting partition is a local minimum.
Typically this takes 2-5 iterations of the repeat loop for parti-
tions of a few hundred objects.

The partial sum Xg; may actually be negative in the early
stages, yet later become positive, for instance, during the ex-
change of a cluster. Moving the first few elements of a cluster
raises the cost, but it falls again when the entire cluster is moved.
Thus the algorithm is able to escape from some local minima
that would trap a simpler procedure.

To illustrate, consider the situation below, where each edge
is a separate net. The cost is 1:

VAN

0 0O o o0 0

If a single element on some net is moved from left to right or
vice versa, the cost rises to 2, so the “gain” g, is actually - 1:

Moving one more connected element from left to right leaves
the cost unchanged at 2 (i.e.,g, +g, = ~1). Only after all three
elements have moved does the cost become zero, and thus the
total gain g, becomes 1.

Computation of the D values can be done in time proportional
to the number of pins in the circuit. For most circuits, the
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number of pins per element is small. Thus computation of D
values requires O(n) time for # elements, and time O(n?) to do
it n times. Finding the maximum a; and b; requires O(n log n)
for each pass, and thus O(n? log n) overall. Computing the
correction in the worst case could take O(n?) but in practice
it is much smaller. The overall time complexity of the parti-
tioning procedure is thus around O(n® log n) as we have im-
plemented it.

In circuit problems, it is generally assumed that all nets have
unit cost, but it is possible to create multiple instances of or
apply a weight (greater than one) to a net and thus prevent
(or at least bias) it from being split during partitioning. It is
also possible to obtain partitions which vary from exactly n/2
elements in each subset by adding dummy elements to the
original set. These dummy elements are not connected to any-
thing, so they have no effect on the cost, but they permit an
unbalanced partition of the real elements.

Terminal Propagation

It is not adequate merely to partition groups of the circuit
in isolation, since the signals that enter a group of cells from the
outside effect where the cells ought to be placed just as much
as the internal connections among the group. We call the pro-
cedure for taking this into account ‘“terminal propagation.”
As the simplest example, consider a group of cells containing
a cell x that is connected to a signal s from outside the group,
for example, from a pad:

All other things being equal, cell x ought to be near the point
where signal s comes from.

This is clearest at the outermost level, where the signal posi-
tions are typically fixed by pad positions or the positions of
other components of the circuit. But what happens at a lower
level during partitioning? Suppose we have partitioned the cells
into groups L and R, then partitioned L into L, and L,, and
that there is a signal net s that connects two cells in L, with

three in R:
\So‘

L,

L,

If we now want to partition R into R; and R,, we would
like to take into account the fact that signal s is in L, but not
in L, and thus bias the partitioning process towards putting
the cells into R, instead of R, .

This is done as follows. In lieu of any other information, we
assume that all of the cells of signal sin L, are at its geometrical
center, and propagate that position to the closes point, say p,
onR:
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L, R,

During partitioning, signal s is required to remain in the set R, .
This biases the partitioning process: the cost of partitioning
R will be 1 lower if signal s appears only in R, than if some
or all cells containing s are in R,. Without this bias, there
would be nothing to favor R, over R,.

This example conveys the essence of terminal propagation,
but there are many more situations to be considered. For ex-
ample, assume that we are at the previous stage of partitioning,
where neither L nor R has yet been partitioned. When we are
partitioning L, the three elements of s in R are assumed to be
concentrated at the middle of R, which propagates to the mid-
dleof L:

External signals that propagate to a point near the axis about
which partitioning is to be done should not be used to bias the
solution in either direction; accordingly, the elements of s in
R should have no effect on how L is partitioned. The measure
of “near” is arbitrarily set at “within the middle third of the
side.”

In the general case, suppose we are partitioning a group G
into L and R, and that some net s has elements both inside
and outside of G. (The “elements” may be individual cells or
sets of cells at the centers of other groups.) We compute a
low-cost rectilinear Steiner tree! on the elements external to
G, and find the points of intersection {p;} with the border of
G, as sketched below:

°
&

N

These points are treated as cells on s, but are fixed during parti-
tioning, so they can not move from whichever of L or R they

1Finding a minimum-cost rectilinear Steiner tree is another NP-com-
plete problem, for which we use a heuristic based on a procedure de-
scribed by Hanan [14].
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are in. As before, we exclude the middle third of the sides per-
pendicular to the axis of partitioning, so any p; that fallin these
regions are simply ignored. Thus in the situation illustrated
above, p, would be ignored, since it is within the middle third
of the top side. But if partitioning were being done about the
other axis, p3; would be ignored and signal s would be biased
to the top half.

The terminal propagation step makes a substantial difference
in the quality of solutions obtained, reducing the overall area
by about 30 percent. Notice that the use of terminal propaga-
tion implies that the partitioning must be done breadth-first,
not depth-first: there is no point in working hard to partition
one side to finer and finer levels when one has only the coarsest
idea of the positioning on the other side.

Creating Rows

The final step is to create rows from the final partition (i.e.,
at the lowest level). When partitioning reaches the bottom
level, we have identified for each cell the approximate region
that it ought to be in, and its neighbors. Suppose for example
that there are to be four rows in the horizontal direction. Then
conceptually the layout area is divided into four strips like this:

k] } Row 1
....... [Z } Row 2
................... | Row 3
................... } Row 4

Cells within the partition groups labeled c¢; and c¢; which lie
entirely within the first strip are simply assigned to row 1; cells
from ¢; would of course lie to the left of those from c;.

Cells within a partition group like ¢, that lies across the
boundary between one strip and the next are assigned to the
two rows in question in proportion to the fraction of the parti-
tion group’s area that lies in each row. In the figure above, for
instance, ¢, is evenly divided between strips 1 and 2, so the
cells within it are shared evenly (in area) between the rows. Be-
cause ¢, lies between ¢, and c3, however, those cells from ¢,
that go into row 1 lie between cells from ¢, and c;.

This process keeps related cells together, and tends to keep
the lengths of the rows much the same. Some minor rearrange-
ment may be needed, however, to ensure that the row lengths
are close enough to equal. Candidates for such rearrangements
come from partition groups like ¢, that fall across a row bound-
ary, since the choice of row for cells within c, is arbitrary.

Figs. 2 and 3 illustrate this process on a larger example.

IIT. EXPERIENCE

The procedure is in production use as part of an automatic
placement system. It has worked well on a variety of place-
ment problems.

For one CMOS chip with 453 signals and 412 cells, a carefully
tuned hand layout by one of the best layout engineers has a track
density of 147 and 184 feedthroughs. (We use track density
in this section so as to make comparisons independently of the

< 1
1
1.2
1.2 1,2
1.2
2
2 2.3
2.3 2.3
2,3
3 3 3
3,4 3.4 3.4 3. 4
4
4 4 4
5 5 4,5 4,5
5 5 5 5

Fig. 2. Partitioning of circuit into 32 groups. Each group is either
assigned to a single row or divided between two rows.

design rules and size of standard cells.) Without terminal prop-
agation, the partitioning procedure achieved a track density
of 313 (591 feedthroughs), which was subsequently reduced
to 235 by iterative interchange. After terminal propagation
was added, these numbers were substantially lower: track den-
sity 186 (182 feedthroughs), subsequently reduced to 152 by
an automatic iterative interchange routine. The track count of
152 is within three percent of hand layout. Fig. 4 shows the
final automatic placement and routing of this circuit.

This chip was used to investigate variations in the basic pro-
cedure; some results are shown in the table and graphs below.

Minimum Variation Track CPU Time
Size Percent Density Feedthroughs (Seconds)
1 0 186 182 3230
1 5 199 174 3932
1 10 187 204 4278
2 0 186 178 3465
2 5 183 175 3702
-2 10 196 202 4067
4 0 185 183 3271
4 5 187 172 3464
4 10 190 213 3842
8 0 197 215 3072
8 R 211 205 3275
8 10 200 227 3641
16 0 202 216 2911
16 S 195 211 3079
16 10 203 218 3414

These are based on the best partition found in 64 different
starting arrangements at each level of partitioning. The starting
point for the first iteration was obtained by dividing the cells
in the original circuit description into two groups by their or-
dinal position in the logic description; this is often a good start,
since the logic description tends to group related cells. Sub-
sequent iterations began with a random arrangement of the
cells. “Minimum size” indicates the size of group at which parti-
tioning ceased; for example, a size of 8 indicates that no group
of fewer than 8 cells would be partitioned. The “variation per-
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Fig. 3. The row assignment corresponding to Fig. 2.
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Fig. 4. Automatically generated layout for circuit with 453 signals and

412

cent” indicates the percent of dummy cells to be distributed
between the two halves. This allows a variation in the number
of cells that end up in the resulting two groups. The “feed-
through” column indicates how many feedthroughs were nec-
essary to actually complete the routing. (We forced all nets to
use feedthroughs instead of going around the ends of the cell
rows.) Track density alone is not an adequate measure, since
in a practical routing situation, feedthroughs have to be added
either at the ends of rows or between cells within the rows to
get signals between rows that are not adjacent; these add to the
area. Finally, CPU times are for partitioning, terminal propaga-
tion, and conversion to rows, using a C program on a DEC
VAX 11/780.

The graph on the right shows the same data, with other experi-
ments done with 1, 2, 4, 8, 16, and 32 iterations as well. In
virtually all cases, the more iterations, the better the results.
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The following table summarizes experience with this and 3
other chips.

Manual Automatic
Cells Tracks Fthru Tracks Fthru Tech.
290 91 0 93 51 CMOS
412 147 184 152 182 CMOS
1158 444 268 484 501 NMOS
1198 581 410 384 441 CMOS

The automatically generated solutions are generally within
10 percent of the best hand layout.

IV. EXTENSIONS AND FUTURE WORK

Recent work by Fiduccia and Mattheyses [15] shows that
partitioning time can be substantially reduced. Their modifi-
cation of the original Kernighan-Lin method requires time
O(P), where P is the total number of pins in the circuit. We
have implemented a version of the Fiduccia-Mattheyses algo-
rithm, It produces solutions much more quickly; it is about
an order of magnitude faster for partitioning circuits of 2000
elements. It appears that the solution quality is not as good,
however; track density is close to that of the traditional Ker-
nighan-Lin method (but is sometimes as much as 15 percent
larger).

We have also done some comparisons with a partitioning
algorithm based on simulated annealing [16]. This technique
seems to be substantially slower than the other procedures,
but yields solutions of about the same quality as the Fiduccia-
Mattheyses algorithm if we limit the CPU time to a reasonable
value. It does have the advantage of being very simple to
implement.

As mentioned above, the starting point for the first iteration
was based on the original logic description of the circuit, and
subsequent starts were completely random. We have since done
some experiments in which each start is created by performing
only a limited rearrangement of the best solution previously
seen. This has two benefits: it produces better solutions, and
it produces them faster, since fewer iterations are needed to
go from initial partition to final. We intend to do more experi-
mentation with this tactic.

We have also implemented a mechanism for forcing modules
to be in particular positions (“seeding” or “hard placement”).
We are still seeking an elegant solution to this problem;in the
meantime, our approach is brute force.

The Steiner tree algorithm associated with terminal propaga-
tion is not optimum. We also plan to investigate other algo-
rithms for terminal propagation; since partitioning is now so
much faster, terminal propagation has become the bottleneck.
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