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Lecture 3. Circuit Partitioning 

2 3/31/16 

System Hierarchy 
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Levels of Partitioning 

System Level Partitioning 

Board Level Partitioning 

Chip Level Partitioning 

System 

PCBs 

Chips 

Subcircuits 
/ Blocks 
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Partitioning of a Circuit 
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Importance of Circuit Partitioning 
  Divide-and-conquer methodology 

The most effective way to solve problems of high complexity 

E.g.: min-cut based placement, partitioning-based test generation,… 

  System-level partitioning  for multi-chip designs 

     inter-chip interconnection delay dominates system performance. 

  Circuit emulation/parallel simulation 

 partition large circuit into multiple FPGAs (e.g. Quickturn), or   
multiple special-purpose processors (e.g. Zycad). 

  Parallel CAD development 

Task decomposition and load balancing 

  In deep-submicron designs, partitioning defines local and global 
interconnect, and has significant impact on circuit performance 

…… ……  
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Some Terminology 

Partitioning: Dividing bigger circuits into a small number of 
partitions (top down) 

Clustering: cluster small cells into bigger clusters (bottom up). 

Covering / Technology Mapping: Clustering such that each 
partitions (clusters) have some special structure (e.g., can be 
implemented by a cell in a cell library). 

k-way Partitioning: Dividing into k partitions. 

Bipartitioning: 2-way partitioning. 

Bisectioning: Bipartitioning such that the two partitions have the 
same size. 
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Circuit Representation 

•  Netlist: 
–  Gates: A, B, C, D 
–  Nets: {A,B,C}, {B,D}, {C,D} 

•  Hypergraph: 
–  Vertices: A, B, C, D 
–  Hyperedges: {A,B,C}, {B,D}, {C,D} 

–  Vertex label: Gate size/area 
–  Hyperedge label:  

 Importance of net (weight) 
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C D 

A 
B 

C D 
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Circuit Partitioning  Formulation 

Bi-partitioning formulation: 
        Minimize interconnections between partitions 

  Minimum cut:             min c(x, x’) 

  minimum bisection:   min c(x, x’) with |x|= |x’| 

  minimum ratio-cut:    min c(x, x’) / |x||x’| 

X X
’ 

c(X,X’) 
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A Bi-Partitioning Example 

Min-cut size=13 
Min-Bisection size = 300 
Min-ratio-cut size= 19 

a 

b 

c e 

d f 

mini-ratio-cut min-bisection 

min-cut 9 
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Ratio-cut helps to identify natural clusters 
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Circuit Partitioning Formulation (Cont’d) 

General multi-way partitioning formulation: 

    Partitioning a network N into N1, N2, …, Nk such that 

  Each partition has an area constraint 

 

  each partition has an I/O constraint 

Minimize the total interconnection: 
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Partitioning Algorithms 

  Iterative partitioning algorithms 

  Spectral based partitioning algorithms 

  Net partitioning vs. module partitioning 

  Multi-way partitioning 

  Multi-level partitioning  

  Further study in partitioning techniques 
(timing-driven …) 
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Iterative Partitioning Algorithms 

  Greedy iterative improvement method 

[Kernighan-Lin 1970] 

[Fiduccia-Mattheyses 1982] 

[krishnamurthy 1984] 

  Simulated Annealing 

[Kirkpartrick-Gelatt-Vecchi 1983] 

[Greene-Supowit 1984] 
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Kernighan-Lin Algorithm 

“An Efficient Heuristic Procedure for 
Partitioning Graphs” 

The Bell System Technical Journal 
49(2):291-307, 1970 

14 3/31/16 

Restricted Partition Problem 
•  Restrictions: 

–  For Bisectioning of circuit. 
–  Assume all gates are of the same size. 
–  Works only for 2-terminal nets. 

•  If all nets are 2-terminal, 
 the Hypergraph is called a Graph. 

A 
B 

C D 
Hypergraph  
Representation 

Graph  
Representation 

A 
B 

C D 
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Problem Formulation 

•  Input: A graph with  
–  Set vertices V. (|V| = 2n) 
–  Set of edges E. (|E| = m)  
–  Cost cAB for each edge {A, B} in E. 

•  Output: 2 partitions X & Y such that 
–  Total cost of edges cut is minimized. 
–  Each partition has n vertices. 

•  This problem is NP-Complete!!!!! 
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A Trivial Approach 
•  Try all possible bisections. Find the best one. 
•  If there are 2n vertices,  

 # of possibilities = (2n)! / n!2 = nO(n) 

•  For 4 vertices (A,B,C,D), 3 possibilities. 
1.  X={A,B} & Y={C,D} 
2.  X={A,C} & Y={B,D} 
3.  X={A,D} & Y={B,C} 

•  For 100 vertices, 5x1028 possibilities. 
•  Need 1.59x1013 years if one can try 100M possbilities per 

second. 
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Idea of KL Algorithm 
•  DA = Decrease in cut value if moving A 

–  External cost (connection) EA – Internal cost IA  

–  Moving node a from block A to block B would increase the value of 
the cutset by EA and decrease it by IA  

A 

B 
C 

D 

X Y 

A 

B 

C 

D 

X Y 

DA = 2-1 = 1 
DB = 1-1 = 0 
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Idea of KL Algorithm 
•  Note that we want to balance two partitions 
•  If switch A & B, gain(A,B) = DA+DB-2cAB  

–  cAB : edge cost for AB 

A 

B 

C 

D 

X Y 

A 

B 

C 
D 

X Y 

gain(A,B) = 1+0-2 = -1 
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Idea of KL Algorithm 
•  Start with any initial legal partitions X and Y. 
•  A pass (exchanging each vertex exactly once) is 

described below: 
1. For i := 1 to n do 
      From the unlocked (unexchanged) vertices, 
        choose a pair (A,B) s.t. gain(A,B) is largest. 
      Exchange A and B. Lock A and B. 
      Let gi = gain(A,B). 
2. Find the k s.t. G=g1+...+gk is maximized. 
3. Switch the first k pairs. 

•  Repeat the pass until there is no improvement (G=0). 

20 3/31/16 

Example 

1 
X 

2 

3 

4 

5 
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Y 

Original Cut Value = 9 

4 
X 

2 

3 

1 
5 

6 

Y 

Optimal Cut Value = 5 

A good step-by-step example in SY book 
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Time Complexity of KL 

•  For each pass, 
–  O(n2) time to find the best pair to exchange. 
–  n pairs exchanged. 
–  Total time is O(n3) per pass. 

•  Better implementation can get O(n2log n) time per 
pass. 

•  Number of passes is usually small. 
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Recap of Kernighan-Lin’s Algorithm 

  Pair-wise exchange of nodes to reduce cut size 
  Allow cut size to increase temporarily within a pass  

Compute the gain of a swap 
Repeat 

Perform a feasible swap of max gain 
Mark swapped nodes “locked”; 
Update swap gains; 

 Until no feasible swap;  
 Find max prefix partial sum in gain sequence g1, g2, 

…, gm 
 Make corresponding swaps permanent. 
 

  Start another pass if current pass reduces the cut size 
 (usually converge after a few passes) 

u • v • 

v • u • 

locked 
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A Useful Survey Paper 

•  Charles Alpert and Andrew Kahng, “Recent Directions 
in Netlist Partitioning: A Survey”, Integration: the VLSI 
Journal, 19(1-2), 1995, pp. 1-81.  

•  Next lecture: more on partitioning 
 


