
CSEE E6861y
Prof. Steven Nowick

Overview of Fast Complementation Handout 15
February 11, 2016

This handout presents an overview of a fast algorithm for recursive complementation of a Boolean func-
tion.

Introduction
As with the previous tautology-checking algorithm, the complementation algorithm uses a recursive “divide-
and-conquer” approach. Given an initial cover F of a Boolean function f , the algorithm divides the cover
into smaller pieces until termination conditions are met. Results are then returned and reassembled into a
final solution. For the complementation algorithm, the result is the complement of the initial cover.

An important aspect the complementation algorithm, as in tautology checking, is that properties of unate
functions are exploited to simplify or terminate the recursion. Unate functions have special properties which
make them especially useful. While most logic functions are not unate, the recursive decomposition often
leads to cofactors which are unate.

The name for this general approach is the unate recursive paradigm. This paradigm was proposed by
Brayton et al., and is used in tautology, complementation, prime generation, and several other algorithms.
The unate recursive paradigm consists of exploiting special properties of unate functions, while performing
recursive decomposition.

The Complementation Problem:
Given a cover F corresponding to a Boolean function f , return a cover for the complement of f .

The Fast Complementation Algorithm.
We now describe the algorithm used in espresso. (The algorithm is also described in Hachtel/Somenzi,
“H/S” Ch. 5.3.1; see Handout #10.)

Fast complementation is based on a general theorem, called Shannon Decomposition or Boole’s Expansion
Theorem (see also Handout #11). The following Recursive Complementation Theorem is a special case (see
H/S p. 201, Theorem 5.3.1, Handout #10):

Recursive Complementation Theorem: on Function f. Given a Boolean function f and splitting variable
x, then f ′ = x · f ′

x + x′ · f ′
x′ .

The term f ′
x is read as “the complement of fx”, and the term f ′

x′ is read as “the complement of fx′”. This
theorem defines how a Boolean function f can be complemented recursively. The problem of complement-
ing function f is transformed into the problem of finding the complements of two simpler cofactors, fx and
f ′
x. Once these two results are returned, they are combined to form the final complement, f ′.

The above formulation is in terms of a Boolean function f . Similarly, there is an analogous Recursive
Complementation Theorem on a cover F of a Boolean function f :

Recursive Complementation Theorem: on Cover F. Given a cover F of a Boolean function f and splitting
variable x, then a cover F ′ of the f ′ is given by: F ′ = x · F ′

x + x′ · F ′
x′ .

In practice, this algorithm is often used to generate the OFF-set of a function, when given both ON-set and



DC-set. In this case, the given f and F represent the combined ON-set and DC-set of the function. As a
result, the returned cover, F ′, defines the function’s OFF-set.

The basic structure of the complementation algorithm is quite similar to recursive tautology checking algo-
rithm described in Handout #11. In each case, termination conditions are checked; if they are not satisfied,
recursion is performed. However, there are 3 key differences: (i) different rules for termination; (ii) different
rules for simplifying the recursion step; and (iii) a different method for returning results.

Basic Rules for Termination.
Basic rules are used to terminate recursion, as in tautology. However, there is a fundamental difference:
while the tautology algorithm returns a True/False result (i.e., is/is not a tautology), the complementation
algorithm returns an actual cover (the complement of the initial cover).

B1. Cover F is Empty. A cover is empty if it contains no cube. In this case, the function is all 0. Therefore,
the complement of the function is all 1 (i.e., a tautology). Hence, a cover containing the universal cube
is returned (i.e., the set containing one cube).

B2. Cover F includes the Universal Cube. Here, F is a tautology, so its complement is all 0. Therefore,
an empty cover is returned (a set containing no cubes).

B3. Cover F contains a Single Cube. Here, the complement of F can be computed directly using De-
Morgan’s Law. That is, the cube is complemented, and the resulting cover is returned. For example,
if F contains the single cube abc, then (abc)′ = a′ + b′ + c′; therefore, the cover containing 3 cubes
{a′, b′, c′} is returned.

B4. Single-Input Dependence. If the function depends on only one input x (i.e., all other input columns
contain only ’-’), and the x column contains both 1’s and 0’s, then the function is a tautology, and its
complement is all 0. Therefore, an empty cover is returned (a set containing no cubes).

Rules for Simplifying the Recursion Step.
Unateness properties are used to simplify the recursion step. The rule (U1) below is discussed in H/S, pp.
201-202 (Handout #10), and is based on the following theorem:

Unate Complementation Theorem: on Function f. If f is a positive unate function (i.e., monotonically
increasing) in variable x, then:

f ′ = f ′
x + x′ · f ′

x′

If f is a negative unate function (i.e., monotonically decreasing) in variable x, then:

f ′ = x · f ′
x + f ′

x′ .

Proof. A proof is given in De Micheli, pp. 300-301 (Theorem 7.3.4), as follows. By Shannon decomposition,
f = x · fx + x′ · fx′ . Suppose f is positive unate in x (there is a similar proof if f is negative unate in x).
Then fx′ ≤ fx, and so x · fx′ ≤ x · fx. That is, x · fx′ is covered by x · fx, so we can add the former to
the cover without changing the function: f = x · fx + x · fx′ + x′ · fx′ . Simplifying (using the absorption
law of Boolean algebra), we get: f = x · fx + fx′ . Complementing the result, we get f ′ = (x′ + f ′

x) · f ′
x′ ,

which is x′ · f ′
x′ + f ′

x · f ′
x′ . This expression can still be simplified. By positive unateness, fx ≥ fx′ , so the

2



opposite is true after complementation: f ′
x ≤ f ′

x′ . Therefore, f ′
x · f ′

x′ = f ′
x. Therefore, f ′ = f ′

x + x′ · f ′
x′ , as

in the theorem statement.

Similarly, we get a corresponding useful theorem given a cover F of a function f :

Unate Complementation Theorem: on Cover F. If F is a positive unate cover (i.e., monotonically increas-
ing) in variable x, then:

F ′ = F ′
x + x′ · F ′

x′

If F is a negative unate cover (i.e., monotonically decreasing) in variable x, then:

F ′ = x · F ′
x + F ′

x′ .

This theorem is a powerful technique used to simplify recursion, whenever there is a unate splitting variable.
For an application, see Handout #12 (“Handout of Examples”). We formalize it as a rule:

U1. Unate Variable. The recursion can be simplified if the cover F is unate in some variable x. In this
case, the Unate Complementation Theorem is used.

Returning the Resulting Complemented Cover.
The result of the algorithm is a complemented cover. The Recursive Complementation Theorem describes
how the cover is constructed. If a basic termination rule applies (B1-B4), then the appropriate cover is
returned immediately. If no basic termination rule applies, the initial cover F is cofactored by both x and
x′, and the algorithm is recursively called. Each recursive call returns a complemented cover: F ′

x and F ′
x′ ,

respectively. To assemble the final result, each cube in F ′
x is ANDed with the literal x, and each cube in F ′

x′

is ANDed with the literal x′. The final complemented cover, F’, is the union of all of these cubes.

During recursion, if the Unate Complementation Theorem can be applied, there is a small modification. In
this case, if no basic termination rule applies, and a unate splitting variable x is selected, then (following
the appropriate part of the Unate Complementation Theorem) both F ′

x and F ′
x′ are again returned, but only

one of them is ANDed with a literal. If F is positive unate in x, then only F ′
x′ is ANDed with a literal

(F ′ = F ′
x + x′ · F ′

x′). If F is negative unate in x, then only F ′
x is ANDed with a literal (F ′ = x · F ′

x + F ′
x′).

The result is somewhat “larger” cubes in the final complemented cover, which avoids some fragmentation.

Optimization: Cube Merging
The above method is correct, but is suboptimal: it often results in a large number of cubes in the final cover,
F’. The reason is that many small complement cubes are collected together, from different cofactors.

A better approach, used in espresso, is to try to merge some of the returned cubes. As an example, suppose
the returned cover F ′

x contains the cube wz′, and suppose the returned cover F ′
x′ also contains cube wz′. In

this case, the Recursive Complementation Theorem indicates to AND cube wz′ (from F ′
x) with x, to obtain

cube wxz′; and to AND cube wz′ (from F ′
x′) with x′, to obtain cube wx′z′; the two cubes, wxz′ and wx′z′

are returned.

A simple optimization is to note that the same cube, wz′, was returned by both branches of the recursion.
The result is 2 cubes, wxz′ and wx′z′, which can be combined into a single cube wz′ : wxz′+wx′z′ = wz′

(using the Absorption Law of Boolean algebra). Therefore, only a single (larger) cube, wz′, should be
returned. (See also H/S pp. 201-202, Handout #10.)

3


