
1

3/31/16 1

VLSI Physical Design Automation

Prof. David Pan
dpan@ece.utexas.edu

Office: ACES 5.434

Lecture 3. Circuit Partitioning

2 3/31/16

System Hierarchy

2

3 3/31/16

Levels of Partitioning

System Level Partitioning

Board Level Partitioning

Chip Level Partitioning

System

PCBs

Chips

Subcircuits
/ Blocks

4 3/31/16

Partitioning of a Circuit

3

5 3/31/16

Importance of Circuit Partitioning
  Divide-and-conquer methodology

The most effective way to solve problems of high complexity

E.g.: min-cut based placement, partitioning-based test generation,…

  System-level partitioning for multi-chip designs

 inter-chip interconnection delay dominates system performance.

  Circuit emulation/parallel simulation

 partition large circuit into multiple FPGAs (e.g. Quickturn), or
multiple special-purpose processors (e.g. Zycad).

  Parallel CAD development

Task decomposition and load balancing

  In deep-submicron designs, partitioning defines local and global
interconnect, and has significant impact on circuit performance

…… ……

6 3/31/16

Some Terminology

Partitioning: Dividing bigger circuits into a small number of
partitions (top down)

Clustering: cluster small cells into bigger clusters (bottom up).

Covering / Technology Mapping: Clustering such that each
partitions (clusters) have some special structure (e.g., can be
implemented by a cell in a cell library).

k-way Partitioning: Dividing into k partitions.

Bipartitioning: 2-way partitioning.

Bisectioning: Bipartitioning such that the two partitions have the
same size.

4

7 3/31/16

Circuit Representation

•  Netlist:
–  Gates: A, B, C, D
–  Nets: {A,B,C}, {B,D}, {C,D}

•  Hypergraph:
–  Vertices: A, B, C, D
–  Hyperedges: {A,B,C}, {B,D}, {C,D}

–  Vertex label: Gate size/area
–  Hyperedge label:

 Importance of net (weight)

A
B

C D

A
B

C D

8 3/31/16

Circuit Partitioning Formulation

Bi-partitioning formulation:
 Minimize interconnections between partitions

  Minimum cut: min c(x, x’)

  minimum bisection: min c(x, x’) with |x|= |x’|

  minimum ratio-cut: min c(x, x’) / |x||x’|

X X
’

c(X,X’)

5

9 3/31/16

A Bi-Partitioning Example

Min-cut size=13
Min-Bisection size = 300
Min-ratio-cut size= 19

a

b

c e

d f

mini-ratio-cut min-bisection

min-cut 9

10

100
100 100

100 100

100

4

Ratio-cut helps to identify natural clusters

10 3/31/16

Circuit Partitioning Formulation (Cont’d)

General multi-way partitioning formulation:

 Partitioning a network N into N1, N2, …, Nk such that

  Each partition has an area constraint

  each partition has an I/O constraint

Minimize the total interconnection:

∑
∈

≤
i N v

i A v a) (

i i i I N N N c ≤ -) , (

) , (i
N

i N N N c
i

- ∑

6

11 3/31/16

Partitioning Algorithms

  Iterative partitioning algorithms

  Spectral based partitioning algorithms

  Net partitioning vs. module partitioning

  Multi-way partitioning

  Multi-level partitioning

  Further study in partitioning techniques
(timing-driven …)

12 3/31/16

Iterative Partitioning Algorithms

  Greedy iterative improvement method

[Kernighan-Lin 1970]

[Fiduccia-Mattheyses 1982]

[krishnamurthy 1984]

  Simulated Annealing

[Kirkpartrick-Gelatt-Vecchi 1983]

[Greene-Supowit 1984]

7

3/31/16 13

Kernighan-Lin Algorithm

“An Efficient Heuristic Procedure for
Partitioning Graphs”

The Bell System Technical Journal
49(2):291-307, 1970

14 3/31/16

Restricted Partition Problem
•  Restrictions:

–  For Bisectioning of circuit.
–  Assume all gates are of the same size.
–  Works only for 2-terminal nets.

•  If all nets are 2-terminal,
 the Hypergraph is called a Graph.

A
B

C D
Hypergraph
Representation

Graph
Representation

A
B

C D

8

15 3/31/16

Problem Formulation

•  Input: A graph with
–  Set vertices V. (|V| = 2n)
–  Set of edges E. (|E| = m)
–  Cost cAB for each edge {A, B} in E.

•  Output: 2 partitions X & Y such that
–  Total cost of edges cut is minimized.
–  Each partition has n vertices.

•  This problem is NP-Complete!!!!!

16 3/31/16

A Trivial Approach
•  Try all possible bisections. Find the best one.
•  If there are 2n vertices,

 # of possibilities = (2n)! / n!2 = nO(n)

•  For 4 vertices (A,B,C,D), 3 possibilities.
1. X={A,B} & Y={C,D}
2. X={A,C} & Y={B,D}
3. X={A,D} & Y={B,C}

•  For 100 vertices, 5x1028 possibilities.
•  Need 1.59x1013 years if one can try 100M possbilities per

second.

9

17 3/31/16

Idea of KL Algorithm
•  DA = Decrease in cut value if moving A

–  External cost (connection) EA – Internal cost IA

–  Moving node a from block A to block B would increase the value of
the cutset by EA and decrease it by IA

A

B
C

D

X Y

A

B

C

D

X Y

DA = 2-1 = 1
DB = 1-1 = 0

18 3/31/16

Idea of KL Algorithm
•  Note that we want to balance two partitions
•  If switch A & B, gain(A,B) = DA+DB-2cAB

–  cAB : edge cost for AB

A

B

C

D

X Y

A

B

C
D

X Y

gain(A,B) = 1+0-2 = -1

10

19 3/31/16

Idea of KL Algorithm
•  Start with any initial legal partitions X and Y.
•  A pass (exchanging each vertex exactly once) is

described below:
1. For i := 1 to n do
 From the unlocked (unexchanged) vertices,
 choose a pair (A,B) s.t. gain(A,B) is largest.
 Exchange A and B. Lock A and B.
 Let gi = gain(A,B).
2. Find the k s.t. G=g1+...+gk is maximized.
3. Switch the first k pairs.

•  Repeat the pass until there is no improvement (G=0).

20 3/31/16

Example

1
X

2

3

4

5

6

Y

Original Cut Value = 9

4
X

2

3

1
5

6

Y

Optimal Cut Value = 5

A good step-by-step example in SY book

11

21 3/31/16

Time Complexity of KL

•  For each pass,
–  O(n2) time to find the best pair to exchange.
–  n pairs exchanged.
–  Total time is O(n3) per pass.

•  Better implementation can get O(n2log n) time per
pass.

•  Number of passes is usually small.

22 3/31/16

Recap of Kernighan-Lin’s Algorithm

  Pair-wise exchange of nodes to reduce cut size
  Allow cut size to increase temporarily within a pass

Compute the gain of a swap
Repeat

Perform a feasible swap of max gain
Mark swapped nodes “locked”;
Update swap gains;

 Until no feasible swap;
 Find max prefix partial sum in gain sequence g1, g2,

…, gm
 Make corresponding swaps permanent.

  Start another pass if current pass reduces the cut size
 (usually converge after a few passes)

u • v •

v • u •

locked

12

23 3/31/16

A Useful Survey Paper

•  Charles Alpert and Andrew Kahng, “Recent Directions
in Netlist Partitioning: A Survey”, Integration: the VLSI
Journal, 19(1-2), 1995, pp. 1-81.

•  Next lecture: more on partitioning

