Advances in Designing Clockless Digital Systems

Prof. Steven M. Nowick nowick@cs.columbia.edu

Department of Computer Science (and Elect. Eng.) Columbia University New York, NY, USA

Trends and Challenges

Trends in Chip Design: next decade

International Technology Roadmap for Semiconductors (ITRS)

Unprecedented Challenges:

- * complexity and scale (= size of systems)
- clock speeds
- power management
- reusability & scalability
- reliability
- * "time-to-market"

Design becoming unmanageable using a centralized single clock (synchronous) approach....

Trends and Challenges (cont.)

1. Clock Rate:

- * 1980: several MegaHertz
- * 2015: 2-6 GigaHertz (and falling)

Design Challenge:

- *clock skew:* clock must be near-simultaneous across entire chip
 Various optimization techniques: optimal clocking, skew-tolerant,
 - resonant clocking, etc.

Trends and Challenges (cont.)

2. Chip Size and Density:

Total #Transistors per Chip: exponential increase (Moore's Law)

- * 1971: 2300 (Intel 4004 microprocessor)
- * 2015 and beyond: 1-5 billion+

Design Challenges:

* system complexity, design time, clock distribution

Trends and Challenges (cont.)

3. Power Consumption

- * Low power: ever-increasing demand
 - * consumer electronics: battery-powered
 - * high-end processors: avoid expensive fans, packaging

Design Challenge:

- * clock inherently consumes power continuously
- * "power-down" techniques: add complexity, only partly effective

#8

Trends and Challenges (cont.)

4. Time-to-Market, Design Re-Use, Scalability

Increasing pressure for faster "time-to-market". Need:

- reusable components: "plug-and-play" design
- * flexible interfacing: under varied conditions, voltage scaling
- * <u>scalable design</u>: easy system upgrades

Design Challenge: mismatch with central fixed-rate clock

Asynchronous Design: Potential Targets

Large variety of asynchronous design styles

- * Address different points in "design-space" spectrum...
- Example targets:
 - * extreme timing-robustness:
 - providing near "delay-insensitive (DI)" operation
 - * ultra-low power or energy:
 - "on-demand" operation, instant wakeup
 - * ease-of-design/moderate performance
 - 🔹 e.g. Philips' style
 - * very high-speed: asynchronous pipelines (with localized timing constraints)
 - * ... comparable to high-end synchronous
 - with added benefits: support variable-speed I/O rates
 - * support for heterogeneous systems: integrate different clock domains + async
 - "GALS-style" (globally-async/locally-sync)

Overview: How to Encode Data?

More advanced DI codes:

- * M-of-N codes: 3-of-6, 2-of-7, etc.
 - * Provide <u>better coding efficiency</u> + <u>dynamic power</u>
 - * Used in U. of Manchester "Spinnaker" Project neuromorphic processors
- * "DI Bus-Invert" codes: [Agyekum/Nowick DATE-11]
 - * Provide <u>better coding efficiency</u> + <u>dynamic power</u>
- "Zero-Sum" codes: [Agyekum/Nowick DATE-10, IEEE TVLSI-12]
 Provide <u>fault tolerance</u> (error detection/correction)
- * "LETS" codes: 2-phase [McGee/Agyekum/Mohamed/Nowick Async-08]
 - Provide <u>better dynamic power</u> + <u>higher throughput</u>
 - * Used in Stanford "Neurogrid" Project neuromorphic processors

Asynchronous Design: a Brief History...

Phase #1: Early Years (1950's-early 1970's)

- * Leading processors: Illiac, Illiac II (U. of Illinois), Atlas, MU-5 (U. of Manchester)
- * Macromodules Project: plug-and-play design (Washington U., Wes Clark/C. Molnar)
- * Commercial graphics/flight simulation systems: LDS-1 (Evans & Sutherland, C. Seitz)
- * Basic theory, controllers: Huffman, Unger, McCluskey, Muller

Phase #2: The Quiet Years (mid 1970's-early 1980's)

* Advent of VLSI era: leads to synchronous domination and major advances

Phase #3: Coming of Age (mid 1980's-late 1990's)

- * Re-inventing the field:
 - * correct new methodologies, controllers, high-speed pipelines, basic CAD tools
 - * initial industrial uptake: Philips Semiconductors products, Intel/IBM projects
 - * first microprocessors: Caltech, Manchester Amulet [ARM]

Phase #4: The Modern Era (early 2000's-present)

* Leading applications, commercialization, tool development, demonstrators

Asynchronous Design: Recent Industrial Developments

1. Philips Semiconductors: low-/moderate-speed embedded systems

* Wide commercial use: <a>>700 million async chips (mostly 80c51 microcontrollers)

- consumer electronics: pagers, cell phones, smart cards, digital passports, automotive
- * commercial releases: 1990's-2000's

* Benefits (vs. sync):

- * 3-4x lower power (and lower energy consumption/op)
- 5x lower peak currents
- * much lower "electromagnetic interference" (EMI) no shielding of analog components
- correct operation over wide supply voltage range
- $\ensuremath{\,\ast\,}$ instant startup from stand-by mode (no PLL's)

* Complete commercial CAD tool flow: synthesis/testing, design-space exploration

- "Tangram": Philips (late 1980' s-early 2000' s)
- "Haste": Handshake Solutions (incubated spinoff, early-late 2000's)

#29

Asynchronous Design: Recent Industrial Developments

1. Philips Semiconductors (cont.)

- * Synthesis strategy: syntax-directed compilation
 - * starting point: concurrent HDL (Tangram, Haste)
 - * 2-step synthesis:
 - * front-end: HDL spec => intermediate netlist of concurrent components
 - <u>back-end:</u> each component => standard cell (... then physical design)
 Integrated flow with Synopsys/Cadence/Magma tools
 - * +: fast, 'transparent', easy-to-use
 - * -: few optimizations, low/moderate-performance only

Asynchronous Design: Recent Industrial Developments

2. Fulcrum Microsystems/Intel: high-speed Ethernet switch chips

- * Async start-up out of Caltech → now Intel's Switch & Router Division (SRD) (2011)
- * Target: low system latency, extreme functional flexibility
- Intel's FM5000-6000 Series (~2013 release)
 - * 72-port 10G Ethernet switch/router
 - * Very low cut-through latency: 400-600ns
 - * <u>90% asynchronous</u> \rightarrow external synchronous interfaces
 - * 1.2 billion transistors: largest async chip ever manufactured (at release time)
 - * > 1 GHz asynchronous performance (65 nm TSMC process)

CAD flow:

semi-automated, incl. spec language (CAST)

*M. Davies, A. Lines, J. Dama, A. Gravel, R. Southworth, G. Dimou and P. Beerel, "A 72-Port 10G Ethernet Switch/Router Using Quasi-Delay-Insensitive Asynchronous Design," IEEE Async-Symposium (2014)

Asynchronous Design: Recent Industrial Developments

3. Neuromorphic Chips: IBM's "TrueNorth" (Aug. 2014)

- Developed out of DARPA's SyNAPSE Program
- Massively-parallel, fine-grained neuromorphic chip
 - Fully-asynchronous chip! → neuronal computation (bundled data) + interconnect (DI)
 - * IBM's largest chip ever: <u>5.4 billion transistors</u>

 - * Extreme low energy: 70 mW for real-time operation \rightarrow 46 billion synaptic ops/sec/W
 - Asynchronous motivation: extreme scale, high connectivity, power requirements, tolerance to variability

Example network topology: showing only 64 cores (out of 4096) [IBM, 2014*]

*P.A. Merolla, J.V. Arthur, et al., "A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface," Science, vol. 345, pp. 668-673 (Aug. 2014) [COVER STORY]

My Other Research Projects: partial list

1. Asynchronous Interconnection Networks: for Shared-Memory Parallel Processors

- Medium-scale NSF project [2008-12]: with Prof. Uzi Vishkin (University of Maryland)
 - Goal: low-power/high-performance async routing network (processors <=> memory)
 "GALS"-style: globally-asynchronous/locally-synchronous
 - * [M. Horak, S.M. Nowick, M. Carlberg, U. Vishkin, ACM NOCS-10 Symposium]

2. Continuous-Time DSP' s

- Medium-scale NSF project [2010-14]: with Prof. Yannis Tsividis (Columbia EE Dept.)
- Idea: <u>adaptive</u> signal processing, based on signal rate-of-change
- Goal: low-aliasing + low-power -- combine analog + async digital

3. Asynchronous Bus Encoding: for Timing-Robust Global Communication

- * Goal: low-power, error-correction + timing-robust ("delay-insensitive") communication
- * [M. Agyekum/S.M. Nowick, DATE-10, IWLS-10, DATE-11]

4. Variable-Latency Functional Units: "Speculative Completion"

- * Goal: high-performance components with 'data-dependent' completion
- * [S.M. Nowick et al., IEE Proceedings '96; IEEE Async-97 Symposium]